Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

GLP-1/GIP Agonist as an Intriguing and Ultimate Remedy for Combating Alzheimer’s Disease through its Supporting DPP4 Inhibitors: A Review

Author(s): Mohammad Abubakar, Lokesh Nama, Mohammad Arif Ansari, Mohammad Mazharuddin Ansari, Shivani Bhardwaj, Rajni Daksh, Katta Leela Venkata Syamala, Mohini Santosh Jamadade, Vishal Chhabra, Dileep Kumar and Nitesh Kumar*

Volume 24, Issue 19, 2024

Published on: 27 May, 2024

Page: [1635 - 1664] Pages: 30

DOI: 10.2174/0115680266293416240515075450

Price: $65

Abstract

Background: Alzheimer's disease (AD) is a widespread neurological illness in the elderly, which impacted about 50 million people globally in 2020. Type 2 diabetes has been identified as a risk factor. Insulin and incretins are substances that have various impacts on neurodegenerative processes. Preclinical research has shown that GLP-1 receptor agonists decrease neuroinflammation, tau phosphorylation, amyloid deposition, synaptic function, and memory formation. Phase 2 and 3 studies are now occurring in Alzheimer’s disease populations. In this article, we present a detailed assessment of the therapeutic potential of GLP-1 analogues and DPP4 inhibitors in Alzheimer’s disease.

Aim: This study aimed to gain insight into how GLP-1 analogues and associated antagonists of DPP4 safeguard against AD.

Methods: This study uses terms from search engines, such as Scopus, PubMed, and Google Scholar, to explore the role, function, and treatment options of the GLP-1 analogue for AD.

Results: The review suggested that GLP-1 analogues may be useful for treating AD because they have been linked to anti-inflammatory, neurotrophic, and neuroprotective characteristics. Throughout this review, we discuss the underlying causes of AD and how GLP signaling functions.

Conclusion: With a focus on AD, the molecular and pharmacological effects of a few GLP-1/GIP analogs, both synthetic and natural, as well as DPP4 inhibitors, have been mentioned, which are in the preclinical and clinical studies. This has been demonstrated to improve cognitive function in Alzheimer's patients.

Graphical Abstract

[1]
Wang, Y.; Chen, S.; Xu, Z.; Chen, S.; Yao, W.; Gao, X. GLP-1 receptor agonists downregulate aberrant GnT-III expression in Alzheimer’s disease models through the Akt/GSK-3β/β-catenin signaling. Neuropharmacology, 2018, 131, 190-199.
[http://dx.doi.org/10.1016/j.neuropharm.2017.11.048] [PMID: 29223528]
[2]
Porsteinsson, A.P.; Isaacson, R.S.; Knox, S.; Sabbagh, M.N.; Rubino, I. Diagnosis of early Alzheimer’s disease: Clinical practice in 2021. J. Prev. Alzheimers Dis., 2021, 8(3), 371-386.
[PMID: 34101796]
[3]
Prince, M. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimers Dement., 2013, 9(1), 63-75.
[http://dx.doi.org/10.1016/j.jalz.2012.11.007]
[4]
Yiannopoulou, K.G.; Papageorgiou, S.G. Current and future treatments in Alzheimer disease: An update. J. Cent. Nerv. Syst. Dis., 2020, 12
[http://dx.doi.org/10.1177/1179573520907397] [PMID: 32165850]
[5]
Perry, T.; Greig, N. A new Alzheimer’s disease interventive strategy: GLP-1. Curr. Drug Targets, 2004, 5(6), 565-571.
[http://dx.doi.org/10.2174/1389450043345245] [PMID: 15270203]
[6]
Angelucci, F.; Cechova, K.; Amlerova, J.; Hort, J. Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflammation, 2019, 16(1), 108.
[http://dx.doi.org/10.1186/s12974-019-1494-4] [PMID: 31118068]
[7]
Jiang, C.; Li, G.; Huang, P.; Liu, Z.; Zhao, B. The gut microbiota and Alzheimer’s disease. J. Alzheimers Dis., 2017, 58(1), 1-15.
[http://dx.doi.org/10.3233/JAD-161141] [PMID: 28372330]
[8]
Klein, W.; Krafft, G.A.; Finch, C.E. Targeting small Aβ oligomers: The solution to an Alzheimer’s disease conundrum? Trends Neurosci., 2001, 24(4), 219-224.
[http://dx.doi.org/10.1016/S0166-2236(00)01749-5] [PMID: 11250006]
[9]
Reus, L.M.; Pasaniuc, B.; Posthuma, D.; Boltz, T.; Pijnenburg, Y.A.L.; Ophoff, R.A. Gene expression imputation across multiple tissue types provides insight into the genetic architecture of frontotemporal dementia and its clinical subtypes. Biol. Psychiatry, 2021, 89(8), 825-835.
[http://dx.doi.org/10.1016/j.biopsych.2020.12.023] [PMID: 33637304]
[10]
Du, X.; Wang, X.; Geng, M. Alzheimer’s disease hypothesis and related therapies. Transl. Neurodegener., 2018, 7(1), 2.
[http://dx.doi.org/10.1186/s40035-018-0107-y] [PMID: 29423193]
[11]
Jeste, D.V.; Finkel, S.I. Psychosis of Alzheimer’s disease and related dementias. Diagnostic criteria for a distinct syndrome. Am. J. Geriatr. Psychiatry, 2000, 8(1), 29-34.
[http://dx.doi.org/10.1097/00019442-200002000-00004] [PMID: 10648292]
[12]
Masters, M.C.; Morris, J.C.; Roe, C.M. “Noncognitive” symptoms of early Alzheimer disease. Neurology, 2015, 84(6), 617-622.
[http://dx.doi.org/10.1212/WNL.0000000000001238] [PMID: 25589671]
[13]
Ballard, C.; Orrell, M.; YongZhong, S.; Moniz-Cook, E.; Stafford, J.; Whittaker, R.; Woods, B.; Corbett, A.; Garrod, L.; Khan, Z.; Woodward-Carlton, B.; Wenborn, J.; Fossey, J. Impact of antipsychotic review and nonpharmacological intervention on antipsychotic use, neuropsychiatric symptoms, and mortality in people with dementia living in nursing homes: A factorial cluster-randomized controlled trial by the well-being and health for people with dementia (WHELD) program. Am. J. Psychiatry, 2016, 173(3), 252-262.
[http://dx.doi.org/10.1176/appi.ajp.2015.15010130] [PMID: 26585409]
[14]
Lanctôt, K.L.; Amatniek, J.; Ancoli-Israel, S.; Arnold, S.E.; Ballard, C.; Cohen-Mansfield, J.; Ismail, Z.; Lyketsos, C.; Miller, D.S.; Musiek, E.; Osorio, R.S.; Rosenberg, P.B.; Satlin, A.; Steffens, D.; Tariot, P.; Bain, L.J.; Carrillo, M.C.; Hendrix, J.A.; Jurgens, H.; Boot, B. Neuropsychiatric signs and symptoms of Alzheimer’s disease: New treatment paradigms. Alzheimers Dement. (N. Y.), 2017, 3(3), 440-449.
[http://dx.doi.org/10.1016/j.trci.2017.07.001] [PMID: 29067350]
[15]
Cummings, J.; Mintzer, J.; Brodaty, H.; Sano, M.; Banerjee, S.; Devanand, D.P.; Gauthier, S.; Howard, R.; Lanctôt, K.; Lyketsos, C.G.; Peskind, E.; Porsteinsson, A.P.; Reich, E.; Sampaio, C.; Steffens, D.; Wortmann, M.; Zhong, K. Agitation in cognitive disorders: International Psychogeriatric Association provisional consensus clinical and research definition. Int. Psychogeriatr., 2015, 27(1), 7-17.
[http://dx.doi.org/10.1017/S1041610214001963] [PMID: 25311499]
[16]
Siblerud, R.; Mutter, J.; Moore, E.; Naumann, J.; Walach, H. A hypothesis and evidence that mercury may be an etiological factor in Alzheimer’s disease. Int. J. Environ. Res. Public Health, 2019, 16(24), 5152.
[http://dx.doi.org/10.3390/ijerph16245152] [PMID: 31861093]
[17]
Kalaria, R.N.; Maestre, G.E.; Arizaga, R.; Friedland, R.P.; Galasko, D.; Hall, K.; Luchsinger, J.A.; Ogunniyi, A.; Perry, E.K.; Potocnik, F.; Prince, M.; Stewart, R.; Wimo, A.; Zhang, Z.X.; Antuono, P. Alzheimer’s disease and vascular dementia in developing countries: Prevalence, management, and risk factors. Lancet Neurol., 2008, 7(9), 812-826.
[http://dx.doi.org/10.1016/S1474-4422(08)70169-8] [PMID: 18667359]
[18]
Rodriguez, J.J.L.; Ferri, C.P.; Acosta, D.; Guerra, M.; Huang, Y.; Jacob, K.S.; Krishnamoorthy, E.S.; Salas, A.; Sosa, A.L.; Acosta, I.; Dewey, M.E.; Gaona, C.; Jotheeswaran, A.T.; Li, S.; Rodriguez, D.; Rodriguez, G.; Kumar, P.S.; Valhuerdi, A.; Prince, M. Prevalence of dementia in Latin America, India, and China: A population-based cross-sectional survey. Lancet, 2008, 372(9637), 464-474.
[http://dx.doi.org/10.1016/S0140-6736(08)61002-8] [PMID: 18657855]
[19]
Zhang, Z.X.; Zahner, G.E.P.; Román, G.C.; Liu, J.; Hong, Z.; Qu, Q.M.; Liu, X.H.; Zhang, X.J.; Zhou, B.; Wu, C.B.; Tang, M.N.; Hong, X.; Li, H. Dementia Subtypes in China. Arch. Neurol., 2005, 62(3), 447-453.
[http://dx.doi.org/10.1001/archneur.62.3.447] [PMID: 15767510]
[20]
Heijtz, R.D.; Wang, S.; Anuar, F.; Qian, Y.; Björkholm, B.; Samuelsson, A.; Hibberd, M.L.; Forssberg, H.; Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA, 2011, 108(7), 3047-3052.
[http://dx.doi.org/10.1073/pnas.1010529108] [PMID: 21282636]
[21]
Sharon, G.; Sampson, T.R.; Geschwind, D.H.; Mazmanian, S.K. The central nervous system and the gut microbiome. Cell, 2016, 167(4), 915-932.
[http://dx.doi.org/10.1016/j.cell.2016.10.027] [PMID: 27814521]
[22]
Kumar, A. Alzheimer disease; StatPearls Publishing: Treasure Island, FL, 2022.
[23]
Casadesus, G. Targeting gonadotropins: An alternative option for Alzheimer disease treatment. J Biomed. Biotechnol., 2006, 3, 39508.
[http://dx.doi.org/10.1155/JBB/2006/39508]
[24]
Ma, C.; Hong, F.; Yang, S. Amyloidosis in Alzheimer’s disease: Pathogeny, etiology, and related therapeutic directions. Molecules, 2022, 27(4), 1210.
[http://dx.doi.org/10.3390/molecules27041210] [PMID: 35209007]
[25]
Halliwell, B. Oxidative stress and neurodegeneration: Where are we now? J. Neurochem., 2006, 97(6), 1634-1658.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03907.x] [PMID: 16805774]
[26]
Yildirim Simsir, I.; Soyaltin, U.E.; Cetinkalp, S. Glucagon like peptide-1 (GLP-1) likes Alzheimer’s disease. Diabetes Metab. Syndr., 2018, 12(3), 469-475.
[http://dx.doi.org/10.1016/j.dsx.2018.03.002] [PMID: 29598932]
[27]
Kieffer, T.J.; Francis Habener, J. The glucagon-like peptides. Endocr. Rev., 1999, 20(6), 876-913.
[http://dx.doi.org/10.1210/edrv.20.6.0385] [PMID: 10605628]
[28]
Satoh, F.; Beak, S.A.; Small, C.J.; Falzon, M.; Ghatei, M.A.; Bloom, S.R.; Smith, D.M. Characterization of human and rat glucagon-like peptide-1 receptors in the neurointermediate lobe: Lack of coupling to either stimulation or inhibition of adenylyl cyclase. Endocrinology, 2000, 141(4), 1301-1309.
[http://dx.doi.org/10.1210/endo.141.4.7420] [PMID: 10746632]
[29]
Gejl, M.; Gjedde, A.; Egefjord, L.; Møller, A.; Hansen, S.B.; Vang, K.; Rodell, A.; Brændgaard, H.; Gottrup, H.; Schacht, A.; Møller, N.; Brock, B.; Rungby, J. In Alzheimer’s disease, 6- month treatment with GLP-1 analog prevents decline of brain glucose metabolism: Randomized, placebo-controlled, double-blind clinical trial. Front. Aging Neurosci., 2016, 8, 108.
[http://dx.doi.org/10.3389/fnagi.2016.00108] [PMID: 27252647]
[30]
Yu, C.; Song, L.; Zhai, Z.; Tao, Y.; Zhang, Y.; Cai, L.; Hou, Y.; Chen, H.; Wang, L.; Wang, L. The role of GLP-1/GIP receptor agonists in Alzheimer’s disease. Adv. Clin. Exp. Med., 2020, 29(6), 661-668.
[http://dx.doi.org/10.17219/acem/121007] [PMID: 32614526]
[31]
Carlessi, R.; Chen, Y.; Rowlands, J.; Cruzat, V.F.; Keane, K.N.; Egan, L.; Mamotte, C.; Stokes, R.; Gunton, J.E.; Bittencourt, P.I.H.; Newsholme, P. GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation. Sci. Rep., 2017, 7(1), 2661.
[http://dx.doi.org/10.1038/s41598-017-02838-2] [PMID: 28572610]
[32]
Xie, Y.; Zheng, J.; Li, S.; Li, H.; Zhou, Y.; Zheng, W.; Zhang, M.; Liu, L.; Chen, Z. GLP-1 improves the neuronal supportive ability of astrocytes in Alzheimer’s disease by regulating mitochondrial dysfunction via the cAMP/PKA pathway. Biochem. Pharmacol., 2021, 188, 114578.
[http://dx.doi.org/10.1016/j.bcp.2021.114578] [PMID: 33895160]
[33]
Li, T.; Jiao, J.J.; Su, Q.; Hölscher, C.; Zhang, J.; Yan, X.D.; Zhao, H.M.; Cai, H.Y.; Qi, J.S. A GLP-1/GIP/Gcg receptor triagonist improves memory behavior, as well as synaptic transmission, neuronal excitability and Ca2+ homeostasis in 3xTg-AD mice. Neuropharmacology, 2020, 170, 108042.
[http://dx.doi.org/10.1016/j.neuropharm.2020.108042] [PMID: 32147454]
[34]
Athauda, D.; Foltynie, T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: Mechanisms of action. Drug Discov. Today, 2016, 21(5), 802-818.
[http://dx.doi.org/10.1016/j.drudis.2016.01.013] [PMID: 26851597]
[35]
Neel, J.V. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am. J. Hum. Genet., 1962, 14(4), 353-362.
[PMID: 13937884]
[36]
Verdich, C.; Toubro, S.; Buemann, B.; Lysgård Madsen, J.; Juul Holst, J.; Astrup, A. The role of postprandial releases of insulin and incretin hormones in meal-induced satiety—effect of obesity and weight reduction. Int. J. Obes., 2001, 25(8), 1206-1214.
[http://dx.doi.org/10.1038/sj.ijo.0801655] [PMID: 11477506]
[37]
Perry, T.; Lahiri, D.K.; Sambamurti, K.; Chen, D.; Mattson, M.P.; Egan, J.M.; Greig, N.H. Glucagon-like peptide-1 decreases endogenous amyloid-β peptide (Aβ) levels and protects hippocampal neurons from death induced by Aβ and iron. J. Neurosci. Res., 2003, 72(5), 603-612.
[http://dx.doi.org/10.1002/jnr.10611] [PMID: 12749025]
[38]
Hölscher, C. Brain insulin resistance: Role in neurodegenerative disease and potential for targeting. Expert Opin. Investig. Drugs, 2020, 29(4), 333-348.
[http://dx.doi.org/10.1080/13543784.2020.1738383] [PMID: 32175781]
[39]
Tai, J.; Liu, W.; Li, Y.; Li, L.; Hölscher, C. Neuroprotective effects of a triple GLP-1/GIP/glucagon receptor agonist in the APP/PS1 transgenic mouse model of Alzheimer’s disease. Brain Res., 2018, 1678, 64-74.
[http://dx.doi.org/10.1016/j.brainres.2017.10.012] [PMID: 29050859]
[40]
Rhea, E.M.; Rask-Madsen, C.; Banks, W.A. Insulin transport across the blood–brain barrier can occur independently of the insulin receptor. J. Physiol., 2018, 596(19), 4753-4765.
[http://dx.doi.org/10.1113/JP276149] [PMID: 30044494]
[41]
Bae, C.; Song, J. The role of glucagon-like peptide 1 (GLP1) in type 3 diabetes: GLP-1 controls insulin resistance, neuroinflammation and neurogenesis in the brain. Int. J. Mol. Sci., 2017, 18(11), 2493.
[http://dx.doi.org/10.3390/ijms18112493] [PMID: 29165354]
[42]
Islam, M. Insulinotropic effect of herbal drugs for management of diabetes mellitus: A congregational approach. Biosensors J, 2016, 5(142), 2.
[43]
Liu, J.; Yin, F.; Zheng, X.; Jing, J.; Hu, Y. Geniposide, a novel agonist for GLP-1 receptor, prevents PC12 cells from oxidative damage via MAP kinase pathway. Neurochem. Int., 2007, 51(6-7), 361-369.
[http://dx.doi.org/10.1016/j.neuint.2007.04.021] [PMID: 17629357]
[44]
Perry, T.; Lahiri, D.K.; Chen, D.; Zhou, J.; Shaw, K.T.Y.; Egan, J.M.; Greig, N.H. A novel neurotrophic property of glucagon-like peptide 1: A promoter of nerve growth factor-mediated differentiation in PC12 cells. J. Pharmacol. Exp. Ther., 2002, 300(3), 958-966.
[http://dx.doi.org/10.1124/jpet.300.3.958] [PMID: 11861804]
[45]
Hui, H.; Nourparvar, A.; Zhao, X.; Perfetti, R. Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5′-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology, 2003, 144(4), 1444-1455.
[http://dx.doi.org/10.1210/en.2002-220897] [PMID: 12639928]
[46]
Li, Q.X.; Gao, H.; Guo, Y.X.; Wang, B.Y.; Hua, R.; Gao, L.; Shang, H.W.; Lu, X.; Xu, J.D. GLP-1 and underlying beneficial actions in Alzheimer’s disease, hypertension, and NASH. Front. Endocrinol. (Lausanne), 2021, 12, 721198.
[http://dx.doi.org/10.3389/fendo.2021.721198] [PMID: 34552561]
[47]
Qi, L.; Ke, L.; Liu, X.; Liao, L.; Ke, S.; Liu, X.; Wang, Y.; Lin, X.; Zhou, Y.; Wu, L.; Chen, Z.; Liu, L. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model. Eur. J. Pharmacol., 2016, 783, 23-32.
[http://dx.doi.org/10.1016/j.ejphar.2016.04.052] [PMID: 27131827]
[48]
Haan, M.N. Therapy Insight: Type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease. Nat. Clin. Pract. Neurol., 2006, 2(3), 159-166.
[http://dx.doi.org/10.1038/ncpneuro0124] [PMID: 16932542]
[49]
Hunter, K.; Hölscher, C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis. BMC Neurosci., 2012, 13(1), 33.
[http://dx.doi.org/10.1186/1471-2202-13-33] [PMID: 22443187]
[50]
McClean, P.L.; Hölscher, C. Liraglutide can reverse memory impairment, synaptic loss and reduce plaque load in aged APP/PS1 mice, a model of Alzheimer’s disease. Neuropharmacology, 2014, 76(Pt A), 57-67.
[http://dx.doi.org/10.1016/j.neuropharm.2013.08.005] [PMID: 23973293]
[51]
Li, J.Q.; Tan, L.; Wang, H.F.; Tan, M.S.; Tan, L.; Xu, W.; Zhao, Q.F.; Wang, J.; Jiang, T.; Yu, J.T. Risk factors for predicting progression from mild cognitive impairment to Alzheimer’s disease: A systematic review and meta-analysis of cohort studies. J. Neurol. Neurosurg. Psychiatry, 2016, 87(5), 476-484.
[http://dx.doi.org/10.1136/jnnp-2014-310095] [PMID: 26001840]
[52]
Steen, E.; Terry, B.M.; Rivera, E.J.; Cannon, J.L.; Neely, T.R.; Tavares, R.; Xu, X.J.; Wands, J.R.; de la Monte, S.M. Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer’s disease-is this type 3 diabetes? J. Alzheimers Dis., 2005, 7(1), 63-80.
[http://dx.doi.org/10.3233/JAD-2005-7107] [PMID: 15750215]
[53]
Boccardi, V.; Murasecco, I.; Mecocci, P. Diabetes drugs in the fight against Alzheimer’s disease. Ageing Res. Rev., 2019, 54, 100936.
[http://dx.doi.org/10.1016/j.arr.2019.100936] [PMID: 31330313]
[54]
Watson, G.S.; Peskind, E.R.; Asthana, S.; Purganan, K.; Wait, C.; Chapman, D.; Schwartz, M.W.; Plymate, S.; Craft, S. Insulin increases CSF Aβ42 levels in normal older adults. Neurology, 2003, 60(12), 1899-1903.
[http://dx.doi.org/10.1212/01.WNL.0000065916.25128.25] [PMID: 12821730]
[55]
Yamamoto, N.; Matsubara, T.; Sobue, K.; Tanida, M.; Kasahara, R.; Naruse, K.; Taniura, H.; Sato, T.; Suzuki, K. Brain insulin resistance accelerates Aβ fibrillogenesis by inducing GM1 ganglioside clustering in the presynaptic membranes. J. Neurochem., 2012, 121(4), 619-628.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07668.x] [PMID: 22260232]
[56]
Kopp, K.O.; Glotfelty, E.J.; Li, Y.; Greig, N.H. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol. Res., 2022, 186, 106550.
[http://dx.doi.org/10.1016/j.phrs.2022.106550] [PMID: 36372278]
[57]
Ferreira, L.S.S.; Fernandes, C.S.; Vieira, M.N.N.; De Felice, F.G. Insulin resistance in Alzheimer’s disease. Front. Neurosci., 2018, 12, 830.
[http://dx.doi.org/10.3389/fnins.2018.00830] [PMID: 30542257]
[58]
Van Dyken, P.; Lacoste, B. Impact of metabolic syndrome on neuroinflammation and the blood–brain barrier. Front. Neurosci., 2018, 12, 930.
[http://dx.doi.org/10.3389/fnins.2018.00930] [PMID: 30618559]
[59]
Shah, K.; DeSilva, S.; Abbruscato, T. The role of glucose transporters in brain disease: Diabetes and Alzheimer’s Disease. Int. J. Mol. Sci., 2012, 13(12), 12629-12655.
[http://dx.doi.org/10.3390/ijms131012629] [PMID: 23202918]
[60]
Mullins, R.J.; Diehl, T.C.; Chia, C.W.; Kapogiannis, D. Insulin resistance as a link between amyloid-beta and tau pathologies in Alzheimer’s disease. Front. Aging Neurosci., 2017, 9, 118.
[http://dx.doi.org/10.3389/fnagi.2017.00118] [PMID: 28515688]
[61]
Govindpani, K.; McNamara, L.G.; Smith, N.R.; Vinnakota, C.; Waldvogel, H.J.; Faull, R.L.M.; Kwakowsky, A. Vascular dysfunction in Alzheimer’s disease: A prelude to the pathological process or a consequence of it? J. Clin. Med., 2019, 8(5), 651.
[http://dx.doi.org/10.3390/jcm8050651] [PMID: 31083442]
[62]
Diniz, B.S.O.; Pinto, J.A., Jr; Forlenza, O.V. Do CSF total tau, phosphorylated tau, and β-amyloid 42 help to predict progression of mild cognitive impairment to Alzheimer’s disease? A systematic review and meta-analysis of the literature. World J. Biol. Psychiatry, 2008, 9(3), 172-182.
[http://dx.doi.org/10.1080/15622970701535502] [PMID: 17886169]
[63]
Hampel, H.; Teipel, S.J.; Fuchsberger, T.; Andreasen, N.; Wiltfang, J.; Otto, M.; Shen, Y.; Dodel, R.; Du, Y.; Farlow, M.; Möller, H-J.; Blennow, K.; Buerger, K. Value of CSF β-amyloid1–42 and tau as predictors of Alzheimer’s disease in patients with mild cognitive impairment. Mol. Psychiatry, 2004, 9(7), 705-710.
[http://dx.doi.org/10.1038/sj.mp.4001473] [PMID: 14699432]
[64]
Alves, G.; Brønnick, K.; Aarsland, D.; Blennow, K.; Zetterberg, H.; Ballard, C.; Kurz, M.W.; Andreasson, U.; Tysnes, O.B.; Larsen, J.P.; Mulugeta, E. CSF amyloid- and tau proteins, and cognitive performance, in early and untreated Parkinson’s Disease: The Norwegian ParkWest study. J. Neurol. Neurosurg. Psychiatry, 2010, 81(10), 1080-1086.
[http://dx.doi.org/10.1136/jnnp.2009.199950] [PMID: 20547614]
[65]
Small, G.W.; Kepe, V.; Ercoli, L.M.; Siddarth, P.; Bookheimer, S.Y.; Miller, K.J.; Lavretsky, H.; Burggren, A.C.; Cole, G.M.; Vinters, H.V.; Thompson, P.M.; Huang, S.C.; Satyamurthy, N.; Phelps, M.E.; Barrio, J.R. PET of brain amyloid and tau in mild cognitive impairment. N. Engl. J. Med., 2006, 355(25), 2652-2663.
[http://dx.doi.org/10.1056/NEJMoa054625] [PMID: 17182990]
[66]
Perry, T.; Greig, N. Enhancing central nervous system endogenous GLP-1 receptor pathways for intervention in Alzheimer’s disease. Curr. Alzheimer Res., 2005, 2(3), 377-385.
[http://dx.doi.org/10.2174/1567205054367892] [PMID: 15974903]
[67]
Mattson, M.P. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev., 1997, 77(4), 1081-1132.
[http://dx.doi.org/10.1152/physrev.1997.77.4.1081] [PMID: 9354812]
[68]
Yaribeygi, H.; Rashidy-Pour, A.; Atkin, S.L.; Jamialahmadi, T.; Sahebkar, A. GLP-1 mimetics and cognition. Life Sci., 2021, 264, 118645.
[http://dx.doi.org/10.1016/j.lfs.2020.118645] [PMID: 33121988]
[69]
Tramutola, A.; Arena, A.; Cini, C.; Butterfield, D.A.; Barone, E. Modulation of GLP-1 signaling as a novel therapeutic approach in the treatment of Alzheimer’s disease pathology. Expert Rev. Neurother., 2017, 17(1), 59-75.
[http://dx.doi.org/10.1080/14737175.2017.1246183] [PMID: 27715341]
[70]
Barone, E.; Di Domenico, F.; Cassano, T.; Arena, A.; Tramutola, A.; Lavecchia, M.A.; Coccia, R.; Butterfield, D.A.; Perluigi, M. Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: A new paradigm. Free Radic. Biol. Med., 2016, 91, 127-142.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.12.012] [PMID: 26698666]
[71]
Ferreira, S.T.; Clarke, J.R.; Bomfim, T.R.; De Felice, F.G. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement., 2014, 10(1S)(Suppl.), S76-S83.
[http://dx.doi.org/10.1016/j.jalz.2013.12.010] [PMID: 24529528]
[72]
Biessels, G.J.; Reagan, L.P. Hippocampal insulin resistance and cognitive dysfunction. Nat. Rev. Neurosci., 2015, 16(11), 660-671.
[http://dx.doi.org/10.1038/nrn4019] [PMID: 26462756]
[73]
De Felice, F.G.; Ferreira, S.T. Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes, 2014, 63(7), 2262-2272.
[http://dx.doi.org/10.2337/db13-1954] [PMID: 24931033]
[74]
Bomfim, T.R.; Forny-Germano, L.; Sathler, L.B.; Brito-Moreira, J.; Houzel, J.C.; Decker, H.; Silverman, M.A.; Kazi, H.; Melo, H.M.; McClean, P.L.; Holscher, C.; Arnold, S.E.; Talbot, K.; Klein, W.L.; Munoz, D.P.; Ferreira, S.T.; De Felice, F.G. An anti- diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease–associated Aβ oligomers. J. Clin. Invest., 2012, 122(4), 1339-1353.
[http://dx.doi.org/10.1172/JCI57256] [PMID: 22476196]
[75]
Lourenco, M.V.; Clarke, J.R.; Frozza, R.L.; Bomfim, T.R.; Forny-Germano, L.; Batista, A.F.; Sathler, L.B.; Brito-Moreira, J.; Amaral, O.B.; Silva, C.A.; Freitas-Correa, L.; Espírito-Santo, S.; Campello-Costa, P.; Houzel, J.C.; Klein, W.L.; Holscher, C.; Carvalheira, J.B.; Silva, A.M.; Velloso, L.A.; Munoz, D.P.; Ferreira, S.T.; De Felice, F.G. TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s β-amyloid oligomers in mice and monkeys. Cell Metab., 2013, 18(6), 831-843.
[http://dx.doi.org/10.1016/j.cmet.2013.11.002] [PMID: 24315369]
[76]
Ghasemi, R.; Haeri, A.; Dargahi, L.; Mohamed, Z.; Ahmadiani, A. Insulin in the brain: Sources, localization and functions. Mol. Neurobiol., 2013, 47(1), 145-171.
[http://dx.doi.org/10.1007/s12035-012-8339-9] [PMID: 22956272]
[77]
Bélanger, M.; Allaman, I.; Magistretti, P.J. Brain energy metabolism: Focus on astrocyte-neuron metabolic cooperation. Cell Metab., 2011, 14(6), 724-738.
[http://dx.doi.org/10.1016/j.cmet.2011.08.016] [PMID: 22152301]
[78]
Jurcovicova, J. Glucose transport in brain – effect of inflammation. Endocr. Regul., 2014, 48(1), 35-48.
[http://dx.doi.org/10.4149/endo_2014_01_35] [PMID: 24524374]
[79]
Holst, J.J.; Burcelin, R.; Nathanson, E. Neuroprotective properties of GLP-1: Theoretical and practical applications. Curr. Med. Res. Opin., 2011, 27(3), 547-558.
[http://dx.doi.org/10.1185/03007995.2010.549466] [PMID: 21222567]
[80]
Yoshino, Y.; Ishisaka, M.; Tsujii, S.; Shimazawa, M.; Hara, H. Glucagon-like peptide-1 protects the murine hippocampus against stressors via Akt and ERK1/2 signaling. Biochem. Biophys. Res. Commun., 2015, 458(2), 274-279.
[http://dx.doi.org/10.1016/j.bbrc.2015.01.098] [PMID: 25660451]
[81]
Duarte, A.I.; Candeias, E.; Alves, I.N.; Mena, D.; Silva, D.F.; Machado, N.J.; Campos, E.J.; Santos, M.S.; Oliveira, C.R.; Moreira, P.I. Liraglutide protects against brain amyloid-β1–42 accumulation in female mice with early Alzheimer’s disease-like pathology by partially rescuing oxidative/nitrosative stress and inflammation. Int. J. Mol. Sci., 2020, 21(5), 1746.
[http://dx.doi.org/10.3390/ijms21051746] [PMID: 32143329]
[82]
Li, Y.; Duffy, K.B.; Ottinger, M.A.; Ray, B.; Bailey, J.A.; Holloway, H.W.; Tweedie, D.; Perry, T.; Mattson, M.P.; Kapogiannis, D.; Sambamurti, K.; Lahiri, D.K.; Greig, N.H. GLP-1 receptor stimulation reduces amyloid-β peptide accumulation and cytotoxicity in cellular and animal models of Alzheimer’s disease. J. Alzheimers Dis., 2010, 19(4), 1205-1219.
[http://dx.doi.org/10.3233/JAD-2010-1314] [PMID: 20308787]
[83]
Cai, H.Y.; Hölscher, C.; Yue, X.H.; Zhang, S.X.; Wang, X.H.; Qiao, F.; Yang, W.; Qi, J.S. Lixisenatide rescues spatial memory and synaptic plasticity from amyloid β protein-induced impairments in rats. Neuroscience, 2014, 277, 6-13.
[http://dx.doi.org/10.1016/j.neuroscience.2014.02.022] [PMID: 24583037]
[84]
Hansen, H.H.; Barkholt, P.; Fabricius, K.; Jelsing, J.; Terwel, D.; Pyke, C.; Knudsen, L.B.; Vrang, N. The GLP-1 receptor agonist liraglutide reduces pathology-specific tau phosphorylation and improves motor function in a transgenic hTauP301L mouse model of tauopathy. Brain Res., 2016, 1634, 158-170.
[http://dx.doi.org/10.1016/j.brainres.2015.12.052] [PMID: 26746341]
[85]
Li, L.; Zhang, Z.F.; Holscher, C.; Gao, C.; Jiang, Y.H.; Liu, Y.Z. (Val8) glucagon-like peptide-1 prevents tau hyperphosphorylation, impairment of spatial learning and ultra-structural cellular damage induced by streptozotocin in rat brains. Eur. J. Pharmacol., 2012, 674(2-3), 280-286.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.005] [PMID: 22115895]
[86]
Kimura, R.; Okouchi, M.; Fujioka, H.; Ichiyanagi, A.; Ryuge, F.; Mizuno, T.; Imaeda, K.; Okayama, N.; Kamiya, Y.; Asai, K.; Joh, T. Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience, 2009, 162(4), 1212-1219.
[http://dx.doi.org/10.1016/j.neuroscience.2009.05.025] [PMID: 19463904]
[87]
Yaribeygi, H.; Lhaf, F.; Sathyapalan, T.; Sahebkar, A. Effects of novel antidiabetes agents on apoptotic processes in diabetes and malignancy: Implications for lowering tissue damage. Life Sci., 2019, 231, 116538.
[http://dx.doi.org/10.1016/j.lfs.2019.06.013] [PMID: 31176776]
[88]
Biswas, S.C.; Buteau, J.; Greene, L.A. Glucagon-like peptide-1 (GLP-1) diminishes neuronal degeneration and death caused by NGF deprivation by suppressing Bim induction. Neurochem. Res., 2008, 33(9), 1845-1851.
[http://dx.doi.org/10.1007/s11064-008-9646-4] [PMID: 18351462]
[89]
Perry, T.; Haughey, N.J.; Mattson, M.P.; Egan, J.M.; Greig, N.H. Protection and reversal of excitotoxic neuronal damage by glucagon-like peptide-1 and exendin-4. J. Pharmacol. Exp. Ther., 2002, 302(3), 881-888.
[http://dx.doi.org/10.1124/jpet.102.037481] [PMID: 12183643]
[90]
Cheng, B.; Goodman, Y.; Begley, J.G.; Mattson, M.P. Neurotrophin-4/5 protects hippocampal and cortical neurons against energy deprivation- and excitatory amino acid-induced injury. Brain Res., 1994, 650(2), 331-335.
[http://dx.doi.org/10.1016/0006-8993(94)91801-5] [PMID: 7953701]
[91]
Mattson, M.P. Degenerative and protective signaling mechanisms in the neurofibrillary pathology of AD. Neurobiol. Aging, 1995, 16(3), 447-457.
[http://dx.doi.org/10.1016/0197-4580(94)00182-Z] [PMID: 7566352]
[92]
Perry, T.; Greig, N.H. The glucagon-like peptides: A new genre in therapeutic targets for intervention in Alzheimer’s disease. J. Alzheimers Dis., 2002, 4(6), 487-496.
[http://dx.doi.org/10.3233/JAD-2002-4605] [PMID: 12515900]
[93]
Solmaz, V.; Çınar, B.P.; Yiğittürk, G.; Çavuşoğlu, T.; Taşkıran, D.; Erbaş, O. Exenatide reduces TNF-α expression and improves hippocampal neuron numbers and memory in streptozotocin treated rats. Eur. J. Pharmacol., 2015, 765, 482-487.
[http://dx.doi.org/10.1016/j.ejphar.2015.09.024] [PMID: 26386291]
[94]
Rowlands, J.; Heng, J.; Newsholme, P.; Carlessi, R. Pleiotropic effects of GLP-1 and analogs on cell signaling, metabolism, and function. Front. Endocrinol. (Lausanne), 2018, 9, 672.
[http://dx.doi.org/10.3389/fendo.2018.00672] [PMID: 30532733]
[95]
Grieco, M.; Giorgi, A.; Gentile, M.C.; d’Erme, M.; Morano, S.; Maras, B.; Filardi, T. Glucagon-like peptide-1: A focus on neurodegenerative diseases. Front. Neurosci., 2019, 13, 1112.
[http://dx.doi.org/10.3389/fnins.2019.01112] [PMID: 31680842]
[96]
Moloney, A.M.; Griffin, R.J.; Timmons, S.; O’Connor, R.; Ravid, R.; O’Neill, C. Defects in IGF-1 receptor, insulin receptor and IRS-1/2 in Alzheimer’s disease indicate possible resistance to IGF-1 and insulin signalling. Neurobiol. Aging, 2010, 31(2), 224-243.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.04.002] [PMID: 18479783]
[97]
Ma, D.; Liu, X.; Liu, J.; Li, M.; Chen, L.; Gao, M.; Xu, W.; Yang, Y. Long-term liraglutide ameliorates nigrostriatal impairment via regulating AMPK/PGC-1a signaling in diabetic mice. Brain Res., 2019, 1714, 126-132.
[http://dx.doi.org/10.1016/j.brainres.2019.02.030] [PMID: 30826352]
[98]
Cai, H.Y.; Yang, J.T.; Wang, Z.J.; Zhang, J.; Yang, W.; Wu, M.N.; Qi, J.S. Lixisenatide reduces amyloid plaques, neurofibrillary tangles and neuroinflammation in an APP/PS1/tau mouse model of Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2018, 495(1), 1034-1040.
[http://dx.doi.org/10.1016/j.bbrc.2017.11.114] [PMID: 29175324]
[99]
Hui, H.; Zhao, X.; Perfetti, R. Structure and function studies of glucagon-like peptide-1 (GLP-1): The designing of a novel pharmacological agent for the treatment of diabetes. Diabetes Metab. Res. Rev., 2005, 21(4), 313-331.
[http://dx.doi.org/10.1002/dmrr.553] [PMID: 15852457]
[100]
Meier, J.J.; Nauck, M.A.; Kranz, D.; Holst, J.J.; Deacon, C.F.; Gaeckler, D.; Schmidt, W.E.; Gallwitz, B. Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes, 2004, 53(3), 654-662.
[http://dx.doi.org/10.2337/diabetes.53.3.654] [PMID: 14988249]
[101]
Mentlein, R.; Gallwitz, B.; Schmidt, W.E. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-1(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem., 1993, 214(3), 829-835.
[http://dx.doi.org/10.1111/j.1432-1033.1993.tb17986.x] [PMID: 8100523]
[102]
Kieffer, T.J.; McIntosh, C.H.; Pederson, R.A. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology, 1995, 136(8), 3585-3596.
[http://dx.doi.org/10.1210/endo.136.8.7628397] [PMID: 7628397]
[103]
Hansen, L.; Deacon, C.F.; Ørskov, C.; Holst, J.J. Glucagon-like peptide-1-(7-36)amide is transformed to glucagon-like peptide-1-(9-36)amide by dipeptidyl peptidase IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology, 1999, 140(11), 5356-5363.
[http://dx.doi.org/10.1210/endo.140.11.7143] [PMID: 10537167]
[104]
Green, B.D. Metabolic stability, receptor binding, cAMP generation, insulin secretion and antihyperglycaemic activity of novel N-terminal Glu9-substituted analogues of glucagon-like peptide-1. Biol Chem., 2003, 384(12), 1543-51.
[http://dx.doi.org/10.1515/BC.2003.171]
[105]
Hupe-Sodmann, K.; McGregor, G.P.; Bridenbaugh, R.; Göke, R.; Göke, B.; Thole, H.; Zimmermann, B.; Voigt, K. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7–36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul. Pept., 1995, 58(3), 149-156.
[http://dx.doi.org/10.1016/0167-0115(95)00063-H] [PMID: 8577927]
[106]
Lee, S.; Lee, D.Y. Glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes. Ann. Pediatr. Endocrinol. Metab., 2017, 22(1), 15-26.
[http://dx.doi.org/10.6065/apem.2017.22.1.15] [PMID: 28443255]
[107]
Graaf, C.; Donnelly, D.; Wootten, D.; Lau, J.; Sexton, P.M.; Miller, L.J.; Ahn, J.M.; Liao, J.; Fletcher, M.M.; Yang, D.; Brown, A.J.H.; Zhou, C.; Deng, J.; Wang, M.W. Glucagon-like peptide-1 and its class BG protein–coupled receptors: A long march to therapeutic successes. Pharmacol. Rev., 2016, 68(4), 954-1013.
[http://dx.doi.org/10.1124/pr.115.011395] [PMID: 27630114]
[108]
Koole, C.; Wootten, D.; Simms, J.; Savage, E.E.; Miller, L.J.; Christopoulos, A.; Sexton, P.M. Second extracellular loop of human glucagon-like peptide-1 receptor (GLP-1R) differentially regulates orthosteric but not allosteric agonist binding and function. J. Biol. Chem., 2012, 287(6), 3659-3673.
[http://dx.doi.org/10.1074/jbc.M111.309369] [PMID: 22147709]
[109]
Nauck, M.A.; Meier, J.J. Management of endocrine disease: Are all GLP-1 agonists equal in the treatment of type 2 diabetes? Eur. J. Endocrinol., 2019, 181(6), R211-R234.
[http://dx.doi.org/10.1530/EJE-19-0566] [PMID: 31600725]
[110]
Adelhorst, K.; Hedegaard, B.B.; Knudsen, L.B.; Kirk, O. Structure-activity studies of glucagon-like peptide-1. J. Biol. Chem., 1994, 269(9), 6275-6278.
[http://dx.doi.org/10.1016/S0021-9258(17)37366-0] [PMID: 8119974]
[111]
Gallwitz, B.; Witt, M.; Paetzold, G.; Morys-Wortmann, C.; Zimmermann, B.; Eckart, K.; Fölsch, U.R.; Schmidt, W.E. Structure/activity characterization of glucagon-like peptide-1. Eur. J. Biochem., 1994, 225(3), 1151-1156.
[http://dx.doi.org/10.1111/j.1432-1033.1994.1151b.x] [PMID: 7957206]
[112]
Weis, W.I.; Kobilka, B.K. The molecular basis of G protein–coupled receptor activation. Annu. Rev. Biochem., 2018, 87(1), 897-919.
[http://dx.doi.org/10.1146/annurev-biochem-060614-033910] [PMID: 29925258]
[113]
Zhang, X. Differential GLP-1R binding and activation by peptide and non-peptide agonists. Molecular Cell, 2020, 80(3), 485-500.
[114]
Liang, Y.L.; Khoshouei, M.; Glukhova, A.; Furness, S.G.B.; Zhao, P.; Clydesdale, L.; Koole, C.; Truong, T.T.; Thal, D.M.; Lei, S.; Radjainia, M.; Danev, R.; Baumeister, W.; Wang, M.W.; Miller, L.J.; Christopoulos, A.; Sexton, P.M.; Wootten, D. Phase- plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex. Nature, 2018, 555(7694), 121-125.
[http://dx.doi.org/10.1038/nature25773] [PMID: 29466332]
[115]
Zhang, Y.; Sun, B.; Feng, D.; Hu, H.; Chu, M.; Qu, Q.; Tarrasch, J.T.; Li, S.; Sun Kobilka, T.; Kobilka, B.K.; Skiniotis, G. Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature, 2017, 546(7657), 248-253.
[http://dx.doi.org/10.1038/nature22394] [PMID: 28538729]
[116]
Egan, J.; Chia, C.W. Role and development of GLP-1 receptor agonists in the management of diabetes. Diabetes Metab. Syndr. Obes., 2009, 2, 37-49.
[http://dx.doi.org/10.2147/DMSO.S4283] [PMID: 20148188]
[117]
Cary, B.P.; Deganutti, G.; Zhao, P.; Truong, T.T.; Piper, S.J.; Liu, X.; Belousoff, M.J.; Danev, R.; Sexton, P.M.; Wootten, D.; Gellman, S.H. Structural and functional diversity among agonist-bound states of the GLP-1 receptor. Nat. Chem. Biol., 2022, 18(3), 256-263.
[http://dx.doi.org/10.1038/s41589-021-00945-w] [PMID: 34937906]
[118]
Hareter, A.; Hoffmann, E.; Bode, H.P.; Göke, B.; Göke, R. The positive charge of the imidazole side chain of histidine7 is crucial for GLP-1 action. Endocr. J., 1997, 44(5), 701-705.
[http://dx.doi.org/10.1507/endocrj.44.701] [PMID: 9466326]
[119]
Gallwitz, B.; Ropeter, T.; Morys-Wortmann, C.; Mentlein, R.; Siegel, E.G.; Schmidt, W.E. GLP-1-analogues resistant to degradation by dipeptidyl-peptidase IV in vitro. Regul. Pept., 2000, 86(1-3), 103-111.
[http://dx.doi.org/10.1016/S0167-0115(99)00095-6] [PMID: 10672909]
[120]
Burcelin, R.; Dolci, W.; Thorens, B. Long-lasting antidiabetic effect of a dipeptidyl peptidase IV-resistant analog of glucagon-like peptide-1. Metabolism, 1999, 48(2), 252-258.
[http://dx.doi.org/10.1016/S0026-0495(99)90043-4] [PMID: 10024091]
[121]
Deacon, C.F.; Knudsen, L.B.; Madsen, K.; Wiberg, F.C.; Jacobsen, O.; Holst, J.J. Dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 which have extended metabolic stability and improved biological activity. Diabetologia, 1998, 41(3), 271-278.
[http://dx.doi.org/10.1007/s001250050903] [PMID: 9541166]
[122]
Sarrauste de Menthière, C.; Chavanieu, A.; Grassy, G.; Dalle, S.; Salazar, G.; Kervran, A.; Pfeiffer, B.; Renard, P.; Delagrange, P.; Manechez, D.; Bakes, D.; Ktorza, A.; Calas, B. Structural requirements of the N-terminal region of GLP-1-[7-37]-NH2 for receptor interaction and cAMP production. Eur. J. Med. Chem., 2004, 39(6), 473-480.
[http://dx.doi.org/10.1016/j.ejmech.2004.02.002] [PMID: 15183905]
[123]
Xiao, Q.; Giguere, J.; Parisien, M.; Jeng, W.; St-Pierre, S.A.; Brubaker, P.L.; Wheeler, M.B. Biological activities of glucagon- like peptide-1 analogues in vitro and in vivo. Biochemistry, 2001, 40(9), 2860-2869.
[http://dx.doi.org/10.1021/bi0014498] [PMID: 11258897]
[124]
Ji, C.; Xue, G.F.; Li, G.; Li, D.; Hölscher, C. Neuroprotective effects of glucose-dependent insulinotropic polypeptide in Alzheimer’s disease. Rev. Neurosci., 2016, 27(1), 61-70.
[http://dx.doi.org/10.1515/revneuro-2015-0021] [PMID: 26351802]
[125]
Zhang, Z.Q.; Hölscher, C. GIP has neuroprotective effects in Alzheimer and Parkinson’s disease models. Peptides, 2020, 125, 170184.
[http://dx.doi.org/10.1016/j.peptides.2019.170184] [PMID: 31705913]
[126]
Usdin, T.B.; Mezey, E.; Button, D.C.; Brownstein, M.J.; Bonner, T.I. Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology, 1993, 133(6), 2861-2870.
[http://dx.doi.org/10.1210/endo.133.6.8243312] [PMID: 8243312]
[127]
Nyberg, J.; Anderson, M.F.; Meister, B.; Alborn, A.M.; Ström, A.K.; Brederlau, A.; Illerskog, A.C.; Nilsson, O.; Kieffer, T.J.; Hietala, M.A.; Ricksten, A.; Eriksson, P.S. Glucose-dependent insulinotropic polypeptide is expressed in adult hippocampus and induces progenitor cell proliferation. J. Neurosci., 2005, 25(7), 1816-1825.
[http://dx.doi.org/10.1523/JNEUROSCI.4920-04.2005] [PMID: 15716418]
[128]
Gabe, M.B.N.; van der Velden, W.J.C.; Smit, F.X.; Gasbjerg, L.S.; Rosenkilde, M.M. Molecular interactions of full-length and truncated GIP peptides with the GIP receptor – A comprehensive review. Peptides, 2020, 125, 170224.
[http://dx.doi.org/10.1016/j.peptides.2019.170224] [PMID: 31809770]
[129]
Fredriksson, R.; Lagerström, M.C.; Lundin, L.G.; Schiöth, H.B. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol., 2003, 63(6), 1256-1272.
[http://dx.doi.org/10.1124/mol.63.6.1256] [PMID: 12761335]
[130]
Alaña, I.; Malthouse, J.P.G.; O’Harte, F.P.M.; Hewage, C.M. The bioactive conformation of glucose-dependent insulinotropic polypeptide by NMR and CD spectroscopy. Proteins, 2007, 68(1), 92-99.
[http://dx.doi.org/10.1002/prot.21372] [PMID: 17393464]
[131]
Chang, X.; Keller, D.; Bjørn, S.; Led, J.J. Structure and folding of glucagon-like peptide-1-(7–36)-amide in aqueous trifluoroethanol studied by NMR spectroscopy. Magn. Reson. Chem., 2001, 39(8), 477-483.
[http://dx.doi.org/10.1002/mrc.880]
[132]
Deacon, C.F. Circulation and Degradation of GIP and GLP-1. Horm. Metab. Res., 2004, 36(11/12), 761-765.
[http://dx.doi.org/10.1055/s-2004-826160] [PMID: 15655705]
[133]
Mentlein, R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul. Pept., 1999, 85(1), 9-24.
[http://dx.doi.org/10.1016/S0167-0115(99)00089-0] [PMID: 10588446]
[134]
Parthier, C.; Kleinschmidt, M.; Neumann, P.; Rudolph, R.; Manhart, S.; Schlenzig, D.; Fanghänel, J.; Rahfeld, J.U.; Demuth, H.U.; Stubbs, M.T. Crystal structure of the incretin-bound extracellular domain of a G protein-coupled receptor. Proc. Natl. Acad. Sci. USA, 2007, 104(35), 13942-13947.
[http://dx.doi.org/10.1073/pnas.0706404104] [PMID: 17715056]
[135]
Schwartz, T.W.; Frimurer, T.M. Full monty of family B GPCRs. Nat. Chem. Biol., 2017, 13(8), 819-821.
[http://dx.doi.org/10.1038/nchembio.2438] [PMID: 28853739]
[136]
Duffy, A.M.; Hölscher, C. The incretin analogue D-Ala2GIP reduces plaque load, astrogliosis and oxidative stress in an APP/PS1 mouse model of Alzheimer’s disease. Neuroscience, 2013, 228, 294-300.
[http://dx.doi.org/10.1016/j.neuroscience.2012.10.045] [PMID: 23103794]
[137]
Faivre, E.; Hölscher, C. Neuroprotective effects of D-Ala2GIP on Alzheimer’s disease biomarkers in an APP/PS1 mouse model. Alzheimers Res. Ther., 2013, 5(2), 20.
[http://dx.doi.org/10.1186/alzrt174] [PMID: 23601582]
[138]
Hölscher, C. Protective properties of GLP-1 and associated peptide hormones in neurodegenerative disorders. Br. J. Pharmacol., 2022, 179(4), 695-714.
[http://dx.doi.org/10.1111/bph.15508] [PMID: 33900631]
[139]
Faivre, E.; Hölscher, C. D-Ala2GIP facilitated synaptic plasticity and reduces plaque load in aged wild type mice and in an Alzheimer’s disease mouse model. J. Alzheimers Dis., 2013, 35(2), 267-283.
[http://dx.doi.org/10.3233/JAD-121888] [PMID: 23568101]
[140]
Ma, Z. Research progress on the GIP/GLP-1 receptor coagonist tirzepatide, a rising star in Type 2 Diabetes. J Diab Res., 2023, 2023, 5891532.
[141]
Chavda, V.P.; Ajabiya, J.; Teli, D.; Bojarska, J.; Apostolopoulos, V. Tirzepatide, a new era of dual-targeted treatment for diabetes and obesity: A mini-review. Molecules, 2022, 27(13), 4315.
[http://dx.doi.org/10.3390/molecules27134315] [PMID: 35807558]
[142]
Guo, X.; Lei, M.; Zhao, J.; Wu, M.; Ren, Z.; Yang, X.; Ouyang, C.; Liu, X.; Liu, C.; Chen, Q. Tirzepatide ameliorates spatial learning and memory impairment through modulation of aberrant insulin resistance and inflammation response in diabetic rats. Front. Pharmacol., 2023, 14, 1146960.
[http://dx.doi.org/10.3389/fphar.2023.1146960] [PMID: 37701028]
[143]
Folch, J.; Olloquequi, J.; Ettcheto, M.; Busquets, O.; Sánchez-López, E.; Cano, A.; Espinosa-Jiménez, T.; García, M.L.; Beas-Zarate, C.; Casadesús, G.; Bulló, M.; Auladell, C.; Camins, A. The involvement of peripheral and brain insulin resistance in late onset Alzheimer’s dementia. Front. Aging Neurosci., 2019, 11, 236.
[http://dx.doi.org/10.3389/fnagi.2019.00236] [PMID: 31551756]
[144]
Čater, M.; Hölter, S.M. A pathophysiological intersection of diabetes and alzheimer’s disease. Int. J. Mol. Sci., 2022, 23(19), 11562.
[http://dx.doi.org/10.3390/ijms231911562] [PMID: 36232867]
[145]
Gasparini, L.; Xu, H. Potential roles of insulin and IGF-1 in Alzheimer’s disease. Trends Neurosci., 2003, 26(8), 404-406.
[http://dx.doi.org/10.1016/S0166-2236(03)00163-2] [PMID: 12900169]
[146]
Hölscher, C. Novel dual GLP-1/GIP receptor agonists show neuroprotective effects in Alzheimer’s and Parkinson’s disease models. Neuropharmacology, 2018, 136(Pt B), 251-259.
[http://dx.doi.org/10.1016/j.neuropharm.2018.01.040] [PMID: 29402504]
[147]
Farzam, K.; Patel, P. Tirzepatide; StatPearls Publishing: Treasure Island, FL, 2022.
[148]
Trujillo, J. Safety and tolerability of once-weekly GLP-1 receptor agonists in type 2 diabetes. J. Clin. Pharm. Ther., 2020, 45(S1)(Suppl. 1), 43-60.
[http://dx.doi.org/10.1111/jcpt.13225] [PMID: 32910487]
[149]
Kroopnick, J.M.; Davis, S.N. The role of Recent Pharmacotherapeutic Options on the Management of Treatment Resistant Type 2 Diabetes. Expert Opin. Pharmacother., 2022, 23(11), 1259-1271.
[http://dx.doi.org/10.1080/14656566.2022.2089021] [PMID: 35765193]
[150]
Feng, P.; Zhang, X.; Li, D.; Ji, C.; Yuan, Z.; Wang, R.; Xue, G.; Li, G.; Hölscher, C. Two novel dual GLP-1/GIP receptor agonists are neuroprotective in the MPTP mouse model of Parkinson’s disease. Neuropharmacology, 2018, 133, 385-394.
[http://dx.doi.org/10.1016/j.neuropharm.2018.02.012] [PMID: 29462693]
[151]
Maskery, M.; Goulding, E.M.; Gengler, S.; Melchiorsen, J.U.; Rosenkilde, M.M.; Hölscher, C. The dual GLP-1/GIP receptor agonist DA4-JC shows superior protective properties compared to the GLP-1 analogue liraglutide in the APP/PS1 mouse model of Alzheimer’s disease. Am. J. Alzheimers Dis. Other Demen., 2020, 35
[http://dx.doi.org/10.1177/1533317520953041] [PMID: 32959677]
[152]
Panagaki, T.; Gengler, S.; Hölscher, C. The Novel DA–CH3 Dual Incretin Restores Endoplasmic Reticulum Stress and Autophagy Impairments to Attenuate Alzheimer-Like Pathology and Cognitive Decrements in the APPSWE/PS1ΔE9 Mouse Model. J. Alzheimers Dis., 2018, 66(1), 195-218.
[http://dx.doi.org/10.3233/JAD-180584] [PMID: 30282365]
[153]
Katsenos, A.P.; Davri, A.S.; Simos, Y.V.; Nikas, I.P.; Bekiari, C.; Paschou, S.A.; Peschos, D.; Konitsiotis, S.; Vezyraki, P.; Tsamis, K.I. New treatment approaches for Alzheimer’s disease: Preclinical studies and clinical trials centered on antidiabetic drugs. Expert Opin. Investig. Drugs, 2022, 31(1), 105-123.
[http://dx.doi.org/10.1080/13543784.2022.2022122] [PMID: 34941464]
[154]
Eng, J. Purification and structure of exendin-3, a new pancreatic secretagogue isolated from Heloderma horridum venom. J. Bio. Chem., 1990, 265(33), 20259-20262.
[http://dx.doi.org/10.1016/S0021-9258(17)30498-2]
[155]
Eng, J. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Bio. Chem., 1992, 267(11), 7402-7405.
[http://dx.doi.org/10.1016/S0021-9258(18)42531-8]
[156]
Triplitt, C.; DeFronzo, R.A. Exenatide: First-in-class incretin mimetic for the treatment of Type 2 diabetes mellitus. Expert Rev Endocrinol Metab., 2006, 1(3), 329-341.
[157]
Ferrari, F. Incretin-based drugs as potential therapy for neurodegenerative diseases: Current status and perspectives. Pharmacol Ther., 2022, 239, 108277.
[158]
Tramutola, A. Modulation of GLP-1 signaling as a novel therapeutic approach in the treatment of Alzheimer’s disease. Expert Rev Neurother., 2017, 17(1), 59-75.
[http://dx.doi.org/10.1080/14737175.2017.1246183]
[159]
During, M.J. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection Nat Med., 2003, 9(9), 1137-9.
[http://dx.doi.org/10.1038/nm919]
[160]
An, J. Exenatide alleviates mitochondrial dysfunction and cognitive impairment in the 5×FAD mouse model of Alzheimer's disease. Behav Brain Res., 2019, 370, 111932.
[161]
Steensgaard, D.B. The molecular basis for the delayed absorption of the once-daily human GLP-1 analogue, Liraglutide. Diabetes, 2008, 57, A164.
[162]
Madsen, K. Structure− activity and protraction relationship of long-acting glucagon-like peptide-1 derivatives: Importance of fatty acid length, polarity, and bulkiness. J Med Chem., 2007, 50(24), 6126-6132.
[163]
Knudsen, L.B.; Lau, J.J.F.I.E. The discovery and development of liraglutide and semaglutide. Front Endocrinol (Lausanne), 2019, 10, 155.
[http://dx.doi.org/10.3389/fendo.2019.00155]
[164]
Zhou, M. Dulaglutide ameliorates STZ induced AD-like impairment of learning and memory ability by modulating hyperphosphorylation of tau and NFs through GSK3β. Biochem Biophys Res Commun., 2019, 511(1), 154-160.
[http://dx.doi.org/10.1016/j.bbrc.2019.01.103]
[165]
McClean, P.L. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer's disease. J Neurosci., 2011, 31(17), 6587-94.
[http://dx.doi.org/10.1523/JNEUROSCI.0529-11.2011]
[166]
Zhang, Y. Liraglutide ameliorates hyperhomocysteinemia-induced Alzheimer-like pathology and memory deficits in rats via multi- molecular targeting. Neurosci Bull., 2019, 35(4), 724-734.
[http://dx.doi.org/10.1007/s12264-018-00336-7]
[167]
McClean, P.L.; Jalewa, J.; Hölscher, C.J.B.b.r. Prophylactic liraglutide treatment prevents amyloid plaque deposition, chronic inflammation and memory impairment in APP/PS1 mice. Behav Brain Res, 2015, 293, 96-106.
[168]
Chen, S. Liraglutide improves water maze learning and memory performance while reduces hyperphosphorylation of tau and neurofilaments in APP/PS1/Tau triple transgenic mice. Neurochem Res., 2017, 42(8), 2326-2335.
[169]
Sharma, S.; Bhatia, V. Drug design of GLP-1 receptor agonists: Importance of in silico methods. Curr. Pharm. Des., 2021, 27(8), 1015-1024.
[http://dx.doi.org/10.2174/1381612826666201118094502] [PMID: 33213316]
[170]
Anderson, S.L.; Beutel, T.R.; Trujillo, J.M. Oral semaglutide in type 2 diabetes. J. Diabetes Complications, 2020, 34(4), 107520.
[http://dx.doi.org/10.1016/j.jdiacomp.2019.107520] [PMID: 31952996]
[171]
Nauck, M.A.; Quast, D.R.; Wefers, J.; Meier, J.J. GLP-1 receptor agonists in the treatment of type 2 diabetes – state-of-the-art. Mol. Metab., 2021, 46, 101102.
[http://dx.doi.org/10.1016/j.molmet.2020.101102] [PMID: 33068776]
[172]
Brown, E.; Cuthbertson, D.J.; Wilding, J.P. Newer GLP-1 receptor agonists and obesity-diabetes. Peptides, 2018, 100, 61-67.
[http://dx.doi.org/10.1016/j.peptides.2017.12.009] [PMID: 29412833]
[173]
Kapitza, C.; Dahl, K.; Jacobsen, J.B.; Axelsen, M.B.; Flint, A. Effects of semaglutide on beta cell function and glycaemic control in participants with type 2 diabetes: A randomised, double-blind, placebo-controlled trial. Diabetologia, 2017, 60(8), 1390-1399.
[http://dx.doi.org/10.1007/s00125-017-4289-0] [PMID: 28526920]
[174]
Kalra, S.; Sahay, R. A review on semaglutide: An oral glucagon- like peptide 1 receptor agonist in management of type 2 diabetes mellitus. Diabetes Ther., 2020, 11(9), 1965-1982.
[http://dx.doi.org/10.1007/s13300-020-00894-y] [PMID: 32725484]
[175]
Nowell, J.; Blunt, E.; Edison, P. Incretin and insulin signaling as novel therapeutic targets for Alzheimer’s and Parkinson’s disease. Mol. Psychiatry, 2023, 28(1), 217-229.
[http://dx.doi.org/10.1038/s41380-022-01792-4] [PMID: 36258018]
[176]
Mahapatra, M.K.; Karuppasamy, M.; Sahoo, B.M. Semaglutide, a glucagon like peptide-1 receptor agonist with cardiovascular benefits for management of type 2 diabetes. Rev. Endocr. Metab. Disord., 2022, 23(3), 521-539.
[http://dx.doi.org/10.1007/s11154-021-09699-1] [PMID: 34993760]
[177]
Lee, T.S.; Park, E.J.; Choi, M.; Oh, H.S.; An, Y.; Kim, T.; Kim, T.H.; Shin, B.S.; Shin, S. Novel LC-MS/MS analysis of the GLP-1 analog semaglutide with its application to pharmacokinetics and brain distribution studies in rats. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2023, 1221, 123688.
[http://dx.doi.org/10.1016/j.jchromb.2023.123688] [PMID: 36989942]
[178]
Wang, Z.J.; Li, X.R.; Chai, S.F.; Li, W.R.; Li, S.; Hou, M.; Li, J.L.; Ye, Y.C.; Cai, H.Y.; Hölscher, C.; Wu, M.N. Semaglutide ameliorates cognition and glucose metabolism dysfunction in the 3xTg mouse model of Alzheimer’s disease via the GLP-1R/SIRT1/GLUT4 pathway. Neuropharmacology, 2023, 240, 109716.
[http://dx.doi.org/10.1016/j.neuropharm.2023.109716] [PMID: 37730113]
[179]
Chang, Y.; Zhang, D.; Hu, W.; Liu, D.; Li, L. Semaglutide-mediated protection against Aβ correlated with enhancement of autophagy and inhibition of apotosis. J. Clin. Neurosci., 2020, 81, 234-239.
[http://dx.doi.org/10.1016/j.jocn.2020.09.054] [PMID: 33222922]
[180]
Zhang, L.; Zhang, W.; Tian, X. The pleiotropic of GLP-1/GLP-1R axis in central nervous system diseases. Int. J. Neurosci., 2023, 133(5), 473-491.
[http://dx.doi.org/10.1080/00207454.2021.1924707] [PMID: 33941038]
[181]
Rubino, D.; Abrahamsson, N.; Davies, M.; Hesse, D.; Greenway, F.L.; Jensen, C.; Lingvay, I.; Mosenzon, O.; Rosenstock, J.; Rubio, M.A.; Rudofsky, G.; Tadayon, S.; Wadden, T.A.; Dicker, D.; Friberg, M.; Sjödin, A.; Dicker, D.; Segal, G.; Mosenzon, O.; Sabbah, M.; Sofer, Y.; Vishlitzky, V.; Meesters, E.W.; Serlie, M.; van Bon, A.; Cardoso, H.; Freitas, P.; Carneiro de Melo, P.; Monteiro, M.; Monteiro, M.; Rodrigues, D.; Badat, A.; Joshi, P.; Latiff, G.; Mitha, E.A.; Snyman, H.H.; van Nieuwenhuizen, E.; González Albarrán, O.; Caixas, A.; de al Cuesta, C.; Garcia Luna, P.P.; Morales Portillo, C.; Mezquita Raya, P.; Rubio, M.A.; Abrahamsson, N.; Hoffstedt, J.; von Wowern, F.; Uddman, E.; Bach-Kliegel, B.; Beuschlein, F.; Bilz, S.; Golay, A.; Rudofsky, G.; Strey, C.; Fadieienko, G.; Kosei, N.; Tatarchuk, T.; Velychko, V.; Zinych, O.; Aronoff, S.L.; Bays, H.E.; Brockmyre, A.P.; Call, R.S.; Crump, C.; Desouza, C.V.; Espinosa, V.; Free, A.L.; Gandy, W.H.; Geller, S.A.; Gottschlich, G.M.; Greenway, F.L.; Han-Conrad, L.; Harper, W.; Herman, L.; Hewitt, M.; Hollander, P.; Kaster, S.R.; Manessis, A.; Martin, F.A.; McNeill, R.E.; Murray, A.V.; Norwood, P.C.; Reed, J.C.H.; Rosenstock, J.; Rubino, D.M.; Schear, M.J.; Warren, M.L. Effect of continued weekly subcutaneous semaglutide vs placebo on weight loss maintenance in adults with overweight or obesity: The STEP 4 randomized clinical trial. JAMA, 2021, 325(14), 1414-1425.
[http://dx.doi.org/10.1001/jama.2021.3224] [PMID: 33755728]
[182]
Gao, X.; Hua, X.; Wang, X.; Xu, W.; Zhang, Y.; Shi, C.; Gu, M. Efficacy and safety of semaglutide on weight loss in obese or overweight patients without diabetes: A systematic review and meta-analysis of randomized controlled trials. Front. Pharmacol., 2022, 13, 935823.
[http://dx.doi.org/10.3389/fphar.2022.935823] [PMID: 36188627]
[183]
Flint, A.; Andersen, G.; Hockings, P.; Johansson, L.; Morsing, A.; Sundby Palle, M.; Vogl, T.; Loomba, R.; Plum-Mörschel, L. Randomised clinical trial: Semaglutide versus placebo reduced liver steatosis but not liver stiffness in subjects with non-alcoholic fatty liver disease assessed by magnetic resonance imaging. Aliment. Pharmacol. Ther., 2021, 54(9), 1150-1161.
[http://dx.doi.org/10.1111/apt.16608] [PMID: 34570916]
[184]
Abdel-latif, R.G.; Heeba, G.H.; Taye, A.; Khalifa, M.M.A. Lixisenatide, a novel GLP-1 analog, protects against cerebral ischemia/reperfusion injury in diabetic rats. Naunyn Schmiedebergs Arch. Pharmacol., 2018, 391(7), 705-717.
[http://dx.doi.org/10.1007/s00210-018-1497-1] [PMID: 29671019]
[185]
Oh, H.S.; Park, E.J.; Lee, T.S.; An, Y.; Kim, T.H.; Shin, S.; Shin, B.S. Pharmacokinetics of Lixisenatide, a GLP-1 Receptor Agonist, Determined by a Novel Liquid Chromatography–Tandem Mass Spectrometry Analysis in Rats. Separations, 2023, 10(5), 282.
[http://dx.doi.org/10.3390/separations10050282]
[186]
Bain, S.C. The clinical development program of lixisenatide: A once-daily glucagon-like Peptide-1 receptor agonist. Diabetes Ther., 2014, 5(2), 367-383.
[http://dx.doi.org/10.1007/s13300-014-0073-z] [PMID: 25027491]
[187]
McClean, P.L.; Hölscher, C. Lixisenatide, a drug developed to treat type 2 diabetes, shows neuroprotective effects in a mouse model of Alzheimer’s disease. Neuropharmacology, 2014, 86, 241-258.
[http://dx.doi.org/10.1016/j.neuropharm.2014.07.015] [PMID: 25107586]
[188]
Dubey, S.K.; Lakshmi, K.K.; Krishna, K.V.; Agrawal, M.; Singhvi, G.; Saha, R.N.; Saraf, S.; Saraf, S.; Shukla, R.; Alexander, A. Insulin mediated novel therapies for the treatment of Alzheimer’s disease. Life Sci., 2020, 249, 117540.
[http://dx.doi.org/10.1016/j.lfs.2020.117540] [PMID: 32165212]
[189]
Calsolaro, V.; Edison, P. Novel GLP-1 (glucagon-like peptide-1) analogues and insulin in the treatment for Alzheimer’s disease and other neurodegenerative diseases. CNS Drugs, 2015, 29(12), 1023-1039.
[http://dx.doi.org/10.1007/s40263-015-0301-8] [PMID: 26666230]
[190]
Cai, H.Y.; Wang, Z.J.; Hölscher, C.; Yuan, L.; Zhang, J.; Sun, P.; Li, J.; Yang, W.; Wu, M.N.; Qi, J.S. Lixisenatide attenuates the detrimental effects of amyloid β protein on spatial working memory and hippocampal neurons in rats. Behav. Brain Res., 2017, 318, 28-35.
[http://dx.doi.org/10.1016/j.bbr.2016.10.033] [PMID: 27776993]
[191]
Du, H.; Meng, X.; Yao, Y.; Xu, J. The mechanism and efficacy of GLP-1 receptor agonists in the treatment of Alzheimer’s disease. Front. Endocrinol. (Lausanne), 2022, 13, 1033479.
[http://dx.doi.org/10.3389/fendo.2022.1033479] [PMID: 36465634]
[192]
Jendle, J.; Grunberger, G.; Blevins, T.; Giorgino, F.; Hietpas, R.T.; Botros, F.T. Efficacy and safety of dulaglutide in the treatment of type 2 diabetes: A comprehensive review of the dulaglutide clinical data focusing on the AWARD phase 3 clinical trial program. Diabetes Metab. Res. Rev., 2016, 32(8), 776-790.
[http://dx.doi.org/10.1002/dmrr.2810] [PMID: 27102969]
[193]
Sfairopoulos, D.; Liatis, S.; Tigas, S.; Liberopoulos, E. Clinical pharmacology of glucagon-like peptide-1 receptor agonists. Hormones (Athens), 2018, 17(3), 333-350.
[http://dx.doi.org/10.1007/s42000-018-0038-0] [PMID: 29949126]
[194]
Nauck, M.; Weinstock, R.S.; Umpierrez, G.E.; Guerci, B.; Skrivanek, Z.; Milicevic, Z. Efficacy and safety of dulaglutide versus sitagliptin after 52 weeks in type 2 diabetes in a randomized controlled trial (AWARD-5). Diabetes Care, 2014, 37(8), 2149-2158.
[http://dx.doi.org/10.2337/dc13-2761] [PMID: 24742660]
[195]
Glaesner, W.; Mark Vick, A.; Millican, R.; Ellis, B.; Tschang, S.H.; Tian, Y.; Bokvist, K.; Brenner, M.; Koester, A.; Porksen, N.; Etgen, G.; Bumol, T. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes Metab. Res. Rev., 2010, 26(4), 287-296.
[http://dx.doi.org/10.1002/dmrr.1080] [PMID: 20503261]
[196]
Dong, M.; Wen, S.; Zhou, L. The relationship between the blood-brain-barrier and the central effects of glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter-2 inhibitors. Diabetes Metab. Syndr. Obes., 2022, 15, 2583-2597.
[http://dx.doi.org/10.2147/DMSO.S375559] [PMID: 36035518]
[197]
Tuttle, K.R.; McKinney, T.D.; Davidson, J.A.; Anglin, G.; Harper, K.D.; Botros, F.T. Effects of once-weekly dulaglutide on kidney function in patients with type 2 diabetes in phase II and III clinical trials. Diabetes Obes. Metab., 2017, 19(3), 436-441.
[http://dx.doi.org/10.1111/dom.12816] [PMID: 27766728]
[198]
Honigberg, M.C.; Chang, L.S.; McGuire, D.K.; Plutzky, J.; Aroda, V.R.; Vaduganathan, M. Use of glucagon-like peptide-1 receptor agonists in patients with type 2 diabetes and cardiovascular disease: A review. JAMA Cardiol., 2020, 5(10), 1182-1190.
[http://dx.doi.org/10.1001/jamacardio.2020.1966] [PMID: 32584928]
[199]
Wang, Y.; Han, B. WITHDRAWN: Dulaglutide alleviates alzheimer’s disease by regulating microglial polarization and neurogenic activity. Comb. Chem. High Throughput Screen., 2022.
[PMID: 35894460]
[200]
García-Casares, N.; González-González, G.; de la Cruz-Cosme, C.; Garzón-Maldonado, F.J.; de Rojas-Leal, C.; Ariza, M.J.; Narváez, M.; Barbancho, M.Á.; García-Arnés, J.A.; Tinahones, F.J. Effects of GLP-1 receptor agonists on neurological complications of diabetes. Rev. Endocr. Metab. Disord., 2023, 24(4), 655-672.
[http://dx.doi.org/10.1007/s11154-023-09807-3] [PMID: 37231200]
[201]
Cao, Y.; Hölscher, C.; Hu, M.M.; Wang, T.; Zhao, F.; Bai, Y.; Zhang, J.; Wu, M.N.; Qi, J.S. DA5-CH, a novel GLP-1/GIP dual agonist, effectively ameliorates the cognitive impairments and pathology in the APP/PS1 mouse model of Alzheimer’s disease. Eur. J. Pharmacol., 2018, 827, 215-226.
[http://dx.doi.org/10.1016/j.ejphar.2018.03.024] [PMID: 29551659]
[202]
Feng, P. Two novel dual GLP-1 / GIP receptor agonists are neuroprotective in the MPTP mouse model of Parkinson's disease. Neuropharmacology, 2018, 133, 385-394.
[203]
Finan, B.; Ma, T.; Ottaway, N.; Müller, T.D.; Habegger, K.M.; Heppner, K.M.; Kirchner, H.; Holland, J.; Hembree, J.; Raver, C.; Lockie, S.H.; Smiley, D.L.; Gelfanov, V.; Yang, B.; Hofmann, S.; Bruemmer, D.; Drucker, D.J.; Pfluger, P.T.; Perez-Tilve, D.; Gidda, J.; Vignati, L.; Zhang, L.; Hauptman, J.B.; Lau, M.; Brecheisen, M.; Uhles, S.; Riboulet, W.; Hainaut, E.; Sebokova, E.; Conde-Knape, K.; Konkar, A.; DiMarchi, R.D.; Tschöp, M.H. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med., 2013, 5(209), 209ra151.
[http://dx.doi.org/10.1126/scitranslmed.3007218] [PMID: 24174327]
[204]
Cai, H.Y.; Yang, D.; Qiao, J.; Yang, J.T.; Wang, Z.J.; Wu, M.N.; Qi, J.S.; Hölscher, C. A GLP-1/GIP dual receptor agonist DA4-JC effectively attenuates cognitive impairment and pathology in the app/ps1/tau model of alzheimer’s disease. J. Alzheimers Dis., 2021, 83(2), 799-818.
[http://dx.doi.org/10.3233/JAD-210256] [PMID: 34366339]
[205]
Hölscher, C. Glucagon-like peptide 1 and glucose-dependent insulinotropic peptide hormones and novel receptor agonists protect synapses in Alzheimer’s and Parkinson’s diseases. Front. Synaptic Neurosci., 2022, 14, 955258.
[http://dx.doi.org/10.3389/fnsyn.2022.955258] [PMID: 35965783]
[206]
Li, C. The novel GLP-1 / GIP analogue DA5-CH reduces tau phosphorylation and normalizes theta rhythm in the icv . STZ rat model of AD. Brain Behav., 10(3), e01505.
[207]
Obulesu, M.; Venu, R.; Somashekhar, R. Tau mediated neurodegeneration: An insight into Alzheimer’s disease pathology. Neurochem. Res., 2011, 36(8), 1329-1335.
[http://dx.doi.org/10.1007/s11064-011-0475-5] [PMID: 21509508]
[208]
Shi, L.; Zhang, Z.; Li, L.; Hölscher, C. A novel dual GLP-1/GIP receptor agonist alleviates cognitive decline by re-sensitizing insulin signaling in the Alzheimer icv. STZ rat model. Behav. Brain Res., 2017, 327, 65-74.
[http://dx.doi.org/10.1016/j.bbr.2017.03.032] [PMID: 28342971]
[209]
Angelopoulou, E.; Piperi, C. DPP-4 inhibitors: A promising therapeutic approach against Alzheimer’s disease. Ann. Transl. Med., 2018, 6(12), 255-255.
[http://dx.doi.org/10.21037/atm.2018.04.41] [PMID: 30069457]
[210]
Durinx, C.; Lambeir, A.M.; Bosmans, E.; Falmagne, J.B.; Berghmans, R.; Haemers, A.; Scharpé, S.; De Meester, I. Molecular characterization of dipeptidyl peptidase activity in serum. Eur. J. Biochem., 2000, 267(17), 5608-5613.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01634.x] [PMID: 10951221]
[211]
Hasan, A.A.; Hocher, B. Role of soluble and membrane-bound dipeptidyl peptidase-4 in diabetic nephropathy. J. Mol. Endocrinol., 2017, 59(1), R1-R10.
[http://dx.doi.org/10.1530/JME-17-0005] [PMID: 28420715]
[212]
Engel, M.; Hoffmann, T.; Wagner, L.; Wermann, M.; Heiser, U.; Kiefersauer, R.; Huber, R.; Bode, W.; Demuth, H.U.; Brandstetter, H. The crystal structure of dipeptidyl peptidase IV (CD26) reveals its functional regulation and enzymatic mechanism. Proc. Natl. Acad. Sci. USA, 2003, 100(9), 5063-5068.
[http://dx.doi.org/10.1073/pnas.0230620100] [PMID: 12690074]
[213]
Mulvihill, E.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev., 2014, 35(6), 992-1019.
[http://dx.doi.org/10.1210/er.2014-1035] [PMID: 25216328]
[214]
Ambhore, J.P.; Laddha, P.R.; Nandedkar, A.; Ajmire, P.V.; Chumbhale, D.S.; Navghare, A.B.; Kuchake, V.G.; Chaudhari, P.J.; Adhao, V.S. Medicinal chemistry of non-peptidomimetic dipeptidyl peptidase IV (DPP IV) inhibitors for treatment of Type-2 diabetes mellitus: Insights on recent development. J. Mol. Struct., 2023, 1284, 135249.
[http://dx.doi.org/10.1016/j.molstruc.2023.135249]
[215]
Patel, B.D.; Ghate, M.D. Recent approaches to medicinal chemistry and therapeutic potential of dipeptidyl peptidase-4 (DPP-4) inhibitors. Eur. J. Med. Chem., 2014, 74, 574-605.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.038] [PMID: 24531198]
[216]
Zettl, H.; Schubert-Zsilavecz, M.; Steinhilber, D. Medicinal chemistry of incretin mimetics and DPP-4 inhibitors. ChemMedChem. ChemMedChem, 2010, 5(2), 179-185.
[http://dx.doi.org/10.1002/cmdc.200900448] [PMID: 20029928]
[217]
Kalhotra, P.; Chittepu, V.; Osorio-Revilla, G.; Gallardo-Velázquez, T. Structure–activity relationship and molecular docking of natural product library reveal chrysin as a novel dipeptidyl peptidase-4 (DPP-4) inhibitor: An integrated in silico and in vitro study. Molecules, 2018, 23(6), 1368.
[http://dx.doi.org/10.3390/molecules23061368] [PMID: 29882783]
[218]
Feng, J.; Zhang, Z.; Wallace, M.B.; Stafford, J.A.; Kaldor, S.W.; Kassel, D.B.; Navre, M.; Shi, L.; Skene, R.J.; Asakawa, T.; Takeuchi, K.; Xu, R.; Webb, D.R.; Gwaltney, S.L., II Discovery of alogliptin: A potent, selective, bioavailable, and efficacious inhibitor of dipeptidyl peptidase IV. J. Med. Chem., 2007, 50(10), 2297-2300.
[http://dx.doi.org/10.1021/jm070104l] [PMID: 17441705]
[219]
Lankas, G.R.; Leiting, B.; Roy, R.S.; Eiermann, G.J.; Beconi, M.G.; Biftu, T.; Chan, C.C.; Edmondson, S.; Feeney, W.P.; He, H.; Ippolito, D.E.; Kim, D.; Lyons, K.A.; Ok, H.O.; Patel, R.A.; Petrov, A.N.; Pryor, K.A.; Qian, X.; Reigle, L.; Woods, A.; Wu, J.K.; Zaller, D.; Zhang, X.; Zhu, L.; Weber, A.E.; Thornberry, N.A. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: Potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes, 2005, 54(10), 2988-2994.
[http://dx.doi.org/10.2337/diabetes.54.10.2988] [PMID: 16186403]
[220]
Liu, Y.; Hu, Y.; Liu, T. Recent advances in non-peptidomimetic dipeptidyl peptidase 4 inhibitors: Medicinal chemistry and preclinical aspects. Curr. Med. Chem., 2012, 19(23), 3982-3999.
[http://dx.doi.org/10.2174/092986712802002491] [PMID: 22709010]
[221]
Costante, R.; Stefanucci, A.; Carradori, S.; Novellino, E.; Mollica, A. DPP-4 inhibitors: A patent review (2012 – 2014). Expert Opin. Ther. Pat., 2015, 25(2), 209-236.
[http://dx.doi.org/10.1517/13543776.2014.991309] [PMID: 25482888]
[222]
Kuhn, B.; Hennig, M.; Mattei, P. Molecular recognition of ligands in dipeptidyl peptidase IV. Curr. Top. Med. Chem., 2007, 7(6), 609-620.
[http://dx.doi.org/10.2174/156802607780091064] [PMID: 17352681]
[223]
Ojeda-Montes, M.J.; Gimeno, A.; Tomas-Hernández, S.; Cereto-Massagué, A.; Beltrán-Debón, R.; Valls, C.; Mulero, M.; Pujadas, G.; Garcia-Vallvé, S. Activity and selectivity cliffs for DPP-IV inhibitors: Lessons we can learn from SAR studies and their application to virtual screening. Med. Res. Rev., 2018, 38(6), 1874-1915.
[http://dx.doi.org/10.1002/med.21499] [PMID: 29660786]
[224]
Power, O.; Nongonierma, A.B.; Jakeman, P.; FitzGerald, R.J. Food protein hydrolysates as a source of dipeptidyl peptidase IV inhibitory peptides for the management of type 2 diabetes. Proc. Nutr. Soc., 2014, 73(1), 34-46.
[http://dx.doi.org/10.1017/S0029665113003601] [PMID: 24131508]
[225]
Nabeno, M.; Akahoshi, F.; Kishida, H.; Miyaguchi, I.; Tanaka, Y.; Ishii, S.; Kadowaki, T. A comparative study of the binding modes of recently launched dipeptidyl peptidase IV inhibitors in the active site. Biochem. Biophys. Res. Commun., 2013, 434(2), 191-196.
[http://dx.doi.org/10.1016/j.bbrc.2013.03.010] [PMID: 23501107]
[226]
Mendieta, L.; Tarrago, T.; Giralt, E. Recent patents of dipeptidyl peptidase IV inhibitors. Expert Opin. Ther. Pat., 2011, 21(11), 1693-1741.
[http://dx.doi.org/10.1517/13543776.2011.627325] [PMID: 22017411]
[227]
Schechter, I.; Berger, A. On the size of the active site in proteases. I. Papain (Reprinted from Biochemical and Biophysical Research Communications, vol 27, pg 157, 1967). Biochem. Biophys. Res. Commun., 2012, 425(3), 497-502.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.015] [PMID: 22925665]
[228]
Al-masri, I.M.; Mohammad, M.K.; Taha, M.O. Discovery of DPP IV inhibitors by pharmacophore modeling and QSAR analysis followed by in silico screening. ChemMedChem, 2008, 3(11), 1763-1779.
[http://dx.doi.org/10.1002/cmdc.200800213] [PMID: 18989859]
[229]
Aertgeerts, K.; Ye, S.; Tennant, M.G.; Kraus, M.L.; Rogers, J.; Sang, B.C.; Skene, R.J.; Webb, D.R.; Prasad, G.S. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci., 2004, 13(2), 412-421.
[http://dx.doi.org/10.1110/ps.03460604] [PMID: 14718659]
[230]
Weber, A.E. Dipeptidyl peptidase IV inhibitors for the treatment of diabetes. J. Med. Chem., 2004, 47(17), 4135-4141.
[http://dx.doi.org/10.1021/jm030628v] [PMID: 15293982]
[231]
Wallace, M.B.; Feng, J.; Zhang, Z.; Skene, R.J.; Shi, L.; Caster, C.L.; Kassel, D.B.; Xu, R.; Gwaltney, S.L., II Structure-based design and synthesis of benzimidazole derivatives as dipeptidyl peptidase IV inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(7), 2362-2367.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.071] [PMID: 18346892]
[232]
Metzler, W.J.; Yanchunas, J.; Weigelt, C.; Kish, K.; Klei, H.E.; Xie, D.; Zhang, Y.; Corbett, M.; Tamura, J.K.; He, B.; Hamann, L.G.; Kirby, M.S.; Marcinkeviciene, J. Involvement of DPP-IV catalytic residues in enzyme–saxagliptin complex formation. Protein Sci., 2008, 17(2), 240-250.
[http://dx.doi.org/10.1110/ps.073253208] [PMID: 18227430]
[233]
Deng, X.; Shen, J.; Zhu, H.; Xiao, J.; Sun, R.; Xie, F.; Lam, C.; Wang, J.; Qiao, Y.; Tavallaie, M.S.; Hu, Y.; Du, Y.; Li, J.; Fu, L.; Jiang, F. Surrogating and redirection of pyrazolo[1,5- a ]pyrimidin-7(4 H )-one core, a novel class of potent and selective DPP-4 inhibitors. Bioorg. Med. Chem., 2018, 26(4), 903-912.
[http://dx.doi.org/10.1016/j.bmc.2018.01.006] [PMID: 29373269]
[234]
Kumar, S.; Mittal, A.; Mittal, A. A review upon medicinal perspective and designing rationale of DPP-4 inhibitors. Bioorg. Med. Chem., 2021, 46, 116354.
[http://dx.doi.org/10.1016/j.bmc.2021.116354] [PMID: 34428715]
[235]
Singhal, S.; Manikrao Patil, V.; Verma, S.; Masand, N. Recent advances and structure-activity relationship studies of DPP-4 inhibitors as anti-diabetic agents. Bioorg. Chem., 2024, 146, 107277.
[http://dx.doi.org/10.1016/j.bioorg.2024.107277] [PMID: 38493634]
[236]
Lambeir, A.M.; Durinx, C.; Scharpé, S.; De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci., 2003, 40(3), 209-294.
[http://dx.doi.org/10.1080/713609354] [PMID: 12892317]
[237]
Deacon, C.F. Physiology and pharmacology of DPP-4 in glucose homeostasis and the treatment of type 2 diabetes. Front. Endocrinol., 2019, 10, 440649.
[238]
Jha, V.; Bhadoriya, K.S. Synthesis, pharmacological evaluation and molecular docking studies of pyrimidinedione based DPP-4 inhibitors as antidiabetic agents. J. Mol. Struct., 2018, 1158, 96-105.
[http://dx.doi.org/10.1016/j.molstruc.2018.01.014]
[239]
Zhang, Z.; Wallace, M.B.; Feng, J.; Stafford, J.A.; Skene, R.J.; Shi, L.; Lee, B.; Aertgeerts, K.; Jennings, A.; Xu, R.; Kassel, D.B.; Kaldor, S.W.; Navre, M.; Webb, D.R.; Gwaltney, S.L., II Design and synthesis of pyrimidinone and pyrimidinedione inhibitors of dipeptidyl peptidase IV. J. Med. Chem., 2011, 54(2), 510-524.
[http://dx.doi.org/10.1021/jm101016w] [PMID: 21186796]
[240]
Arulmozhiraja, S.; Matsuo, N.; Ishitsubo, E.; Okazaki, S.; Shimano, H.; Tokiwa, H. Comparative binding analysis of dipeptidyl peptidase IV (DPP-4) with antidiabetic drugs–an ab initio fragment molecular orbital study. PLoS One, 2016, 11(11), e0166275.
[http://dx.doi.org/10.1371/journal.pone.0166275] [PMID: 27832184]
[241]
Nath, V.; Ramchandani, M.; Kumar, N.; Agrawal, R.; Kumar, V. Computational identification of potential dipeptidyl peptidase (DPP)-IV inhibitors: Structure based virtual screening, molecular dynamics simulation and knowledge based SAR studies. J. Mol. Struct., 2021, 1224, 129006.
[http://dx.doi.org/10.1016/j.molstruc.2020.129006]
[242]
Mathur, V.; Alam, O.; Siddiqui, N.; Jha, M.; Manaithiya, A.; Bawa, S.; Sharma, N.; Alshehri, S.; Alam, P.; Shakeel, F. Insight into structure activity relationship of DPP-4 inhibitors for development of antidiabetic agents. Molecules, 2023, 28(15), 5860.
[http://dx.doi.org/10.3390/molecules28155860] [PMID: 37570832]
[243]
Janardhan, S.; Sastry, G. Dipeptidyl peptidase IV inhibitors: A new paradigm in type 2 diabetes treatment. Curr. Drug Targets, 2014, 15(6), 600-621.
[http://dx.doi.org/10.2174/1389450115666140311102638] [PMID: 24611684]
[244]
Antonyan, A.; Schlenzig, D.; Schilling, S.; Naumann, M.; Sharoyan, S.; Mardanyan, S.; Demuth, H.U. Concerted action of dipeptidyl peptidase IV and glutaminyl cyclase results in formation of pyroglutamate-modified amyloid peptides in vitro. Neurochem. Int., 2018, 113, 112-119.
[http://dx.doi.org/10.1016/j.neuint.2017.12.001] [PMID: 29224965]
[245]
Angelopoulou, E.; Piperi, C. DPP-4 inhibitors: Promising therapeutic approach against Alzheimer’s disease. Ann. Transl. Med., 2018, 6(12), 255.
[http://dx.doi.org/10.21037/atm.2018.04.41] [PMID: 30069457]
[246]
Cheng, Q.; Cheng, J.; Cordato, D.; Gao, J. Can dipeptidyl peptidase-4 inhibitors treat cognitive disorders? Pharmacol. Ther., 2020, 212, 107559.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107559] [PMID: 32380197]
[247]
Hung, Y.W.; Wang, Y.; Lee, S.L. DPP-4 inhibitor reduces striatal microglial deramification after sensorimotor cortex injury induced by external force impact. FASEB J., 2020, 34(5), 6950-6964.
[http://dx.doi.org/10.1096/fj.201902818R] [PMID: 32246809]
[248]
Kosaraju, J.; Gali, C.C.; Khatwal, R.B.; Dubala, A.; Chinni, S.; Holsinger, R.M.D.; Madhunapantula, V.S.R.; Muthureddy Nataraj, S.K.; Basavan, D. Saxagliptin: A dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer’s disease. Neuropharmacology, 2013, 72(April), 291-300.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.008] [PMID: 23603201]
[249]
Wang, Y.; Hu, H.; Liu, X.; Guo, X. Hypoglycemic medicines in the treatment of Alzheimer’s disease: Pathophysiological links between AD and glucose metabolism. Front. Pharmacol., 2023, 14(February), 1138499.
[http://dx.doi.org/10.3389/fphar.2023.1138499] [PMID: 36909158]
[250]
Pintana, H.; Apaijai, N.; Chattipakorn, N.; Chattipakorn, S.C. DPP-4 inhibitors improve cognition and brain mitochondrial function of insulin-resistant rats. J. Endocrinol., 2013, 218(1), 1-11.
[http://dx.doi.org/10.1530/JOE-12-0521] [PMID: 23591914]
[251]
Meng, L.; Li, X.Y.; Shen, L.; Ji, H.F. Type 2 diabetes mellitus drugs for alzheimer’s disease: Current evidence and therapeutic opportunities. Trends Mol. Med., 2020, 26(6), 597-614.
[http://dx.doi.org/10.1016/j.molmed.2020.02.002] [PMID: 32470386]
[252]
Chen, S.; Zhou, M.; Sun, J.; Guo, A.; Fernando, R.L.; Chen, Y.; Peng, P.; Zhao, G.; Deng, Y. DPP-4 inhibitor improves learning and memory deficits and AD-like neurodegeneration by modulating the GLP-1 signaling. Neuropharmacology, 2019, 157(February), 107668-107668.
[http://dx.doi.org/10.1016/j.neuropharm.2019.107668] [PMID: 31199957]
[253]
Ahn, J.Y. Neuroprotection signaling of nuclear akt in neuronal cells. Exp. Neurobiol., 2014, 23(3), 200-206.
[http://dx.doi.org/10.5607/en.2014.23.3.200] [PMID: 25258566]
[254]
Ma, Q.H.; Jiang, L.F.; Mao, J.L.; Xu, W.X.; Huang, M. Vildagliptin prevents cognitive deficits and neuronal apoptosis in a rat model of Alzheimer’s disease. Mol. Med. Rep., 2018, 17(3), 4113-4119.
[PMID: 29257340]
[255]
Lee, J.W.; Chun, W.; Lee, H.J.; Kim, S.M.; Min, J.H.; Kim, D.Y.; Kim, M.O.; Ryu, H.W.; Lee, S.U. The role of microglia in the development of neurodegenerative diseases. Biomedicines, 2021, 9(10), 1449.
[http://dx.doi.org/10.3390/biomedicines9101449] [PMID: 34680566]
[256]
Yossef, R.R.; Al-Yamany, M.F.; Saad, M.A.; El-Sahar, A.E. Neuroprotective effects of vildagliptin on drug induced Alzheimer’s disease in rats with metabolic syndrome: Role of hippocampal klotho and AKT signaling pathways. Eur. J. Pharmacol., 2020, 889(October), 173612-173612.
[http://dx.doi.org/10.1016/j.ejphar.2020.173612] [PMID: 33035520]
[257]
Bayer, T.A. Pyroglutamate Aβ cascade as drug target in Alzheimer’s disease. Mol. Psychiatry, 2022, 27(4), 1880-1885.
[http://dx.doi.org/10.1038/s41380-021-01409-2] [PMID: 34880449]
[258]
Borzì, A.M.; Condorelli, G.; Biondi, A.; Basile, F.; Vicari, E.S.D.; Buscemi, C.; Luca, S.; Vacante, M. Effects of vildagliptin, a DPP-4 inhibitor, in elderly diabetic patients with mild cognitive impairment. Arch. Gerontol. Geriatr., 2019, 84(April), 103896.
[http://dx.doi.org/10.1016/j.archger.2019.06.001] [PMID: 31204117]
[259]
Gallwitz, B. Sitagliptin: Profile of a novel DPP-4 inhibitor for the treatment of type 2 diabetes (update). Drugs Today (Barc), 2007, 43(11), 801-814.
[http://dx.doi.org/10.1358/dot.2007.43.11.1157620] [PMID: 18174966]
[260]
Pratley, R.E.; Salsali, A. Inhibition of DPP-4: A new therapeutic approach for the treatment of type 2 diabetes. Curr. Med. Res. Opin., 2007, 23(4), 919-931.
[http://dx.doi.org/10.1185/030079906X162746] [PMID: 17407649]
[261]
Isik, A.T.; Soysal, P.; Yay, A.; Usarel, C. The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer’s disease. Diabetes Res. Clin. Pract., 2017, 123, 192-198.
[http://dx.doi.org/10.1016/j.diabres.2016.12.010] [PMID: 28056430]
[262]
Rizzo, M.R.; Barbieri, M.; Boccardi, V.; Angellotti, E.; Marfella, R.; Paolisso, G. Dipeptidyl peptidase-4 inhibitors have protective effect on cognitive impairment in aged diabetic patients with mild cognitive impairment. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(9), 1122-1131.
[http://dx.doi.org/10.1093/gerona/glu032] [PMID: 24671867]
[263]
Dong, Q.; Teng, S.W.; Wang, Y.; Qin, F.; Li, Y.; Ai, L.L.; Yu, H. Sitagliptin protects the cognition function of the Alzheimer’s disease mice through activating glucagon-like peptide-1 and BDNF-TrkB signalings. Neurosci. Lett., 2019, 696(696), 184-190.
[http://dx.doi.org/10.1016/j.neulet.2018.12.041] [PMID: 30597232]
[264]
D’Amico, M.; Di Filippo, C.; Marfella, R.; Abbatecola, A.M.; Ferraraccio, F.; Rossi, F.; Paolisso, G. Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice. Exp. Gerontol., 2010, 45(3), 202-207.
[http://dx.doi.org/10.1016/j.exger.2009.12.004] [PMID: 20005285]
[265]
Pipatpiboon, N.; Pintana, H.; Pratchayasakul, W.; Chattipakorn, N.; Chattipakorn, S.C. DPP 4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption. Eur. J. Neurosci., 2013, 37(5), 839-849.
[http://dx.doi.org/10.1111/ejn.12088] [PMID: 23240760]
[266]
Wilson, B.; Mohamed Alobaid, B.N.; Geetha, K.M.; Jenita, J.L. Chitosan nanoparticles to enhance nasal absorption and brain targeting of sitagliptin to treat Alzheimer’s disease. J. Drug Deliv. Sci. Technol., 2021, 61(October), 102176-102176.
[http://dx.doi.org/10.1016/j.jddst.2020.102176]
[267]
Lamont, B.J.; Drucker, D.J. Differential antidiabetic efficacy of incretin agonists versus DPP-4 inhibition in high fat fed mice. Diabetes, 2008, 57(1), 190-198.
[http://dx.doi.org/10.2337/db07-1202] [PMID: 17928394]
[268]
Raun, K.; von Voss, P.; Gotfredsen, C.F.; Golozoubova, V.; Rolin, B.; Knudsen, L.B. Liraglutide, a long-acting glucagon-like peptide-1 analog, reduces body weight and food intake in obese candy-fed rats, whereas a dipeptidyl peptidase-IV inhibitor, vildagliptin, does not. Diabetes, 2007, 56(1), 8-15.
[http://dx.doi.org/10.2337/db06-0565] [PMID: 17192459]
[269]
Deacon, C.F. Dipeptidyl peptidase-4 inhibitors in the treatment of type 2 diabetes: A comparative review. Diabetes Obes. Metab., 2011, 13(1), 7-18.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01306.x] [PMID: 21114598]
[270]
Kornelius, E.; Lin, C.L.; Chang, H.H.; Li, H.H.; Huang, W.N.; Yang, Y.S.; Lu, Y.L.; Peng, C.H.; Huang, C.N. DPP -4 Inhibitor Linagliptin Attenuates A β -induced Cytotoxicity through Activation of AMPK in Neuronal Cells. CNS Neurosci. Ther., 2015, 21(7), 549-557.
[http://dx.doi.org/10.1111/cns.12404] [PMID: 26010513]
[271]
Kosaraju, J.; Holsinger, R.M.D.; Guo, L.; Tam, K.Y. Linagliptin, a Dipeptidyl Peptidase-4 Inhibitor, Mitigates Cognitive Deficits and Pathology in the 3xTg-AD Mouse Model of Alzheimer’s Disease. Mol. Neurobiol., 2017, 54(8), 6074-6084.
[http://dx.doi.org/10.1007/s12035-016-0125-7] [PMID: 27699599]
[272]
Huang, C-N.; Lin, C-L. The neuroprotective effects of the anti-diabetic drug linagliptin against Aß-induced neurotoxicity. Neural Regen. Res., 2016, 11(2), 236-237.
[http://dx.doi.org/10.4103/1673-5374.177724] [PMID: 27073371]
[273]
Shannon, R.P. DPP-4 inhibition and neuroprotection: Do mechanisms matter? Diabetes, 2013, 62(4), 1029-1031.
[http://dx.doi.org/10.2337/db12-1794] [PMID: 23520281]
[274]
Siddiqui, N.; Ali, J.; Parvez, S.; Zameer, S.; Najmi, A.K.; Akhtar, M. Linagliptin, a DPP-4 inhibitor, ameliorates Aβ (1−42) peptides induced neurodegeneration and brain insulin resistance (BIR) via insulin receptor substrate-1 (IRS-1) in rat model of Alzheimer’s disease. Neuropharmacology, 2021, 195, 108662-108662.
[http://dx.doi.org/10.1016/j.neuropharm.2021.108662] [PMID: 34119519]
[275]
Thomas, L.; Eckhardt, M.; Langkopf, E.; Tadayyon, M.; Himmelsbach, F.; Mark, M. (R)-8-(3-amino-piperidin-1-yl)-7-but-2-ynyl-3-methyl-1-(4-methyl-quinazolin-2-ylmethyl)-3,7-dihydro-purine-2,6-dione (BI 1356), a novel xanthine-based dipeptidyl peptidase 4 inhibitor, has a superior potency and longer duration of action compared with other dipeptidyl peptidase-4 inhibitors. J. Pharmacol. Exp. Ther., 2008, 325(1), 175-182.
[http://dx.doi.org/10.1124/jpet.107.135723] [PMID: 18223196]
[276]
Ma, M.; Hasegawa, Y.; Koibuchi, N.; Toyama, K.; Uekawa, K.; Nakagawa, T.; Lin, B.; Kim-Mitsuyama, S. DPP-4 inhibition with linagliptin ameliorates cognitive impairment and brain atrophy induced by transient cerebral ischemia in type 2 diabetic mice. Cardiovasc. Diabetol., 2015, 14(1), 54.
[http://dx.doi.org/10.1186/s12933-015-0218-z] [PMID: 25986579]
[277]
Wongchai, K.; Schlotterer, A.; Lin, J.; Humpert, P.M.; Klein, T.; Hammes, H.P.; Morcos, M. Protective Effects of Liraglutide and Linagliptin in C. elegans as a New Model for Glucose-Induced Neurodegeneration. Horm. Metab. Res., 2016, 48(1), 70-75.
[PMID: 25951323]
[278]
Darsalia, V.; Ortsäter, H.; Olverling, A.; Darlöf, E.; Wolbert, P.; Nyström, T.; Klein, T.; Sjöholm, Å.; Patrone, C. The DPP-4 inhibitor linagliptin counteracts stroke in the normal and diabetic mouse brain: A comparison with glimepiride. Diabetes, 2013, 62(4), 1289-1296.
[http://dx.doi.org/10.2337/db12-0988] [PMID: 23209191]
[279]
Safar, M.M.; Abdelkader, N.F.; Ramadan, E.; Kortam, M.A.; Mohamed, A.F. Novel mechanistic insights towards the repositioning of alogliptin in Parkinson’s disease. Life Sci., 2021, 287, 120132.
[http://dx.doi.org/10.1016/j.lfs.2021.120132] [PMID: 34774622]
[280]
DeFelice, S.L. The nutraceutical revolution: Its impact on food industry R&D. Trends Food Sci. Technol., 1995, 6(2), 59-61.
[http://dx.doi.org/10.1016/S0924-2244(00)88944-X]
[281]
Talebi, M.; Kakouri, E.; Talebi, M.; Tarantilis, P.A.; Farkhondeh, T.; İlgün, S.; Pourbagher-Shahri, A.M.; Samarghandian, S. Nutraceuticals-based therapeutic approach: Recent advances to combat pathogenesis of Alzheimer’s disease. Expert Rev. Neurother., 2021, 21(6), 625-642.
[http://dx.doi.org/10.1080/14737175.2021.1923479] [PMID: 33910446]
[282]
Abdel-Daim, M.M.; El-Tawil, O.S.; Bungau, S.G.; Atanasov, A.G. Applications of antioxidants in metabolic disorders and degenerative diseases: Mechanistic approach. Oxid. Med. Cell. Longev., 2019, 2019, 1-3.
[http://dx.doi.org/10.1155/2019/4179676] [PMID: 31467632]
[283]
Lin, L.; Li, C.; Zhang, D.; Yuan, M.; Chen, C.; Li, M. Synergic effects of berberine and curcumin on improving cognitive function in an alzheimer’s disease mouse model. Neurochem. Res., 2020, 45(5), 1130-1141.
[http://dx.doi.org/10.1007/s11064-020-02992-6] [PMID: 32080784]
[284]
Sreenivasmurthy, S.; Liu, J.Y.; Song, J.X.; Yang, C.B.; Malampati, S.; Wang, Z.Y.; Huang, Y.Y.; Li, M. Neurogenic traditional chinese medicine as a promising strategy for the treatment of alzheimer’s disease. Int. J. Mol. Sci., 2017, 18(2), 272.
[http://dx.doi.org/10.3390/ijms18020272] [PMID: 28134846]
[285]
Sun, Z.K.; Yang, H.Q.; Chen, S.D. Traditional Chinese medicine: A promising candidate for the treatment of Alzheimer’s disease. Transl. Neurodegener., 2013, 2(1), 6.
[http://dx.doi.org/10.1186/2047-9158-2-6] [PMID: 23445907]
[286]
Pandey, S.N.; Rangra, N.K.; Singh, S.; Arora, S.; Gupta, V. Evolving Role of Natural Products from Traditional Medicinal Herbs in the Treatment of Alzheimer’s Disease. ACS Chem. Neurosci., 2021, 12(15), 2718-2728.
[http://dx.doi.org/10.1021/acschemneuro.1c00206] [PMID: 34010562]
[287]
Zhang, Z.; Wang, X.; Zhang, D.; Liu, Y.; Li, L. Geniposide-mediated protection against amyloid deposition and behavioral impairment correlates with downregulation of mTOR signaling and enhanced autophagy in a mouse model of Alzheimer’s disease. Aging (Albany NY), 2019, 11(2), 536-548.
[http://dx.doi.org/10.18632/aging.101759] [PMID: 30684442]
[288]
Zhang, Z.; Gao, W.; Wang, X.; Zhang, D.; Liu, Y.; Li, L. Geniposide effectively reverses cognitive impairment and inhibits pathological cerebral damage by regulating the mTOR Signal pathway in APP∕PS1 mice. Neurosci. Lett., 2020, 720, 134749.
[http://dx.doi.org/10.1016/j.neulet.2020.134749] [PMID: 31935433]
[289]
Zhu, F.; Qian, C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neurosci., 2006, 7(1), 78.
[http://dx.doi.org/10.1186/1471-2202-7-78] [PMID: 17137520]
[290]
Saleh, R.A.; Eissa, T.F.; Abdallah, D.M.; Saad, M.A.; El-Abhar, H.S. Peganum harmala enhanced GLP-1 and restored insulin signaling to alleviate AlCl3-induced Alzheimer-like pathology model. Sci. Rep., 2021, 11(1), 12040.
[http://dx.doi.org/10.1038/s41598-021-90545-4] [PMID: 34103557]
[291]
Abd el-Rady, N.M.; Ahmed, A.; Abdel-Rady, M.M.; Ismail, O.I. Glucagon-like peptide-1 analog improves neuronal and behavioral impairment and promotes neuroprotection in a rat model of aluminum-induced dementia. Physiol. Rep., 2021, 8(24), e14651.
[http://dx.doi.org/10.14814/phy2.14651] [PMID: 33355990]
[292]
An, F.M.; Chen, S.; Xu, Z.; Yin, L.; Wang, Y.; Liu, A.R.; Yao, W.B.; Gao, X.D. Glucagon-like peptide-1 regulates mitochondrial biogenesis and tau phosphorylation against advanced glycation end product-induced neuronal insult: Studies in and in vitro. Neuroscience, 2015, 300, 75-84.
[http://dx.doi.org/10.1016/j.neuroscience.2015.05.023] [PMID: 25987199]
[293]
Banik, A.; Brown, R.E.; Bamburg, J.; Lahiri, D.K.; Khurana, D.; Friedland, R.P.; Chen, W.; Ding, Y.; Mudher, A.; Padjen, A.L.; Mukaetova-Ladinska, E.; Ihara, M.; Srivastava, S.; Padma Srivastava, M.V.; Masters, C.L.; Kalaria, R.N.; Anand, A. Translation of pre-clinical studies into successful clinical trials for Alzheimer’s disease: What are the roadblocks and how can they be overcome? J. Alzheimers Dis., 2015, 47(4), 815-843.
[http://dx.doi.org/10.3233/JAD-150136] [PMID: 26401762]
[294]
El-Deeb, O.S.; Soliman, G.M.; Elesawy, R.O. Linagliptin, the dipeptidyl peptidase-4 enzyme inhibitor, lessens CHOP and GRP78 biomarkers levels in cisplatin-induced neurobehavioral deficits: A possible restorative gateway. J. Biochem. Mol. Toxicol., 2020, 34(9), e22541.
[http://dx.doi.org/10.1002/jbt.22541] [PMID: 32567747]
[295]
Godyń, J.; Jończyk, J.; Panek, D.; Malawska, B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep., 2016, 68(1), 127-138.
[http://dx.doi.org/10.1016/j.pharep.2015.07.006] [PMID: 26721364]
[296]
Hölscher, C. Central effects of GLP-1: New opportunities for treatments of neurodegenerative diseases. J. Endocrinol., 2014, 221(1), T31-T41.
[http://dx.doi.org/10.1530/JOE-13-0221] [PMID: 23999914]
[297]
Rahman, S.O.; Kaundal, M.; Salman, M.; Shrivastava, A.; Parvez, S.; Panda, B.P.; Akhter, M.; Akhtar, M.; Najmi, A.K. Alogliptin reversed hippocampal insulin resistance in an amyloid-beta fibrils induced animal model of Alzheimer’s disease. Eur. J. Pharmacol., 2020, 889(August), 173522-173522.
[http://dx.doi.org/10.1016/j.ejphar.2020.173522] [PMID: 32866503]
[298]
Gallwitz, B. Clinical use of DPP-4 inhibitors. Front. Endocrinol. (Lausanne), 2019, 10(JUN), 389.
[http://dx.doi.org/10.3389/fendo.2019.00389] [PMID: 31275246]
[299]
Kabel, A.M.; Omar, M.S.; Alhadhrami, A.; Alharthi, S.S.; Alrobaian, M.M. Linagliptin potentiates the effect of l-dopa on the behavioural, biochemical and immunohistochemical changes in experimentally-induced Parkinsonism: Role of toll-like receptor 4, TGF-β1, NF-κB and glucagon-like peptide 1. Physiol. Behav., 2018, 188(January), 108-118.
[http://dx.doi.org/10.1016/j.physbeh.2018.01.028] [PMID: 29410018]
[300]
Darsalia, V.; Larsson, M.; Lietzau, G.; Nathanson, D.; Nyström, T.; Klein, T.; Patrone, C. Gliptin-mediated neuroprotection against stroke requires chronic pretreatment and is independent of glucagon-like peptide-1 receptor. Diabetes Obes. Metab., 2016, 18(5), 537-541.
[http://dx.doi.org/10.1111/dom.12641] [PMID: 26847506]
[301]
Makkar, R.; Behl, T.; Bungau, S.; Zengin, G.; Mehta, V.; Kumar, A.; Uddin, M.S.; Ashraf, G.M.; Abdel-Daim, M.M.; Arora, S.; Oancea, R. Nutraceuticals in neurological disorders. Int. J. Mol. Sci., 2020, 21(12), 4424.
[http://dx.doi.org/10.3390/ijms21124424] [PMID: 32580329]
[302]
Gregory, J.; Vengalasetti, Y.V.; Bredesen, D.E.; Rao, R.V. Neuroprotective herbs for the management of alzheimer’s disease. Biomolecules, 2021, 11(4), 543.
[http://dx.doi.org/10.3390/biom11040543] [PMID: 33917843]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy