Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

hdWGCNA and Cellular Communication Identify Active NK Cell Subtypes in Alzheimer's Disease and Screen for Diagnostic Markers through Machine Learning

Author(s): Guobin Song, Haoyang Wu, Haiqing Chen, Shengke Zhang, Qingwen Hu, Haotian Lai, Claire Fuller, Guanhu Yang* and Hao Chi*

Volume 21, Issue 2, 2024

Published on: 28 May, 2024

Page: [120 - 140] Pages: 21

DOI: 10.2174/0115672050314171240527064514

Price: $65

Abstract

Background: Alzheimer's disease (AD) is a recognized complex and severe neurodegenerative disorder, presenting a significant challenge to global health. Its hallmark pathological features include the deposition of β-amyloid plaques and the formation of neurofibrillary tangles. Given this context, it becomes imperative to develop an early and accurate biomarker model for AD diagnosis, employing machine learning and bioinformatics analysis.

Methods: In this study, single-cell data analysis was employed to identify cellular subtypes that exhibited significant differences between the diseased and control groups. Following the identification of NK cells, hdWGCNA analysis and cellular communication analysis were conducted to pinpoint NK cell subset with the most robust communication effects. Subsequently, three machine learning algorithms-LASSO, Random Forest, and SVM-RFE-were employed to jointly screen for NK cell subset modular genes highly associated with AD. A logistic regression diagnostic model was then designed based on these characterized genes. Additionally, a protein-protein interaction (PPI) networks of model genes was established. Furthermore, unsupervised cluster analysis was conducted to classify AD subtypes based on the model genes, followed by the analysis of immune infiltration in the different subtypes. Finally, Spearman correlation coefficient analysis was utilized to explore the correlation between model genes and immune cells, as well as inflammatory factors.

Results: We have successfully identified three genes (RPLP2, RPSA, and RPL18A) that exhibit a high association with AD. The nomogram based on these genes provides practical assistance in diagnosing and predicting patients' outcomes. The interconnected genes screened through PPI are intricately linked to ribosome metabolism and the COVID-19 pathway. Utilizing the expression of modular genes, unsupervised cluster analysis unveiled three distinct AD subtypes. Particularly noteworthy is subtype C3, characterized by high expression, which correlates with immune cell infiltration and elevated levels of inflammatory factors. Hence, it can be inferred that the establishment of an immune environment in AD patients is closely intertwined with the heightened expression of model genes.

Conclusion: This study has not only established a valuable diagnostic model for AD patients but has also delved deeply into the pivotal role of model genes in shaping the immune environment of individuals with AD. These findings offer crucial insights into early AD diagnosis and patient management strategies.

[1]
De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV. Alzheimer’s Disease. Subcell Biochem 2012; 65: 329-52.
[http://dx.doi.org/10.1007/978-94-007-5416-4_14] [PMID: 23225010]
[2]
2023 Alzheimer’s disease facts and figures. Alzheimers Dement 2023; 19(4): 1598-695.
[http://dx.doi.org/10.1002/alz.13016] [PMID: 36918389]
[3]
Trejo-Lopez JA, Yachnis AT, Prokop S. Neuropathology of Alzheimer’s Disease. Neurotherapeutics 2022; 19(1): 173-85.
[http://dx.doi.org/10.1007/s13311-021-01146-y] [PMID: 34729690]
[4]
Pettigrew C, Soldan A. Defining cognitive reserve and implications for cognitive aging. Curr Neurol Neurosci Rep 2019; 19(1): 1.
[http://dx.doi.org/10.1007/s11910-019-0917-z] [PMID: 30627880]
[5]
Mattson MP. Pathways towards and away from Alzheimer’s disease. Nature 2004; 430(7000): 631-9.
[http://dx.doi.org/10.1038/nature02621] [PMID: 15295589]
[6]
Song P, An J, Zou MH. Immune clearance of senescent cells to combat ageing and chronic diseases. Cells 2020; 9(3): 671.
[http://dx.doi.org/10.3390/cells9030671] [PMID: 32164335]
[7]
Vida C, Martinez de Toda I, Garrido A, Carro E, Molina JA, De la Fuente M. Impairment of several immune functions and redox state in blood cells of alzheimer’s disease patients. relevant role of neutrophils in oxidative stress. Front Immunol 2018; 8: 1974.
[http://dx.doi.org/10.3389/fimmu.2017.01974] [PMID: 29375582]
[8]
Brauning A, Rae M, Zhu G, et al. Aging of the immune system: Focus on natural killer cells phenotype and functions. Cells 2022; 11(6): 1017.
[http://dx.doi.org/10.3390/cells11061017] [PMID: 35326467]
[9]
Lu Y, Li K, Hu Y, Wang X. Expression of immune related genes and possible regulatory mechanisms in alzheimer’s disease. Front Immunol 2021; 12: 768966.
[http://dx.doi.org/10.3389/fimmu.2021.768966] [PMID: 34804058]
[10]
Zhang Y, Fung ITH, Sankar P, et al. Depletion of NK cells improves cognitive function in the alzheimer disease mouse model. J Immunol 2020; 205(2): 502-10.
[http://dx.doi.org/10.4049/jimmunol.2000037] [PMID: 32503894]
[11]
Zenaro E, Pietronigro E, Bianca VD, et al. Neutrophils promote Alzheimer’s disease–like pathology and cognitive decline via LFA-1 integrin. Nat Med 2015; 21(8): 880-6.
[http://dx.doi.org/10.1038/nm.3913] [PMID: 26214837]
[12]
Rai SN, Singh C, Singh A, Singh MP, Singh BK. Mitochondrial dysfunction: A potential therapeutic target to treat alzheimer’s disease. Mol Neurobiol 2020; 57(7): 3075-88.
[http://dx.doi.org/10.1007/s12035-020-01945-y] [PMID: 32462551]
[13]
Xu J, Gou S, Huang X, et al. Uncovering the impact of aggrephagy in the development of alzheimer’s disease: Insights into diagnostic and therapeutic approaches from machine learning analysis. Curr Alzheimer Res 2023; 20(9): 618-35.
[http://dx.doi.org/10.2174/0115672050280894231214063023] [PMID: 38141185]
[14]
MacEachern SJ, Forkert ND. Machine learning for precision medicine. Genome 2021; 64(4): 416-25.
[http://dx.doi.org/10.1139/gen-2020-0131] [PMID: 33091314]
[15]
Li R. Data mining and machine learning methods for dementia research. Methods Mol Biol 2018; 1750: 363-70.
[http://dx.doi.org/10.1007/978-1-4939-7704-8_25] [PMID: 29512086]
[16]
Zhao S, Zhang L, Ji W, et al. Machine learning-based characterization of cuprotosis-related biomarkers and immune infiltration in Parkinson’s disease. Front Genet 2022; 13: 1010361.
[http://dx.doi.org/10.3389/fgene.2022.1010361] [PMID: 36338988]
[17]
Li Z, Jiang X, Wang Y, Kim Y. Applied machine learning in Alzheimer’s disease research: Omics, imaging, and clinical data. Emerg Top Life Sci 2021; 5(6): 765-77.
[http://dx.doi.org/10.1042/ETLS20210249] [PMID: 34881778]
[18]
Narayanan M, Huynh JL, Wang K, et al. Common dysregulation network in the human prefrontal cortex underlies two neurodegenerative diseases. Mol Syst Biol 2014; 10(7): 743.
[http://dx.doi.org/10.15252/msb.20145304] [PMID: 25080494]
[19]
Maes OC, Schipper HM, Chertkow HM, Wang E. Methodology for discovery of Alzheimer’s disease blood-based biomarkers. J Gerontol Ser A 2009; 64A(6): 636-45.
[http://dx.doi.org/10.1093/gerona/glp045] [PMID: 19366883]
[20]
Xu H, Jia J. Single-cell RNA sequencing of peripheral blood reveals immune cell signatures in Alzheimer’s disease. Front Immunol 2021; 12: 645666.
[http://dx.doi.org/10.3389/fimmu.2021.645666] [PMID: 34447367]
[21]
Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data. Cell 2019; 177: 1888-902.
[http://dx.doi.org/10.1016/j.cell.2019.05.031]
[22]
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015; 161(5): 1202-14.
[http://dx.doi.org/10.1016/j.cell.2015.05.002] [PMID: 26000488]
[23]
Becht E, McInnes L, Healy J, et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol 2018.
[PMID: 30531897]
[24]
Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol 2019; 20(2): 163-72.
[http://dx.doi.org/10.1038/s41590-018-0276-y] [PMID: 30643263]
[25]
Morabito S, Reese F, Rahimzadeh N, Miyoshi E, Swarup V. hdWGCNA identifies co-expression networks in high-dimensional transcriptomics data. Cell Reports Methods 2023; 3(6): 100498.
[http://dx.doi.org/10.1016/j.crmeth.2023.100498] [PMID: 37426759]
[26]
Samuel M, Fairlie R, Negin R, Emily M, Vivek S. High dimensional co-expression networks enable discovery of transcriptomic drivers in complex biological systems. bioRxiv 2022; 2022.2009.2022.509094.
[27]
Xia P, Ouyang S, Shen R, et al. Macrophage-related testicular inflammation in individuals with idiopathic non-obstructive azoospermia: A single-cell analysis. Int J Mol Sci 2023; 24(10): 8819.
[http://dx.doi.org/10.3390/ijms24108819] [PMID: 37240164]
[28]
Vu R, Jin S, Sun P, et al. Wound healing in aged skin exhibits systems-level alterations in cellular composition and cell- cell communication. Cell Rep 2022; 40(5): 111155.
[http://dx.doi.org/10.1016/j.celrep.2022.111155] [PMID: 35926463]
[29]
Jin S, Guerrero-Juarez CF, Zhang L, et al. Inference and analysis of cell-cell communication using CellChat. Nat Commun 2021; 12(1): 1088.
[http://dx.doi.org/10.1038/s41467-021-21246-9] [PMID: 33597522]
[30]
Fang Z, Tian Y, Sui C, et al. Single-cell transcriptomics of proliferative phase endometrium: Systems analysis of cell–cell communication network using cellchat. Front Cell Dev Biol 2022; 10: 919731.
[http://dx.doi.org/10.3389/fcell.2022.919731] [PMID: 35938159]
[31]
Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43(7): e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[32]
Franz M, Rodriguez H, Lopes C, et al. GeneMANIA update 2018. Nucleic Acids Res 2018; 46(W1): W60-4.
[http://dx.doi.org/10.1093/nar/gky311] [PMID: 29912392]
[33]
Gene Ontology Consortium. Gene ontology consortium: Going forward. Nucleic Acids Res 2015; 43(Database issue): D1049-56.
[PMID: 25428369]
[34]
Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 2017; 45(D1): D353-61.
[http://dx.doi.org/10.1093/nar/gkw1092] [PMID: 27899662]
[35]
Chiesa M, Colombo GI, Piacentini L. DaMiRseq—an R/Bioconductor package for data mining of RNA-Seq data: Normalization, feature selection and classification. Bioinformatics 2018; 34(8): 1416-8.
[http://dx.doi.org/10.1093/bioinformatics/btx795] [PMID: 29236969]
[36]
Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS 2012; 16(5): 284-7.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[37]
Engebretsen S, Bohlin J. Statistical predictions with glmnet. Clin Epigenetics 2019; 11(1): 123.
[http://dx.doi.org/10.1186/s13148-019-0730-1] [PMID: 31443682]
[38]
Ishwaran H, Kogalur UB. Consistency of random survival forests. Stat Probab Lett 2010; 80(13-14): 1056-64.
[http://dx.doi.org/10.1016/j.spl.2010.02.020] [PMID: 20582150]
[39]
Huang ML, Hung YH, Lee WM, Li RK, Jiang BR. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. Sci World J 2014; 2014: 1-10.
[http://dx.doi.org/10.1155/2014/795624] [PMID: 25295306]
[40]
Song G, Peng G, Zhang J, et al. Uncovering the potential role of oxidative stress in the development of periodontitis and establishing a stable diagnostic model via combining single-cell and machine learning analysis. Front Immunol 2023; 14: 1181467.
[http://dx.doi.org/10.3389/fimmu.2023.1181467] [PMID: 37475857]
[41]
Robin X, Turck N, Hainard A, et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011; 12(1): 77.
[http://dx.doi.org/10.1186/1471-2105-12-77] [PMID: 21414208]
[42]
Hänzelmann S, Castelo R, Guinney J. GSVA: Gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013; 14(1): 7.
[http://dx.doi.org/10.1186/1471-2105-14-7] [PMID: 23323831]
[43]
Lane CA, Hardy J, Schott JM. Alzheimer’s disease. Eur J Neurol 2018; 25(1): 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[44]
Tripathi PN, Srivastava P, Sharma P, et al. Biphenyl-3-oxo-1,2,4-triazine linked piperazine derivatives as potential cholinesterase inhibitors with anti-oxidant property to improve the learning and memory. Bioorg Chem 2019; 85: 82-96.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.017] [PMID: 30605887]
[45]
Srivastava P, Tripathi PN, Sharma P, et al. Design and development of some phenyl benzoxazole derivatives as a potent acetylcholinesterase inhibitor with antioxidant property to enhance learning and memory. Eur J Med Chem 2019; 163: 116-35.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.049] [PMID: 30503937]
[46]
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathol 2006; 112(4): 389-404.
[http://dx.doi.org/10.1007/s00401-006-0127-z] [PMID: 16906426]
[47]
Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 2012; 8(1): 1-13.
[http://dx.doi.org/10.1016/j.jalz.2011.10.007] [PMID: 22265587]
[48]
Alzheimer’s Association. 2016 Alzheimer’s disease facts and figures. Alzheimers Dement 2016; 12(4): 459-509.
[http://dx.doi.org/10.1016/j.jalz.2016.03.001] [PMID: 27570871]
[49]
Wang JH, Wu YJ, Tee BL, Lo RY. Medical comorbidity in Alzheimer’s disease: A nested case-control study. J Alzheimers Dis 2018; 63(2): 773-81.
[http://dx.doi.org/10.3233/JAD-170786] [PMID: 29660933]
[50]
Liu JL, Hlavka JP, Hillestad R, Mattke S. Assessing the Preparedness of the US Health Care System Infrastructure for an Alzheimer’s Treatment. Santa Monica, CA: RAND Corporation 2017.
[http://dx.doi.org/10.7249/RR2272]
[51]
Graff-Radford J, Yong KXX, Apostolova LG, et al. New insights into atypical Alzheimer’s disease in the era of biomarkers. Lancet Neurol 2021; 20(3): 222-34.
[http://dx.doi.org/10.1016/S1474-4422(20)30440-3] [PMID: 33609479]
[52]
Tian Y, Lu Y, Cao Y, et al. Identification of diagnostic signatures associated with immune infiltration in Alzheimer’s disease by integrating bioinformatic analysis and machine-learning strategies. Front Aging Neurosci 2022; 14: 919614.
[http://dx.doi.org/10.3389/fnagi.2022.919614] [PMID: 35966794]
[53]
Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[54]
Solerte SB, Cravello L, Ferrari E, Fioravanti M. Overproduction of IFN-gamma and TNF-alpha from natural killer (NK) cells is associated with abnormal NK reactivity and cognitive derangement in Alzheimer’s disease. Ann N Y Acad Sci 2000; 917(1): 331-40.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb05399.x] [PMID: 11268360]
[55]
Liu Z, Li H, Pan S. Discovery and validation of key biomarkers based on immune infiltrates in Alzheimer’s disease. Front Genet 2021; 12: 658323.
[http://dx.doi.org/10.3389/fgene.2021.658323]
[56]
Brassart B, Da Silva J, Donet M, et al. Tumour cell blebbing and extracellular vesicle shedding: Key role of matrikines and ribosomal protein SA. Br J Cancer 2019; 120(4): 453-65.
[http://dx.doi.org/10.1038/s41416-019-0382-0] [PMID: 30739912]
[57]
Suzuki M, Tezuka K, Handa T, et al. Upregulation of ribosome complexes at the blood-brain barrier in Alzheimer’s disease patients. J Cereb Blood Flow Metab 2022; 42(11): 2134-50.
[http://dx.doi.org/10.1177/0271678X221111602] [PMID: 35766008]
[58]
Da Costa Dias B, Jovanovic K, Gonsalves D, et al. The 37kDa/67kDa Laminin Receptor acts as a receptor for Aβ42 internalization. Sci Rep 2014; 4(1): 5556.
[http://dx.doi.org/10.1038/srep05556] [PMID: 24990253]
[59]
Jovanovic K, Gonsalves D, Da Costa Dias B, et al. Anti-LRP/LR specific antibodies and shRNAs impede amyloid beta shedding in Alzheimer’s disease. Sci Rep 2013; 3(1): 2699.
[http://dx.doi.org/10.1038/srep02699] [PMID: 24048412]
[60]
Yang HW, Kim HD, Kim TS, Kim J. Senescent cells differentially translate senescence-related mrnas via ribosome heterogeneity. J Gerontol A Biol Sci Med Sci 2019; 74(7): 1015-24.
[http://dx.doi.org/10.1093/gerona/gly228] [PMID: 30285098]
[61]
Chen MB, Yang AC, Yousef H, et al. Brain endothelial cells are exquisite sensors of age-related circulatory cues. Cell Rep 2020; 30(13): 4418-4432.e4.
[http://dx.doi.org/10.1016/j.celrep.2020.03.012] [PMID: 32234477]
[62]
Stein KC, Morales-Polanco F, van der Lienden J, Rainbolt TK, Frydman J. Ageing exacerbates ribosome pausing to disrupt cotranslational proteostasis. Nature 2022; 601(7894): 637-42.
[http://dx.doi.org/10.1038/s41586-021-04295-4] [PMID: 35046576]
[63]
Rai SN, Zahra W, Birla H, Singh SS, Singh SP. Commentary: Mild endoplasmic reticulum stress ameliorates lpopolysaccharide-induced neuroinflammation and cognitive impairment via regulation of microglial polarization. Front Aging Neurosci 2018; 10: 192.
[http://dx.doi.org/10.3389/fnagi.2018.00192] [PMID: 29988480]
[64]
Wang ZB, Ma YH, Sun Y, Tan L, Wang HF, Yu JT. Interleukin-3 is associated with sTREM2 and mediates the correlation between amyloid-β and tau pathology in Alzheimer’s disease. J Neuroinflammation 2022; 19(1): 316.
[http://dx.doi.org/10.1186/s12974-022-02679-5] [PMID: 36578067]
[65]
Chen X, Kendler KS. Interleukin 3 and Schizophrenia. Am J Psychiatry 2008; 165(1): 13-4.
[http://dx.doi.org/10.1176/appi.ajp.2007.07121868] [PMID: 18178751]
[66]
Fotuhi M, Mian A, Meysami S, Raji CA. Neurobiology of COVID-19. J Alzheimers Dis 2020; 76(1): 3-19.
[http://dx.doi.org/10.3233/JAD-200581] [PMID: 32538857]
[67]
Xia X, Wang Y, Zheng J. COVID-19 and Alzheimer’s disease: How one crisis worsens the other. Transl Neurodegener 2021; 10(1): 15.
[http://dx.doi.org/10.1186/s40035-021-00237-2] [PMID: 33941272]
[68]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in wuhan, China. JAMA Neurol 2020; 77(6): 683-90.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy