Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Noncoding RNAs in Alzheimer’s Disease: Overview of Functional and Therapeutic Significance

Author(s): Divya Adiga, Sangavi Eswaran, Sriharikrishnaa Srinath, Nadeem G. Khan, Dileep Kumar and Shama P. Kabekkodu*

Volume 24, Issue 19, 2024

Published on: 09 April, 2024

Page: [1615 - 1634] Pages: 20

DOI: 10.2174/0115680266293212240405042540

Price: $65

Abstract

Alzheimer’s disease (AD) is a multifactorial disorder resulting from the complex interaction between genetic, epigenetic, and environmental factors. It represents an impending epidemic and lacks effective pharmacological interventions. The emergence of high throughput sequencing techniques and comprehensive genome evaluation has uncovered a diverse spectrum of noncoding RNA (ncRNA) families. ncRNAs are the critical modulators of an eclectic array of biological processes and are now transpiring as imperative players in diagnosing and treating various diseases, including neurodegenerative disorders. Several ncRNAs are explicitly augmented in the brain, wherein they potentially regulate cognitive abilities and other functions of the central nervous system. Growing evidence suggests the substantial role of ncRNAs as modulators of tau phosphorylation, Aβ production, neuroinflammation, and neuronal survival. It indicates their therapeutic relevance as a biomarker and druggable targets against AD. The current review summarizes the existing literature on the functional significance of ncRNAs in AD pathogenesis and its imminent implications in clinics.

Next »
Graphical Abstract

[1]
Kung, J.T.Y.; Colognori, D.; Lee, J.T. Long noncoding RNAs: past, present, and future. Genetics, 2013, 193(3), 651-669.
[http://dx.doi.org/10.1534/genetics.112.146704] [PMID: 23463798]
[2]
Palazzo, A.F.; Lee, E.S. Non-coding RNA: what is functional and what is junk? Front. Genet., 2015, 6, 2.
[http://dx.doi.org/10.3389/fgene.2015.00002] [PMID: 25674102]
[3]
Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-coding rnas and their integrated networks. J. Integr. Bioinform., 2019, 16(3), 20190027.
[http://dx.doi.org/10.1515/jib-2019-0027] [PMID: 31301674]
[4]
Leighton, L.; Bredy, T. Functional interplay between small non-coding rnas and rna modification in the brain. Noncoding RNA, 2018, 4(2), 15.
[http://dx.doi.org/10.3390/ncrna4020015] [PMID: 29880782]
[5]
López-Jiménez, E.; Andrés-León, E. The implications of ncRNAs in the development of human diseases. Noncoding RNA, 2021, 7(1), 17.
[http://dx.doi.org/10.3390/ncrna7010017] [PMID: 33668203]
[6]
Ma, B.; Wang, S.; Wu, W.; Shan, P.; Chen, Y.; Meng, J.; Xing, L.; Yun, J.; Hao, L.; Wang, X.; Li, S.; Guo, Y. Mechanisms of circRNA/lncRNA-miRNA interactions and applications in disease and drug research. Biomed. Pharmacother., 2023, 162, 114672.
[http://dx.doi.org/10.1016/j.biopha.2023.114672] [PMID: 37060662]
[7]
Beermann, J.; Piccoli, M.T.; Viereck, J.; Thum, T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev., 2016, 96(4), 1297-1325.
[http://dx.doi.org/10.1152/physrev.00041.2015] [PMID: 27535639]
[8]
Santosh, B.; Varshney, A.; Yadava, P.K. Non-coding RNAs: biological functions and applications. Cell Biochem. Funct., 2015, 33(1), 14-22.
[http://dx.doi.org/10.1002/cbf.3079] [PMID: 25475931]
[9]
Adams, B.D.; Parsons, C.; Walker, L.; Zhang, W.C.; Slack, F.J. Targeting noncoding RNAs in disease. J. Clin. Invest., 2017, 127(3), 761-771.
[http://dx.doi.org/10.1172/JCI84424] [PMID: 28248199]
[10]
Wei, C.W.; Luo, T.; Zou, S.S.; Wu, A.S. The role of long noncoding RNAs in central nervous system and neurodegenerative diseases. Front. Behav. Neurosci., 2018, 12(12), 175.
[http://dx.doi.org/10.3389/fnbeh.2018.00175] [PMID: 30323747]
[11]
Wu, Y.Y.; Kuo, H.C. Functional roles and networks of non-coding RNAs in the pathogenesis of neurodegenerative diseases. J. Biomed. Sci., 2020, 27(1), 49.
[http://dx.doi.org/10.1186/s12929-020-00636-z] [PMID: 32264890]
[12]
Dugger, B.N.; Dickson, D.W. Pathology of neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2017, 9(7), a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[13]
Silva, M.V.F.; Loures, C.M.G.; Alves, L.C.V.; de Souza, L.C.; Borges, K.B.G.; Carvalho, M.G. Alzheimer’s disease: risk factors and potentially protective measures. J. Biomed. Sci., 2019, 26(1), 33.
[http://dx.doi.org/10.1186/s12929-019-0524-y] [PMID: 31072403]
[14]
Tarawneh, R.; Holtzman, D.M. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb. Perspect. Med., 2012, 2(5), a006148-a006148.
[http://dx.doi.org/10.1101/cshperspect.a006148] [PMID: 22553492]
[15]
Hickman, R.A.; Faustin, A.; Wisniewski, T. Alzheimer disease and its growing epidemic. Neurol. Clin., 2016, 34(4), 941-953.
[http://dx.doi.org/10.1016/j.ncl.2016.06.009] [PMID: 27720002]
[16]
Tönnies, E.; Trushina, E. Oxidative stress, synaptic dysfunction, and alzheimer’s disease. J. Alzheimers Dis., 2017, 57(4), 1105-1121.
[http://dx.doi.org/10.3233/JAD-161088] [PMID: 28059794]
[17]
Haque, R.U.; Levey, A.I. Alzheimer’s disease: A clinical perspective and future nonhuman primate research opportunities. Proc. Natl. Acad. Sci. USA, 2019, 116(52), 26224-26229.
[http://dx.doi.org/10.1073/pnas.1912954116] [PMID: 31871211]
[18]
Chen, G.; Xu, T.; Yan, Y.; Zhou, Y.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[19]
DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 32.
[http://dx.doi.org/10.1186/s13024-019-0333-5] [PMID: 31375134]
[20]
Wei, X.; Zhang, L.; Zeng, Y. DNA methylation in Alzheimer’s disease: In brain and peripheral blood. Mech. Ageing Dev., 2020, 191, 111319.
[http://dx.doi.org/10.1016/j.mad.2020.111319] [PMID: 32721406]
[21]
Monroe, T.; Carter, M. Using the folstein mini mental state exam (mmse) to explore methodological issues in cognitive aging research. Eur. J. Ageing, 2012, 9(3), 265-274.
[http://dx.doi.org/10.1007/s10433-012-0234-8] [PMID: 28804426]
[22]
Fodero-Tavoletti, M.T.; Okamura, N.; Furumoto, S.; Mulligan, R.S.; Connor, A.R.; McLean, C.A.; Cao, D.; Rigopoulos, A.; Cartwright, G.A.; O’Keefe, G.; Gong, S.; Adlard, P.A.; Barnham, K.J.; Rowe, C.C.; Masters, C.L.; Kudo, Y.; Cappai, R.; Yanai, K.; Villemagne, V.L. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease. Brain, 2011, 134(4), 1089-1100.
[http://dx.doi.org/10.1093/brain/awr038] [PMID: 21436112]
[23]
Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; Snyder, P.J.; Carrillo, M.C.; Thies, B.; Phelps, C.H. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Asso ciation workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement., 2013, 11(1), 96-106.
[24]
McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; Mohs, R.C.; Morris, J.C.; Rossor, M.N.; Scheltens, P.; Carrillo, M.C.; Thies, B.; Weintraub, S.; Phelps, C.H. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging-alzheimer’s association workgroups on diagnostic guidelines for alzheimer’s disease. Alzheimers Dement., 2011, 7(3), 263-269.
[http://dx.doi.org/10.1016/j.jalz.2011.03.005] [PMID: 21514250]
[25]
Fang, X.; Zhang, J.; Roman, R.J.; Fan, F. From 1901 to 2022, how far are we from truly understanding the pathogenesis of age-related dementia? Geroscience, 2022, 44(3), 1879-1883.
[http://dx.doi.org/10.1007/s11357-022-00591-7] [PMID: 35585301]
[26]
Sabbagh, M.N.; Lue, L.F.; Fayard, D.; Shi, J. Increasing precision of clinical diagnosis of alzheimer’s disease using a combined algorithm incorporating clinical and novel biomarker data. Neurol. Ther., 2017, 6(S1)(Suppl. 1), 83-95.
[http://dx.doi.org/10.1007/s40120-017-0069-5] [PMID: 28733959]
[27]
Zhang, Y.; Zhao, Y.; Ao, X.; Yu, W.; Zhang, L.; Wang, Y.; Chang, W. The role of non-coding rnas in alzheimer’s disease: from regulated mechanism to therapeutic targets and diagnostic biomarkers. Front. Aging Neurosci., 2021, 13, 654978.
[http://dx.doi.org/10.3389/fnagi.2021.654978] [PMID: 34276336]
[28]
Lauretti, E.; Dabrowski, K.; Praticò, D. The neurobiology of non-coding RNAs and Alzheimer’s disease pathogenesis: Pathways, mechanisms and translational opportunities. Ageing Res. Rev., 2021, 71, 101425.
[http://dx.doi.org/10.1016/j.arr.2021.101425] [PMID: 34384901]
[29]
Zhou, X.; Xu, J. Identification of alzheimer’s disease–associated long noncoding RNAs. Neurobiol. Aging, 2015, 36(11), 2925-2931.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.07.015] [PMID: 26318290]
[30]
Lee, D.Y.; Moon, J.; Lee, S.T.; Jung, K.H.; Park, D.K.; Yoo, J.S.; Sunwoo, J.S.; Byun, J.I.; Shin, J.W.; Jeon, D.; Jung, K.Y.; Kim, M.; Lee, S.K.; Chu, K. Distinct expression of long non-coding RNAs in an Alzheimer’s disease model. J. Alzheimers Dis., 2015, 45(3), 837-849.
[http://dx.doi.org/10.3233/JAD-142919] [PMID: 25624420]
[31]
Cao, M.; Li, H.; Zhao, J.; Cui, J.; Hu, G. Identification of age- and gender-associated long noncoding RNAs in the human brain with Alzheimer’s disease. Neurobiol. Aging, 2019, 81, 116-126.
[http://dx.doi.org/10.1016/j.neurobiolaging.2019.05.023] [PMID: 31280115]
[32]
Faghihi, M.A.; Modarresi, F.; Khalil, A.M.; Wood, D.E.; Sahagan, B.G.; Morgan, T.E.; Finch, C.E.; St Laurent, G., III; Kenny, P.J.; Wahlestedt, C. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat. Med., 2008, 14(7), 723-730.
[http://dx.doi.org/10.1038/nm1784] [PMID: 18587408]
[33]
Faghihi, M.A.; Zhang, M.; Huang, J.; Modarresi, F.; Van der Brug, M.P.; Nalls, M.A.; Cookson, M.R.; St-Laurent, G., III; Wahlestedt, C. Evidence for natural antisense transcript-mediated inhibition of microRNA function. Genome Biol., 2010, 11(5), R56.
[http://dx.doi.org/10.1186/gb-2010-11-5-r56] [PMID: 20507594]
[34]
Kang, M.J.; Abdelmohsen, K.; Hutchison, E.R.; Mitchell, S.J.; Grammatikakis, I.; Guo, R.; Noh, J.H.; Martindale, J.L.; Yang, X.; Lee, E.K.; Faghihi, M.A.; Wahlestedt, C.; Troncoso, J.C.; Pletnikova, O.; Perrone-Bizzozero, N.; Resnick, S.M.; de Cabo, R.; Mattson, M.P.; Gorospe, M. HuD regulates coding and noncoding RNA to induce APP→Aβ processing. Cell Rep., 2014, 7(5), 1401-1409.
[http://dx.doi.org/10.1016/j.celrep.2014.04.050] [PMID: 24857657]
[35]
Ciarlo, E.; Massone, S.; Penna, I.; Nizzari, M.; Gigoni, A.; Dieci, G.; Russo, C.; Florio, T.; Cancedda, R.; Pagano, A. An intronic ncRNA-dependent regulation of SORL1 expression affecting Aβ formation is upregulated in post-mortem Alzheimer’s disease brain samples. Dis. Model. Mech., 2013, 6(2), 424-433.
[PMID: 22996644]
[36]
Diniz, B.S.; Teixeira, A.L. Brain-derived neurotrophic factor and Alzheimer’s disease: physiopathology and beyond. Neuromolecular Med., 2011, 13(4), 217-222.
[http://dx.doi.org/10.1007/s12017-011-8154-x] [PMID: 21898045]
[37]
O’Bryant, S.E.; Hobson, V.; Hall, J.R.; Waring, S.C.; Chan, W.; Massman, P.; Lacritz, L.; Cullum, C.M.; Diaz-Arrastia, R. Texas Alzheimer’s Research Consortium. Brain-derived neurotrophic factor levels in Alzheimer’s disease. J. Alzheimers Dis., 2009, 17(2), 337-341.
[http://dx.doi.org/10.3233/JAD-2009-1051] [PMID: 19363274]
[38]
Modarresi, F.; Faghihi, M.A.; Lopez-Toledano, M.A.; Fatemi, R.P.; Magistri, M.; Brothers, S.P.; van der Brug, M.P.; Wahlestedt, C. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat. Biotechnol., 2012, 30(5), 453-459.
[http://dx.doi.org/10.1038/nbt.2158] [PMID: 22446693]
[39]
Ma, N.; Tie, C.; Yu, B.; Zhang, W.; Wan, J. Identifying lncRNA–miRNA–mRNA networks to investigate Alzheimer’s disease pathogenesis and therapy strategy. Aging (Albany NY), 2020, 12(3), 2897-2920.
[http://dx.doi.org/10.18632/aging.102785] [PMID: 32035423]
[40]
Shobeiri, P.; Alilou, S.; Jaberinezhad, M.; Zare, F.; Karimi, N.; Maleki, S.; Teixeira, A.L.; Perry, G.; Rezaei, N. Circulating long non-coding RNAs as novel diagnostic biomarkers for Alzheimer’s disease (AD): A systematic review and meta-analysis. PLoS One, 2023, 18(3), e0281784.
[http://dx.doi.org/10.1371/journal.pone.0281784] [PMID: 36947499]
[41]
Balusu, S.; Horré, K.; Thrupp, N.; Craessaerts, K.; Snellinx, A.; Serneels, L.; T’Syen, D.; Chrysidou, I.; Arranz, A.M.; Sierksma, A.; Simrén, J.; Karikari, T.K.; Zetterberg, H.; Chen, W.T.; Thal, D.R.; Salta, E.; Fiers, M.; De Strooper, B. MEG3 activates necroptosis in human neuron xenografts modeling Alzheimer’s disease. Science, 2023, 381(6663), 1176-1182.
[http://dx.doi.org/10.1126/science.abp9556] [PMID: 37708272]
[42]
Li, K.; Wang, Z. lncRNA NEAT1: Key player in neurodegenerative diseases. Ageing Res. Rev., 2023, 86, 101878.
[http://dx.doi.org/10.1016/j.arr.2023.101878] [PMID: 36738893]
[43]
Gu, C.; Chen, C.; Wu, R.; Dong, T.; Hu, X.; Yao, Y.; Zhang, Y.; Long Noncoding, R.N.A. Long Noncoding RNA EBF3-AS Promotes Neuron Apoptosis in Alzheimer’s Disease. DNA Cell Biol., 2018, 37(3), 220-226.
[http://dx.doi.org/10.1089/dna.2017.4012] [PMID: 29298096]
[44]
Banzhaf-Strathmann, J.; Benito, E.; May, S.; Arzberger, T.; Tahirovic, S.; Kretzschmar, H.; Fischer, A.; Edbauer, D. Micro RNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J., 2014, 33(15), 1667-1680.
[http://dx.doi.org/10.15252/embj.201387576] [PMID: 25001178]
[45]
Wang, W.X.; Rajeev, B.W.; Stromberg, A.J.; Ren, N.; Tang, G.; Huang, Q.; Rigoutsos, I.; Nelson, P.T. The expression of microRNA miR-107 decreases early in Alzheimer’s disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J. Neurosci., 2008, 28(5), 1213-1223.
[http://dx.doi.org/10.1523/JNEUROSCI.5065-07.2008] [PMID: 18234899]
[46]
Nelson, P.T.; Wang, W.X. MiR-107 is reduced in Alzheimer’s disease brain neocortex: validation study. J. Alzheimers Dis., 2010, 21(1), 75-79.
[http://dx.doi.org/10.3233/JAD-2010-091603] [PMID: 20413881]
[47]
Parsi, S.; Smith, P.Y.; Goupil, C.; Dorval, V.; Hébert, S.S. Preclinical evaluation of mir-15/107 family members as multifactorial drug targets for alzheimer’s disease. Mol. Ther. Nucleic Acids, 2015, 4(10), e256.
[http://dx.doi.org/10.1038/mtna.2015.33] [PMID: 26440600]
[48]
Salta, E.; Sierksma, A.; Vanden Eynden, E.; De Strooper, B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer’s brain. EMBO Mol. Med., 2016, 8(9), 1005-1018.
[http://dx.doi.org/10.15252/emmm.201606520] [PMID: 27485122]
[49]
Smith, P.Y.; Hernandez-Rapp, J.; Jolivette, F.; Lecours, C.; Bisht, K.; Goupil, C.; Dorval, V.; Parsi, S.; Morin, F.; Planel, E.; Bennett, D.A.; Fernandez-Gomez, F.J.; Sergeant, N.; Buée, L.; Tremblay, M.È.; Calon, F.; Hébert, S.S. miR-132/212 deficiency impairs tau metabolism and promotes pathological aggregation in vivo. Hum. Mol. Genet., 2015, 24(23), 6721-6735.
[http://dx.doi.org/10.1093/hmg/ddv377] [PMID: 26362250]
[50]
Wang, G.; Huang, Y.; Wang, L.L.; Zhang, Y.F.; Xu, J.; Zhou, Y.; Lourenco, G.F.; Zhang, B.; Wang, Y.; Ren, R.J.; Halliday, G.M.; Chen, S.D. MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer’s disease. Sci. Rep., 2016, 6(1), 26697.
[http://dx.doi.org/10.1038/srep26697] [PMID: 27221467]
[51]
Walgrave, H.; Balusu, S.; Snoeck, S.; Vanden Eynden, E.; Craessaerts, K.; Thrupp, N.; Wolfs, L.; Horre, K.; Fourne, Y.; Ronisz, A.; Silajdzic, E.; Penning, A.; Tosoni, G.; Callaerts-Vegh, Z.; D'Hooge, R.; Thal, D.R.; Zetterberg, H.; Thuret, S.; Fiers, M.; Frigerio, C.S.; De Strooper, B.; Salta, E. Restoring miR-132 expression rescues adult hippocampal neurogenesis and memory deficits in Alzheimer's disease. Cell Stem Cell, 2021, 28(10), 1805-1821 e1808.
[http://dx.doi.org/10.1016/j.stem.2021.05.001]
[52]
Su, L.; Li, R.; Zhang, Z.; Liu, J.; Du, J.; Wei, H. Identification of altered exosomal microRNAs and mRNAs in Alzheimer’s disease. Ageing Res. Rev., 2022, 73, 101497.
[http://dx.doi.org/10.1016/j.arr.2021.101497] [PMID: 34710587]
[53]
Yin, Z.; Herron, S.; Silveira, S.; Kleemann, K.; Gauthier, C.; Mallah, D.; Cheng, Y.; Margeta, M.A.; Pitts, K.M.; Barry, J.L.; Subramanian, A.; Shorey, H.; Brandao, W.; Durao, A.; Delpech, J.C.; Madore, C.; Jedrychowski, M.; Ajay, A.K.; Murugaiyan, G.; Hersh, S.W.; Ikezu, S.; Ikezu, T.; Butovsky, O. Identification of a protective microglial state mediated by miR-155 and interferon-γ signaling in a mouse model of Alzheimer’s disease. Nat. Neurosci., 2023, 26(7), 1196-1207.
[http://dx.doi.org/10.1038/s41593-023-01355-y] [PMID: 37291336]
[54]
Liu, C.G.; Song, J.; Zhang, Y.Q.; Wang, P.C. MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer’s disease. Mol. Med. Rep., 2014, 10(5), 2395-2400.
[http://dx.doi.org/10.3892/mmr.2014.2484] [PMID: 25119742]
[55]
Wang, X.; Liu, D.; Huang, H.Z.; Wang, Z.H.; Hou, T.Y.; Yang, X.; Pang, P.; Wei, N.; Zhou, Y.F.; Dupras, M.J.; Calon, F.; Wang, Y.T.; Man, H.Y.; Chen, J.G.; Wang, J.Z.; Hébert, S.S.; Lu, Y.; Zhu, L.Q. A Novel MicroRNA-124/PTPN1 signal pathway mediates synaptic and memory deficits in alzheimer’s disease. Biol. Psychiatry, 2018, 83(5), 395-405.
[http://dx.doi.org/10.1016/j.biopsych.2017.07.023] [PMID: 28965984]
[56]
Wang, Y.; Veremeyko, T.; Wong, A.H.K.; El Fatimy, R.; Wei, Z.; Cai, W.; Krichevsky, A.M. Downregulation of miR-132/212 impairs S-nitrosylation balance and induces tau phosphorylation in Alzheimer’s disease. Neurobiol. Aging, 2017, 51, 156-166.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.12.015] [PMID: 28089352]
[57]
Zhao, Z.B.; Wu, L.; Xiong, R.; Wang, L.L.; Zhang, B.; Wang, C.; Li, H.; Liang, L.; Chen, S.D. MicroRNA-922 promotes tau phosphorylation by downregulating ubiquitin carboxy-terminal hydrolase L1 (UCHL1) expression in the pathogenesis of Alzheimer’s disease. Neuroscience, 2014, 275, 232-237.
[http://dx.doi.org/10.1016/j.neuroscience.2014.06.013] [PMID: 24950120]
[58]
Zhou, Y.; Wang, Z.F.; Li, W.; Hong, H.; Chen, J.; Tian, Y.; Liu, Z.Y. Retracted : Protective effects of microRNA-330 on amyloid β-protein production, oxidative stress, and mitochondrial dysfunction in Alzheimer’s disease by targeting VAV1 via the MAPK signaling pathway. J. Cell. Biochem., 2018, 119(7), 5437-5448.
[http://dx.doi.org/10.1002/jcb.26700] [PMID: 29369410]
[59]
Memczak, S.; Jens, M.; Elefsinioti, A.; Torti, F.; Krueger, J.; Rybak, A.; Maier, L.; Mackowiak, S.D.; Gregersen, L.H.; Munschauer, M.; Loewer, A.; Ziebold, U.; Landthaler, M.; Kocks, C.; le Noble, F.; Rajewsky, N. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441), 333-338.
[http://dx.doi.org/10.1038/nature11928] [PMID: 23446348]
[60]
Rybak-Wolf, A.; Stottmeister, C.; Glažar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; Herzog, M.; Schreyer, L.; Papavasileiou, P.; Ivanov, A.; Öhman, M.; Refojo, D.; Kadener, S.; Rajewsky, N. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 2015, 58(5), 870-885.
[http://dx.doi.org/10.1016/j.molcel.2015.03.027] [PMID: 25921068]
[61]
Lo, I.J.; Hill, J.; Vilhjálmsson, B.J.; Kjems, J. Linking the association between circRNAs and Alzheimer’s disease progression by multi-tissue circular RNA characterization. RNA Biol., 2020, 17(12), 1789-1797.
[http://dx.doi.org/10.1080/15476286.2020.1783487] [PMID: 32618510]
[62]
Dube, U.; Del-Aguila, J.L.; Li, Z.; Budde, J.P.; Jiang, S.; Hsu, S.; Ibanez, L.; Fernandez, M.V.; Farias, F.; Norton, J.; Gentsch, J.; Wang, F.; Allegri, R.; Amtashar, F.; Benzinger, T.; Berman, S.; Bodge, C.; Brandon, S.; Brooks, W.; Buck, J.; Buckles, V.; Chea, S.; Chrem, P.; Chui, H.; Cinco, J.; Clifford, J.; D’Mello, M.; Donahue, T.; Douglas, J.; Edigo, N.; Erekin-Taner, N.; Fagan, A.; Farlow, M.; Farrar, A.; Feldman, H.; Flynn, G.; Fox, N.; Franklin, E.; Fujii, H.; Gant, C.; Gardener, S.; Ghetti, B.; Goate, A.; Goldman, J.; Gordon, B.; Gray, J.; Gurney, J.; Hassenstab, J.; Hirohara, M.; Holtzman, D.; Hornbeck, R.; DiBari, S.H.; Ikeuchi, T.; Ikonomovic, S.; Jerome, G.; Jucker, M.; Kasuga, K.; Kawarabayashi, T.; Klunk, W.; Koeppe, R.; Kuder-Buletta, E.; Laske, C.; Levin, J.; Marcus, D.; Martins, R.; Mason, N.S.; Maue-Dreyfus, D.; McDade, E.; Montoya, L.; Mori, H.; Nagamatsu, A.; Neimeyer, K.; Noble, J.; Norton, J.; Perrin, R.; Raichle, M.; Ringman, J.; Roh, J.H.; Schofield, P.; Shimada, H.; Shiroto, T.; Shoji, M.; Sigurdson, W.; Sohrabi, H.; Sparks, P.; Suzuki, K.; Swisher, L.; Taddei, K.; Wang, J.; Wang, P.; Weiner, M.; Wolfsberger, M.; Xiong, C.; Xu, X.; Salloway, S.; Masters, C.L.; Lee, J.H.; Graff-Radford, N.R.; Chhatwal, J.P.; Bateman, R.J.; Morris, J.C.; Karch, C.M.; Harari, O.; Cruchaga, C. Dominantly Inherited Alzheimer Network (DIAN). An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat. Neurosci., 2019, 22(11), 1903-1912.
[http://dx.doi.org/10.1038/s41593-019-0501-5] [PMID: 31591557]
[63]
Lukiw, W.J. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front. Genet., 2013, 4, 307.
[http://dx.doi.org/10.3389/fgene.2013.00307] [PMID: 24427167]
[64]
Zhang, S.; Zhu, D.; Li, H.; Li, H.; Feng, C.; Zhang, W. Characterization of circRNA-Associated-ceRNA Networks in a Senescence- Accelerated Mouse Prone 8 Brain. Molecular therapy : the journal of the American Society of Gene Therapy, 2017, 25(9), 2053-2061.
[65]
Ma, N.; Pan, J.; Ye, X.; Yu, B.; Zhang, W.; Wan, J. Whole-Transcriptome Analysis of APP/PS1 Mouse Brain and Identification of circRNA-miRNA-mRNA Networks to Investigate AD Pathogenesis. Mol. Ther. Nucleic Acids, 2019, 18, 1049-1062.
[http://dx.doi.org/10.1016/j.omtn.2019.10.030] [PMID: 31786335]
[66]
Song, C.; Zhang, Y.; Huang, W.; Shi, J.; Huang, Q.; Jiang, M.; Qiu, Y.; Wang, T.; Chen, H.; Wang, H.; Circular, R.N.A. Circular RNA Cwc27 contributes to Alzheimer’s disease pathogenesis by repressing Pur-α activity. Cell Death Differ., 2022, 29(2), 393-406.
[http://dx.doi.org/10.1038/s41418-021-00865-1] [PMID: 34504314]
[67]
Lu, Y.; Tan, L.; Wang, X. Circular HDAC9/microRNA-138/sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in alzheimer’s disease. Neurosci. Bull., 2019, 35(5), 877-888.
[http://dx.doi.org/10.1007/s12264-019-00361-0] [PMID: 30887246]
[68]
Bigarré, I.M.; Trombetta, B.A.; Guo, Y.; Arnold, S.E.; Carlyle, B.C. I GF2R circular RNA hsa_circ_0131235 expression in the middle temporal cortex is associated with AD pathology. Brain Behav., 2021, 11(4), e02048.
[http://dx.doi.org/10.1002/brb3.2048] [PMID: 33704916]
[69]
Zhang, Y.; Zhao, Y.; Liu, Y.; Wang, M.; Yu, W.; Zhang, L. Exploring the regulatory roles of circular RNAs in Alzheimer’s disease. Transl. Neurodegener., 2020, 9(1), 35.
[http://dx.doi.org/10.1186/s40035-020-00216-z] [PMID: 32951610]
[70]
Abidin, S.Z.; Mat Pauzi, N.A.; Mansor, N.I.; Mohd Isa, N.I.; Hamid, A.A. A new perspective on Alzheimer’s disease: microRNAs and circular RNAs. Front. Genet., 2023, 14, 1231486.
[http://dx.doi.org/10.3389/fgene.2023.1231486] [PMID: 37790702]
[71]
Chen, D.; Hao, S.; Xu, J. Revisiting the relationship between alzheimer’s disease and cancer with a circRNA perspective. Front. Cell Dev. Biol., 2021, 9, 647197.
[http://dx.doi.org/10.3389/fcell.2021.647197] [PMID: 33777952]
[72]
Welden, J.R.; Margvelani, G.; Arizaca Maquera, K.A.; Gudlavalleti, B.; Miranda Sardón, S.C.; Campos, A.R.; Robil, N.; Lee, D.C.; Hernandez, A.G.; Wang, W.X.; Di, J.; de la Grange, P.; Nelson, P.T.; Stamm, S. RNA editing of microtubule-associated protein tau circular RNAs promotes their translation and tau tangle formation. Nucleic Acids Res., 2022, 50(22), 12979-12996.
[http://dx.doi.org/10.1093/nar/gkac1129] [PMID: 36533443]
[73]
Li, Y.; Fan, H.; Sun, J.; Ni, M.; Zhang, L.; Chen, C.; Hong, X.; Fang, F.; Zhang, W.; Ma, P. Circular RNA expression profile of Alzheimer’s disease and its clinical significance as biomarkers for the disease risk and progression. Int. J. Biochem. Cell Biol., 2020, 123, 105747.
[http://dx.doi.org/10.1016/j.biocel.2020.105747] [PMID: 32315771]
[74]
Puri, S.; Hu, J.; Sun, Z.; Lin, M.; Stein, T.D.; Farrer, L.A.; Wolozin, B.; Zhang, X. Identification of circRNAs linked to Alzheimer’s disease and related dementias. Alzheimers Dement., 2023, 19(8), 3389-3405.
[http://dx.doi.org/10.1002/alz.12960] [PMID: 36795937]
[75]
van der Feltz, C.; Anthony, K.; Brilot, A.; Pomeranz Krummel, D.A. Architecture of the Spliceosome. Biochemistry, 2012, 51(16), 3321-3333.
[http://dx.doi.org/10.1021/bi201215r] [PMID: 22471593]
[76]
Ritchie, D.B.; Schellenberg, M.J.; MacMillan, A.M. Spliceosome structure: Piece by piece. Biochimica et Biophysica Acta (BBA) -. Gene Regulatory Mechanisms, 2009, 1789(9-10), 624-633.
[77]
Hales, C.M.; Dammer, E.B.; Diner, I.; Yi, H.; Seyfried, N.T.; Gearing, M.; Glass, J.D.; Montine, T.J.; Levey, A.I.; Lah, J.J. Aggregates of small nuclear ribonucleic acids (snRNAs) in Alzheimer’s disease. Brain Pathol., 2014, 24(4), 344-351.
[http://dx.doi.org/10.1111/bpa.12133] [PMID: 24571648]
[78]
Bai, B.; Hales, C.M.; Chen, P.C.; Gozal, Y.; Dammer, E.B.; Fritz, J.J.; Wang, X.; Xia, Q.; Duong, D.M.; Street, C.; Cantero, G.; Cheng, D.; Jones, D.R.; Wu, Z.; Li, Y.; Diner, I.; Heilman, C.J.; Rees, H.D.; Wu, H.; Lin, L.; Szulwach, K.E.; Gearing, M.; Mufson, E.J.; Bennett, D.A.; Montine, T.J.; Seyfried, N.T.; Wingo, T.S.; Sun, Y.E.; Jin, P.; Hanfelt, J.; Willcock, D.M.; Levey, A.; Lah, J.J.; Peng, J. U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2013, 110(41), 16562-16567.
[http://dx.doi.org/10.1073/pnas.1310249110] [PMID: 24023061]
[79]
Bai, B.; Chen, P.C.; Hales, C.M.; Wu, Z.; Pagala, V.; High, A.A.; Levey, A.I.; Lah, J.J.; Peng, J. Integrated approaches for analyzing U1-70K cleavage in Alzheimer’s disease. J. Proteome Res., 2014, 13(11), 4526-4534.
[http://dx.doi.org/10.1021/pr5003593] [PMID: 24902715]
[80]
Cheng, Z.; Shang, Y.; Gao, S.; Zhang, T. Overexpression of U1 snRNA induces decrease of U1 spliceosome function associated with Alzheimer’s disease. J. Neurogenet., 2017, 31(4), 337-343.
[http://dx.doi.org/10.1080/01677063.2017.1395425] [PMID: 29098922]
[81]
Cheng, Z.; Shang, Y.; Xu, X.; Dong, Z.; Zhang, Y.; Du, Z.; Lu, X.; Zhang, T. Presenilin 1 mutation likely contributes to U1 small nuclear RNA dysregulation and Alzheimer’s disease–like symptoms. Neurobiol. Aging, 2021, 100, 1-10.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.12.015] [PMID: 33450722]
[82]
Lio, C.T.; Kacprowski, T.; Klaedtke, M.; Jensen, L.R.; Bouter, Y.; Bayer, T.A.; Kuss, A.W. Small RNA Sequencing in the Tg4–42 Mouse Model Suggests the Involvement of snoRNAs in the Etiology of Alzheimer’s Disease. J. Alzheimers Dis., 2022, 87(4), 1671-1681.
[http://dx.doi.org/10.3233/JAD-220110] [PMID: 35527555]
[83]
Chen, S.; Ge, X.; Chen, Y.; Lv, N.; Liu, Z.; Yuan, W. Advances with RNA interference in Alzheimer’s disease research. Drug Des. Devel. Ther., 2013, 7, 117-125.
[PMID: 23459401]
[84]
Dana, H.; Chalbatani, G.M.; Mahmoodzadeh, H.; Gharagouzlo, E.; Karimloo, R.; Rezaiean, O.; Moradzadeh, A.; Mazraeh, A.; Marmari, V.; Rashno, M.M.; Mehmandoost, N.; Moazzen, F.; Ebrahimi, M.; Abadi, S.J. Molecular Mechanisms and Biological Functions of siRNA. Int. J. Biomed. Sci., 2017, 13(2), 48-57.
[http://dx.doi.org/10.59566/IJBS.2017.13048] [PMID: 28824341]
[85]
Finan, G.M.; Okada, H.; Kim, T.W. BACE1 retrograde trafficking is uniquely regulated by the cytoplasmic domain of sortilin. J. Biol. Chem., 2011, 286(14), 12602-12616.
[http://dx.doi.org/10.1074/jbc.M110.170217] [PMID: 21245145]
[86]
Zhou, Y.; Zhu, F.; Liu, Y.; Zheng, M.; Wang, Y.; Zhang, D.; Anraku, Y.; Zou, Y.; Li, J.; Wu, H.; Pang, X.; Tao, W.; Shimoni, O.; Bush, A.I.; Xue, X.; Shi, B. Blood-brain barrier–penetrating siRNA nanomedicine for Alzheimer’s disease therapy. Sci. Adv., 2020, 6(41), eabc7031.
[http://dx.doi.org/10.1126/sciadv.abc7031] [PMID: 33036977]
[87]
Holsinger, R.M.D.; McLean, C.A.; Beyreuther, K.; Masters, C.L.; Evin, G. Increased expression of the amyloid precursor β-secretase in Alzheimer’s disease. Ann. Neurol., 2002, 51(6), 783-786.
[http://dx.doi.org/10.1002/ana.10208] [PMID: 12112088]
[88]
Holsinger, R.M.D.; McLean, C.A.; Collins, S.J.; Masters, C.L.; Evin, G. Increased β-Secretase activity in cerebrospinal fluid of Alzheimer’s disease subjects. Ann. Neurol., 2004, 55(6), 898-899.
[http://dx.doi.org/10.1002/ana.20144] [PMID: 15174031]
[89]
Olufunmilayo, E.O.; Holsinger, R.M.D. Roles of non-coding RNA in alzheimer’s disease pathophysiology. Int. J. Mol. Sci., 2023, 24(15), 12498.
[http://dx.doi.org/10.3390/ijms241512498] [PMID: 37569871]
[90]
Han, C.; Yang, Y.; Guan, Q.; Zhang, X.; Shen, H.; Sheng, Y.; Wang, J.; Zhou, X.; Li, W.; Guo, L.; Jiao, Q. New mechanism of nerve injury in Alzheimer’s disease: β-amyloid-induced neuronal pyroptosis. J. Cell. Mol. Med., 2020, 24(14), 8078-8090.
[http://dx.doi.org/10.1111/jcmm.15439] [PMID: 32521573]
[91]
Cox, D.N.; Chao, A.; Baker, J.; Chang, L.; Qiao, D.; Lin, H. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev., 1998, 12(23), 3715-3727.
[http://dx.doi.org/10.1101/gad.12.23.3715] [PMID: 9851978]
[92]
Wakisaka, K.T.; Imai, Y. The dawn of pirna research in various neuronal disorders. Front. Biosci., 2019, 24(8), 1440-1451.
[http://dx.doi.org/10.2741/4789] [PMID: 31136989]
[93]
Kim, K.W. PIWI proteins and piRNAs in the nervous system. Mol. Cells, 2019, 42(12), 828-835.
[PMID: 31838836]
[94]
Qiu, W.; Guo, X.; Lin, X.; Yang, Q.; Zhang, W.; Zhang, Y.; Zuo, L.; Zhu, Y.; Li, C.S.R.; Ma, C.; Luo, X. Transcriptome-wide piRNA profiling in human brains of Alzheimer’s disease. Neurobiol. Aging, 2017, 57, 170-177.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.05.020] [PMID: 28654860]
[95]
Roy, J.; Sarkar, A.; Parida, S.; Ghosh, Z.; Mallick, B. Small RNA sequencing revealed dysregulated piRNAs in Alzheimer’s disease and their probable role in pathogenesis. Mol. Biosyst., 2017, 13(3), 565-576.
[http://dx.doi.org/10.1039/C6MB00699J] [PMID: 28127595]
[96]
Tripathi, M.K.; Khan, M.M.; Doxtater, K. Recent advances on the role of long non-coding RNAs in Alzheimer’s disease. Neural Regen. Res., 2020, 15(12), 2253-2254.
[http://dx.doi.org/10.4103/1673-5374.284990] [PMID: 32594043]
[97]
Pierouli, K.; Papakonstantinou, E.; Papageorgiou, L.; Diakou, I.; Mitsis, T.; Dragoumani, K.; Spandidos, D.A.; Bacopoulou, F.; Chrousos, G.P.; Goulielmos, G.Ν.; Eliopoulos, E.; Vlachakis, D. Role of non-coding RNAs as biomarkers and the application of omics technologies in Alzheimer’s disease (Review). Int. J. Mol. Med., 2023, 51(1), 1-11. [Review
[PMID: 36453246]
[98]
Zhang, M.; He, P.; Bian, Z. Long Noncoding RNAs in neurodegenerative diseases: pathogenesis and potential implications as clinical biomarkers. Front. Mol. Neurosci., 2021, 14, 685143.
[http://dx.doi.org/10.3389/fnmol.2021.685143] [PMID: 34421536]
[99]
Cummings, J. The role of biomarkers in Alzheimer’s disease drug development. Adv. Exp. Med. Biol., 2019, 1118, 29-61.
[http://dx.doi.org/10.1007/978-3-030-05542-4_2] [PMID: 30747416]
[100]
Feng, L.; Liao, Y.T.; He, J.C.; Xie, C.L.; Chen, S.Y.; Fan, H.H.; Su, Z.P.; Wang, Z. Plasma long non-coding RNA BACE1 as a novel biomarker for diagnosis of Alzheimer disease. BMC Neurol., 2018, 18(1), 4.
[http://dx.doi.org/10.1186/s12883-017-1008-x] [PMID: 29316899]
[101]
Wang, D.; Wang, P.; Bian, X.; Xu, S.; Zhou, Q.; Zhang, Y.; Ding, M.; Han, M.; Huang, L.; Bi, J.; Jia, Y.; Xie, Z. Elevated plasma levels of exosomal BACE1‑AS combined with the volume and thickness of the right entorhinal cortex may serve as a biomarker for the detection of Alzheimer’s disease. Mol. Med. Rep., 2020, 22(1), 227-238.
[http://dx.doi.org/10.3892/mmr.2020.11118] [PMID: 32377715]
[102]
Li, P-Y.; Wang, P.; Gao, S-G.; Dong, D-Y.; Long Noncoding, R.N.A. SOX2-OT: regulations, functions, and roles on mental illnesses, cancers, and diabetic complications. BioMed Res. Int., 2020, 1-12.
[http://dx.doi.org/10.1155/2020/2901589]
[103]
Huaying, C.; Xing, J.; Luya, J.; Linhui, N.; Di, S.; Xianjun, D. A signature of five long non-coding rnas for predicting the prognosis of alzheimer’s disease based on competing endogenous RNA networks. Front. Aging Neurosci., 2021, 12, 598606.
[http://dx.doi.org/10.3389/fnagi.2020.598606] [PMID: 33584243]
[104]
Ma, P.; Li, Y.; Zhang, W.; Fang, F.; Sun, J.; Liu, M.; Li, K.; Dong, L. Long non-coding rna malat1 inhibits neuron apoptosis and neuroinflammation while stimulates neurite outgrowth and its correlation with MIR-125b mediates PTGS2, CDK5 and FOXQ1 in alzheimer’s disease. Curr. Alzheimer Res., 2019, 16(7), 596-612.
[http://dx.doi.org/10.2174/1567205016666190725130134] [PMID: 31345147]
[105]
Khodayi, M.; Khalaj-Kondori, M.; Hoseinpour Feizi, M.A.; Jabarpour Bonyadi, M.; Talebi, M. Plasma lncRNA profiling identified BC200 and NEAT1 lncRNAs as potential blood-based biomarkers for late-onset Alzheimer’s disease. EXCLI J., 2022, 21, 772-785.
[PMID: 35949493]
[106]
Cheng, Y.; Zhou, X.; Zou, T.; Zhang, L.; Li, L.; Yang, C.; Ma, L. Plasma long non-coding RNAs ASMTL-AS1, AP001363.1, AC005730.3 and AL133415.1 as a potential biomarker for Alzheimer’s disease. Neurol. Res., 2023, 45(9), 804-817.
[http://dx.doi.org/10.1080/01616412.2023.2203616] [PMID: 37486018]
[107]
Lu, J.; Liu, L.; Chen, J.; Zhi, J.; Li, J.; Li, L.; Jiang, Z. LncRNA HOTAIR in exercise-induced neuro-protective function in Alzheimer’s disease. Folia Neuropathol., 2022, 60(4), 414-420.
[http://dx.doi.org/10.5114/fn.2022.118961] [PMID: 36734383]
[108]
Wei, W.; Wang, Z.Y.; Ma, L.N.; Zhang, T.T.; Cao, Y.; Li, H. MicroRNAs in alzheimer’s disease: function and potential applications as diagnostic biomarkers. Front. Mol. Neurosci., 2020, 13, 160.
[http://dx.doi.org/10.3389/fnmol.2020.00160] [PMID: 32973449]
[109]
He, M.; Zhang, H.; Tang, Z.; Gao, S. Diagnostic and therapeutic potential of exosomal microRNAs for neurodegenerative diseases. Neural Plast., 2021, 2021, 1-13. http://dx.doi.org/10.1155/2021/8884642 PMID: 34054944(b) Siedlecki-Wullich, D.; Miñano-Molina, A. J.; Rodríguez-Álvarez, J. microRNAs as early biomarkers of Alzheimer’s disease: A synaptic perspective. Cells, 2021, 10(1), 113.https://doi.org/10.3390/cells10010113 PMID: 33435363"
[110]
Kumar, S.; Reddy, P.H. A new discovery of microRNA-455-3p in alzheimer’s disease. J. Alzheimers Dis., 2019, 72(s1), S117-S130.
[http://dx.doi.org/10.3233/JAD-190583] [PMID: 31524168]
[111]
Bhatnagar, S.; Chertkow, H.; Schipper, H.M.; Yuan, Z.; Shetty, V.; Jenkins, S.; Jones, T.; Wang, E. Increased microRNA-34c abundance in Alzheimer’s disease circulating blood plasma. Front. Mol. Neurosci., 2014, 7, 2.
[http://dx.doi.org/10.3389/fnmol.2014.00002] [PMID: 24550773]
[112]
Siedlecki-Wullich, D.; Català-Solsona, J.; Fábregas, C.; Hernández, I.; Clarimon, J.; Lleó, A.; Boada, M.; Saura, C.A.; Rodríguez-Álvarez, J.; Miñano-Molina, A.J. Altered microRNAs related to synaptic function as potential plasma biomarkers for Alzheimer’s disease. Alzheimers Res. Ther., 2019, 11(1), 46.
[http://dx.doi.org/10.1186/s13195-019-0501-4] [PMID: 31092279]
[113]
Hara, N.; Kikuchi, M.; Miyashita, A.; Hatsuta, H.; Saito, Y.; Kasuga, K.; Murayama, S.; Ikeuchi, T.; Kuwano, R. Serum microRNA miR-501-3p as a potential biomarker related to the progression of Alzheimer’s disease. Acta Neuropathol. Commun., 2017, 5(1), 10.
[http://dx.doi.org/10.1186/s40478-017-0414-z] [PMID: 28137310]
[114]
Zhang, M.; Han, W.; Xu, Y.; Li, D.; Xue, Q. Serum mir-128 serves as a potential diagnostic biomarker for alzheimer’s disease. Neuropsychiatr. Dis. Treat., 2021, 17, 269-275.
[http://dx.doi.org/10.2147/NDT.S290925] [PMID: 33542630]
[115]
Guo, R.; Fan, G.; Zhang, J.; Wu, C.; Du, Y.; Ye, H.; Li, Z.; Wang, L.; Zhang, Z.; Zhang, L.; Zhao, Y.; Lu, Z. A 9-microRNA signature in serum serves as a noninvasive biomarker in early diagnosis of alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1365-1377.
[http://dx.doi.org/10.3233/JAD-170343] [PMID: 29036818]
[116]
Dong, H.; Li, J.; Huang, L.; Chen, X.; Li, D.; Wang, T.; Hu, C.; Xu, J.; Zhang, C.; Zen, K.; Xiao, S.; Yan, Q.; Wang, C.; Zhang, C.Y. Serum MicroRNA profiles serve as novel biomarkers for the diagnosis of alzheimer’s disease. Dis. Markers, 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/625659] [PMID: 26078483]
[117]
Wu, Y.; Xu, J.; Xu, J.; Cheng, J.; Jiao, D.; Zhou, C.; Dai, Y.; Chen, Q. Lower serum levels of mir-29c-3p and mir-19b-3p as biomarkers for alzheimer’s disease. Tohoku J. Exp. Med., 2017, 242(2), 129-136.
[http://dx.doi.org/10.1620/tjem.242.129] [PMID: 28626163]
[118]
Peña-Bautista, C.; Tarazona-Sánchez, A.; Braza-Boils, A.; Balaguer, A.; Ferré-González, L.; Cañada-Martínez, A.J.; Baquero, M.; Cháfer-Pericás, C. Plasma microRNAs as potential biomarkers in early Alzheimer disease expression. Sci. Rep., 2022, 12(1), 15589.
[http://dx.doi.org/10.1038/s41598-022-19862-6] [PMID: 36114255]
[119]
Liu, Y.; Xu, Y.; Yu, M. MicroRNA‑4722‑5p and microRNA‑615‑3p serve as potential biomarkers for Alzheimer’s disease. Exp. Ther. Med., 2022, 23(3), 241.
[http://dx.doi.org/10.3892/etm.2022.11166] [PMID: 35222718]
[120]
Kumar, A.; Su, Y.; Sharma, M.; Singh, S.; Kim, S.; Peavey, J.J.; Suerken, C.K.; Lockhart, S.N.; Whitlow, C.T.; Craft, S.; Hughes, T.M.; Deep, G. MicroRNA expression in extracellular vesicles as a novel blood-based biomarker for Alzheimer’s disease. Alzheimers Dement., 2023, 19(11), 4952-4966.
[http://dx.doi.org/10.1002/alz.13055] [PMID: 37071449]
[121]
Guévremont, D.; Tsui, H.; Knight, R.; Fowler, C.J.; Masters, C.L.; Martins, R.N.; Abraham, W.C.; Tate, W.P.; Cutfield, N.J.; Williams, J.M. Plasma microRNA vary in association with the progression of Alzheimer’s disease. Alzheimers Dement. (Amst.), 2022, 14(1), e12251.
[http://dx.doi.org/10.1002/dad2.12251] [PMID: 35141392]
[122]
Bhatnagar, D.; Ladhe, S.; Kumar, D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer’s Disease. Mol. Neurobiol., 2023, 60(10), 5954-5974.
[http://dx.doi.org/10.1007/s12035-023-03446-0] [PMID: 37386272]
[123]
Fitz, N.F.; Wang, J.; Kamboh, M.I.; Koldamova, R.; Lefterov, I. Small nucleolar RNAs in plasma extracellular vesicles and their discriminatory power as diagnostic biomarkers of Alzheimer’s disease. Neurobiol. Dis., 2021, 159, 105481.
[http://dx.doi.org/10.1016/j.nbd.2021.105481] [PMID: 34411703]
[124]
Jain, G.; Stuendl, A.; Rao, P.; Berulava, T.; Pena Centeno, T.; Kaurani, L.; Burkhardt, S.; Delalle, I.; Kornhuber, J.; Hüll, M.; Maier, W.; Peters, O.; Esselmann, H.; Schulte, C.; Deuschle, C.; Synofzik, M.; Wiltfang, J.; Mollenhauer, B.; Maetzler, W.; Schneider, A.; Fischer, A. A combined miRNA–piRNA signature to detect Alzheimer’s disease. Transl. Psychiatry, 2019, 9(1), 250.
[http://dx.doi.org/10.1038/s41398-019-0579-2] [PMID: 31591382]
[125]
Zhang, X.; Trebak, F.; Souza, L.A.C.; Shi, J.; Zhou, T.; Kehoe, P.G.; Chen, Q.; Feng Earley, Y. Small RNA modifications in Alzheimer’s disease. Neurobiol. Dis., 2020, 145, 105058.
[http://dx.doi.org/10.1016/j.nbd.2020.105058] [PMID: 32835860]
[126]
Cummings, J.; Lee, G.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement., 2021, 7(1), e12179.
[http://dx.doi.org/10.1002/trc2.12179] [PMID: 34095440]
[127]
Nguyen, T.T.; Nguyen, T.T.D.; Nguyen, T.K.O.; Vo, T.K.; Vo, V.G. Advances in developing therapeutic strategies for Alzheimer’s disease. Biomed. Pharmacother., 2021, 139(139), 111623.
[http://dx.doi.org/10.1016/j.biopha.2021.111623] [PMID: 33915504]
[128]
Huang, L.K.; Chao, S.P.; Hu, C.J. Clinical trials of new drugs for Alzheimer disease. J. Biomed. Sci., 2020, 27(1), 18.
[http://dx.doi.org/10.1186/s12929-019-0609-7] [PMID: 31906949]
[129]
Riscado, M.; Baptista, B.; Sousa, F. New rna-based breakthroughs in alzheimer’s disease diagnosis and thera peutics. Pharmaceutics, 2021, 13(9), 1397.
[http://dx.doi.org/10.3390/pharmaceutics13091397] [PMID: 34575473]
[130]
Liu, Y.; Cheng, X.; Li, H.; Hui, S.; Zhang, Z.; Xiao, Y.; Peng, W. Non-Coding RNAs as novel regulators of neuroinflammation in Alzheimer’s disease. Front. Immunol., 2022, 13, 908076.
[http://dx.doi.org/10.3389/fimmu.2022.908076] [PMID: 35720333]
[131]
Walgrave, H.; Zhou, L.; De Strooper, B.; Salta, E. The promise of microRNA-based therapies in Alzheimer’s disease: challenges and perspectives. Mol. Neurodegener., 2021, 16(1), 76.
[http://dx.doi.org/10.1186/s13024-021-00496-7] [PMID: 34742333]
[132]
Liu, S.; Fan, M.; Zheng, Q.; Hao, S.; Yang, L.; Xia, Q.; Qi, C.; Ge, J. MicroRNAs in Alzheimer’s disease: Potential diagnostic markers and therapeutic targets. Biomed. Pharmacother., 2022, 148, 112681.
[http://dx.doi.org/10.1016/j.biopha.2022.112681] [PMID: 35177290]
[133]
Miya Shaik, M.; Tamargo, I.; Abubakar, M.; Kamal, M.; Greig, N.; Gan, S. The Role of microRNAs in Alzheimer’s disease and their therapeutic potentials. Genes (Basel), 2018, 9(4), 174.
[http://dx.doi.org/10.3390/genes9040174] [PMID: 29561798]
[134]
Silvestro, S.; Bramanti, P.; Mazzon, E. Role of miRNAs in alzheimer’s disease and possible fields of application. Int. J. Mol. Sci., 2019, 20(16), 3979.
[http://dx.doi.org/10.3390/ijms20163979] [PMID: 31443326]
[135]
Li, J.; Wang, H. miR-15b reduces amyloid-β accumulation in SH-SY5Y cell line through targetting NF-κB signaling and BACE1. Biosci. Rep., 2018, 38(6), BSR20180051.
[http://dx.doi.org/10.1042/BSR20180051] [PMID: 29961672]
[136]
Li, P.; Xu, Y.; Wang, B.; Huang, J.; Li, Q. miR-34a-5p and miR-125b-5p attenuate Aβ-induced neurotoxicity through targeting BACE1. J. Neurol. Sci., 2020, 413, 116793.
[http://dx.doi.org/10.1016/j.jns.2020.116793] [PMID: 32251872]
[137]
Barros-Viegas, A.T.; Carmona, V.; Ferreiro, E.; Guedes, J.; Cardoso, A.M.; Cunha, P.; Pereira de Almeida, L.; Resende de Oliveira, C.; Pedro de Magalhães, J.; Peça, J.; Cardoso, A.L. miRNA-31 improves cognition and abolishes amyloid-β pathology by targeting app and bace1 in an animal model of Alzheimer’s disease. Mol. Ther. Nucleic Acids, 2020, 19, 1219-1236.
[http://dx.doi.org/10.1016/j.omtn.2020.01.010] [PMID: 32069773]
[138]
Wang, L.; Liu, J.; Wang, Q.; Jiang, H.; Zeng, L.; Li, Z.; Liu, R. MicroRNA-200a-3p mediates neuroprotection in alzheimer-related deficit s and attenuates amyloid-beta overproduction and tau hyperphosphorylat ion via coregulating BACE1 and PRKACB. Front. Pharmacol., 2019, 10, 441976.
[139]
Lei, X.; Lei, L.; Zhang, Z.; Zhang, Z.; Cheng, Y. Downregulated miR-29c correlates with increased BACE1 expression in sporadic Alzheimer’s disease. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1565-1574.
[PMID: 25973041]
[140]
Higaki, S.; Muramatsu, M.; Matsuda, A.; Matsumoto, K.; Satoh, J.; Michikawa, M.; Niida, S. Defensive effect of microRNA-200b/c against amyloid-beta peptide-induced toxicity in Alzheimer’s disease models. PLoS One, 2018, 13(5), e0196929.
[http://dx.doi.org/10.1371/journal.pone.0196929] [PMID: 29738527]
[141]
Chopra, N.; Wang, R.; Maloney, B.; Nho, K.; Beck, J.S.; Pourshafie, N.; Niculescu, A.; Saykin, A.J.; Rinaldi, C.; Counts, S.E.; Lahiri, D.K. MicroRNA-298 reduces levels of human amyloid-β precursor protein (APP), β-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Mol. Psychiatry, 2021, 26(10), 5636-5657.
[http://dx.doi.org/10.1038/s41380-019-0610-2] [PMID: 31942037]
[142]
Liu, J.; Zuo, X.; Han, J.; Dai, Q.; Xu, H.; Liu, Y.; Cui, S. MiR-9-5p inhibits mitochondrial damage and oxidative stress in AD cell models by targeting GSK-3β. Biosci. Biotechnol. Biochem., 2020, 84(11), 2273-2280.
[http://dx.doi.org/10.1080/09168451.2020.1797469] [PMID: 32713252]
[143]
Zhang, Q.S.; Liu, W.; Lu, G.X. miR-200a-3p promotes β-Amyloid-induced neuronal apoptosis through down-regulation of SIRT1 in Alzheimer’s disease. J. Biosci., 2017, 42(3), 397-404.
[http://dx.doi.org/10.1007/s12038-017-9698-1] [PMID: 29358553]
[144]
Hernandez-Rapp, J.; Rainone, S.; Goupil, C.; Dorval, V.; Smith, P.Y.; Saint-Pierre, M.; Vallée, M.; Planel, E.; Droit, A.; Calon, F.; Cicchetti, F.; Hébert, S.S. microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer’s disease triple transgenic mice. Sci. Rep., 2016, 6(1), 30953.
[http://dx.doi.org/10.1038/srep30953] [PMID: 27484949]
[145]
Zhang, Y.; Li, Q.; Liu, C.; Gao, S.; Ping, H.; Wang, J.; Wang, P. MiR-214-3p attenuates cognition defects via the inhibition of autophagy in SAMP8 mouse model of sporadic Alzheimer’s disease. Neurotoxicology, 2016, 56, 139-149.
[http://dx.doi.org/10.1016/j.neuro.2016.07.004] [PMID: 27397902]
[146]
Kang, Q.; Xiang, Y.; Li, D.; Liang, J.; Zhang, X.; Zhou, F.; Qiao, M.; Nie, Y.; He, Y.; Cheng, J.; Dai, Y.; Li, Y. MiR-124-3p attenuates hyperphosphorylation of tau protein-induced apoptosis via caveolin-1-PI3K/Akt/GSK3β pathway in N2a/APP695swe cells. Oncotarget, 2017, 8(15), 24314-24326.
[http://dx.doi.org/10.18632/oncotarget.15149] [PMID: 28186985]
[147]
He, B.; Chen, W.; Zeng, J.; Tong, W.; Zheng, P. MicroRNA-326 decreases tau phosphorylation and neuron apoptosis through inhibition of the JNK signaling pathway by targeting VAV1 in Alzheimer’s disease. J. Cell. Physiol., 2020, 235(1), 480-493.
[http://dx.doi.org/10.1002/jcp.28988] [PMID: 31385301]
[148]
Jiang, Y.; Xu, B.; Chen, J.; Sui, Y.; Ren, L.; Li, J.; Zhang, H.; Guo, L.; Sun, X. Micro-RNA-137 inhibits tau hyperphosphorylation in alzheimer’s disease and targets the CACNA1C gene in transgenic mice and human neuroblasto ma SH-SY5Y cells. Med. Sci. Monit., 2018, 24, 5635-5644.
[http://dx.doi.org/10.12659/MSM.908765] [PMID: 30102687]
[149]
Tang, Y.; Bao, J.S.; Su, J.H.; Huang, W. MicroRNA-139 modulates Alzheimer's-associated pathogenesis in SAMP8 mice by targeting cannabinoid receptor type 2. Genet. Mol. Res, 2017, 16, 10.4238.
[150]
Liu, Y.; Zhang, Y.; Liu, P.; Bai, H.; Li, X.; Xiao, J.; Yuan, Q.; Geng, S.; Yin, H.; Zhang, H.; Wang, Z.; Li, J.; Wang, S.; Wang, Y. RETRACTED: MicroRNA-128 knockout inhibits the development of Alzheimer’s disease by targeting PPARγ in mouse models. Eur. J. Pharmacol., 2019, 843, 134-144.
[http://dx.doi.org/10.1016/j.ejphar.2018.11.004] [PMID: 30412727]
[151]
Sun, L.; Zhang, T.; Xiu, W.; Cao, W.; He, M.; Sun, W.; Zhao, W. MiR-107 overexpression attenuates neurotoxicity induced by 6-hydroxydopamine both in vitro and in vivo. Chem. Biol. Interact., 2020, 315, 108908.
[http://dx.doi.org/10.1016/j.cbi.2019.108908] [PMID: 31778666]
[152]
Shi, Z.; Zhang, K.; Zhou, H.; Jiang, L.; Xie, B.; Wang, R.; Xia, W.; Yin, Y.; Gao, Z.; Cui, D.; Zhang, R.; Xu, S. Increased miR-34c mediates synaptic deficits by targeting synaptotagmin 1 through ROS-JNK-p53 pathway in Alzheimer’s Disease. Aging Cell, 2020, 19(3), e13125.
[http://dx.doi.org/10.1111/acel.13125] [PMID: 32092796]
[153]
Wu, G.D.; Li, Z.H.; Li, X.; Zheng, T.; Zhang, D.K. microRNA-592 blockade inhibits oxidative stress injury in Alzheimer’s disease astrocytes via the KIAA0319-mediated Keap1/Nrf2/ARE signaling pathway. Exp. Neurol., 2020, 324, 113128.
[http://dx.doi.org/10.1016/j.expneurol.2019.113128] [PMID: 31759899]
[154]
Zong, Y.; Yu, P.; Cheng, H.; Wang, H.; Wang, X.; Liang, C.; Zhu, H.; Qin, Y.; Qin, C. miR-29c regulates NAV3 protein expression in a transgenic mouse model of Alzheimer׳s disease. Brain Res., 2015, 1624, 95-102.
[http://dx.doi.org/10.1016/j.brainres.2015.07.022] [PMID: 26212654]
[155]
Abozaid, O.A.R.; Sallam, M.W.; El-Sonbaty, S.; Aziza, S.; Emad, B.; Ahmed, E.S.A. Resveratrol-Selenium Nanoparticles Alleviate Neuroinflammation and Neurotoxicity in a Rat Model of Alzheimer’s Disease by Regulating Sirt1/miRNA-134/GSK3β Expression. Biol. Trace Elem. Res., 2022, 200(12), 5104-5114.
[http://dx.doi.org/10.1007/s12011-021-03073-7] [PMID: 35059981]
[156]
Jiao, Y.; Kong, L.; Yao, Y.; Li, S.; Tao, Z.; Yan, Y.; Yang, J. Osthole decreases beta amyloid levels through up-regulation of miR-107 in Alzheimer’s disease. Neuropharmacology, 2016, 108, 332-344.
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.046] [PMID: 27143098]
[157]
Lin, Y.; Liang, X.; Yao, Y.; Xiao, H.; Shi, Y.; Yang, J. RETRACTED: Osthole attenuates APP-induced Alzheimer’s disease through up-regulating miRNA-101a-3p. Life Sci., 2019, 225, 117-131.
[http://dx.doi.org/10.1016/j.lfs.2019.04.004] [PMID: 30951743]
[158]
Li, S.; Yan, Y.; Jiao, Y.; Gao, Z.; Xia, Y.; Kong, L.; Yao, Y.; Tao, Z.; Song, J.; Yan, Y.; Zhang, G.; Yang, J. Neuroprotective Effect of Osthole on Neuron Synapses in an Alzheimer’s Disease Cell Model via Upregulation of MicroRNA-9. J. Mol. Neurosci., 2016, 60(1), 71-81.
[http://dx.doi.org/10.1007/s12031-016-0793-9] [PMID: 27394443]
[159]
Ghasemi-Kasman, M.; Shojaei, A.; Gol, M.; Moghadamnia, A.A.; Baharvand, H.; Javan, M. miR-302/367-induced neurons reduce behavioral impairment in an experimental model of Alzheimer’s disease. Mol. Cell. Neurosci., 2018, 86, 50-57.
[http://dx.doi.org/10.1016/j.mcn.2017.11.012] [PMID: 29174617]
[160]
Carroll, C.B.; Wyse, R.K.H. Simvastatin as a potential disease-modifying therapy for patients with parkinson’s disease: rationale for clinical trial, and current progress. J. Parkinsons Dis., 2017, 7(4), 545-568.
[http://dx.doi.org/10.3233/JPD-171203] [PMID: 29036837]
[161]
Yi, J.; Chen, B.; Yao, X.; Lei, Y.; Ou, F.; Huang, F. Upregulation of the lncRNA MEG3 improves cognitive impairment, alleviates neuronal damage, and inhibits activation of astrocytes in hippocampus tissues in Alzheimer’s disease through inactivating the PI3K/Akt signaling pathway. J. Cell. Biochem., 2019, 120(10), 18053-18065.
[http://dx.doi.org/10.1002/jcb.29108] [PMID: 31190362]
[162]
Wang, X.; Zhang, M.; Liu, H. LncRNA17A regulates autophagy and apoptosis of SH-SY5Y cell line as an in vitro model for Alzheimer’s disease. Biosci. Biotechnol. Biochem., 2019, 83(4), 609-621.
[http://dx.doi.org/10.1080/09168451.2018.1562874] [PMID: 30652945]
[163]
Wang, J.; Zhou, T.; Wang, T.; Wang, B. Suppression of lncRNA-ATB prevents amyloid-β-induced neurotoxicity in PC12 cells via regulating miR-200/ZNF217 axis. Biomed. Pharmacother., 2018, 108, 707-715.
[http://dx.doi.org/10.1016/j.biopha.2018.08.155] [PMID: 30248538]
[164]
Zhang, L.; Fang, Y.; Cheng, X.; Lian, Y.J.; Xu, H.L. Silencing of long noncoding RNA SOX21-AS1 relieves neuronal oxidative stress injury in mice with alzheimer’s disease by upregulating FZD3/5 via the WNT signaling pathway. Mol. Neurobiol., 2019, 56(5), 3522-3537.
[http://dx.doi.org/10.1007/s12035-018-1299-y] [PMID: 30143969]
[165]
Zhao, M.Y.; Wang, G.Q.; Wang, N.N.; Yu, Q.Y.; Liu, R.L.; Shi, W.Q. The long-non-coding RNA NEAT1 is a novel target for Alzheimer’s disease progression via miR-124/BACE1 axis. Neurol. Res., 2019, 41(6), 489-497.
[http://dx.doi.org/10.1080/01616412.2018.1548747] [PMID: 31014193]
[166]
Zhang, W.; Zhao, H.; Wu, Q.; Xu, W.; Xia, M. Knockdown of BACE1‑AS by siRNA improves memory and learning behaviors in Alzheimer’s disease animal model. Exp. Ther. Med., 2018, 16(3), 2080-2086.
[http://dx.doi.org/10.3892/etm.2018.6359] [PMID: 30186443]
[167]
Rajasethupathy, P.; Antonov, I.; Sheridan, R.; Frey, S.; Sander, C.; Tuschl, T.; Kandel, E.R. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell, 2012, 149(3), 693-707.
[http://dx.doi.org/10.1016/j.cell.2012.02.057] [PMID: 22541438]
[168]
Yang, H.; Wang, H.; Shang, H.; Chen, X.; Yang, S.; Qu, Y.; Ding, J.; Li, X. Circular RNA circ_0000950 promotes neuron apoptosis, suppresses neurite outgrowth and elevates inflammatory cytokines levels via directly sponging miR-103 in Alzheimer’s disease. Cell Cycle, 2019, 18(18), 2197-2214.
[http://dx.doi.org/10.1080/15384101.2019.1629773] [PMID: 31373242]
[169]
Wu, L.; Du, Q.; Wu, C. CircLPAR1/miR-212-3p/ZNF217 feedback loop promotes amyloid β-induced neuronal injury in Alzheimer’s Disease. Brain Res., 2021, 1770, 147622.
[http://dx.doi.org/10.1016/j.brainres.2021.147622] [PMID: 34403662]
[170]
Song, J.; Kim, Y.K. Identification of the role of miR-142-5p in alzheimer’s disease by com parative bioinformatics and cellular analysis. Front. Mol. Neurosci., 2017, 10, 227.
[http://dx.doi.org/10.3389/fnmol.2017.00227] [PMID: 28769761]
[171]
Zhang, N.; Gao, Y.; Yu, S.; Sun, X.; Shen, K. Berberine attenuates Aβ42-induced neuronal damage through regulating circHDAC9/miR-142-5p axis in human neuronal cells. Life Sci., 2020, 252, 117637.
[http://dx.doi.org/10.1016/j.lfs.2020.117637] [PMID: 32251633]
[172]
Xu, X.; Gu, D.; Xu, B.; Yang, C.; Wang, L. Circular RNA circ_0005835 promotes promoted neural stem cells proliferation and differentiate to neuron and inhibits inflammatory cytokines levels through miR-576-3p in Alzheimer’s disease. Environ. Sci. Pollut. Res. Int., 2022, 29(24), 35934-35943.
[http://dx.doi.org/10.1007/s11356-021-17478-3] [PMID: 35060046]
[173]
Pan, W.; Hu, Y.; Wang, L.; Li, J. Circ_0003611 acts as a miR-885-5p sponge to aggravate the amyloid-β-induced neuronal injury in Alzheimer’s disease. Metab. Brain Dis., 2022, 37(4), 961-971.
[http://dx.doi.org/10.1007/s11011-022-00912-x] [PMID: 35076819]
[174]
Meng, S.; Wang, B.; Li, W. CircAXL Knockdown Alleviates Aβ1-42-Induced Neurotoxicity in Alzheimer’s Disease via Repressing PDE4A by Releasing miR-1306-5p. Neurochem. Res., 2022, 47(6), 1707-1720.
[http://dx.doi.org/10.1007/s11064-022-03563-7] [PMID: 35229272]
[175]
Lu, H.; Hu, J.; Li, J.; Lu, W.; Deng, X.; Wang, X. miR-328-3p overexpression attenuates the malignant proliferation and invasion of liver cancer via targeting Endoplasmic Reticulum Metallo Protease 1 to inhibit AKT phosphorylation. Ann. Transl. Med., 2020, 8(12), 754.
[http://dx.doi.org/10.21037/atm-20-3749] [PMID: 32647679]
[176]
Winkle, M.; El-Daly, S.M.; Fabbri, M.; Calin, G.A. Noncoding RNA therapeutics — challenges and potential solutions. Nat. Rev. Drug Discov., 2021, 20(8), 629-651.
[http://dx.doi.org/10.1038/s41573-021-00219-z] [PMID: 34145432]
[177]
Ke, S.; Yang, Z.; Yang, F.; Wang, X.; Tan, J.; Liao, B. Long Noncoding RNA NEAT1 Aggravates Aβ-Induced Neuronal Damage by Targeting miR-107 in Alzheimer’s Disease. Yonsei Med. J., 2019, 60(7), 640-650.
[http://dx.doi.org/10.3349/ymj.2019.60.7.640] [PMID: 31250578]
[178]
Chen, D.D.; Hui, L.L.; Zhang, X.C.; Chang, Q. NEAT1 contributes to ox-LDL-induced inflammation and oxidative stress in macrophages through inhibiting miR-128. J. Cell. Biochem., 2019, 120(2), 2493-2501.
[http://dx.doi.org/10.1002/jcb.27541] [PMID: 30203508]
[179]
Li, L.; Xu, Y.; Zhao, M.; Gao, Z. Neuro-protective roles of long non-coding RNA MALAT1 in Alzheimer’s disease with the involvement of the microRNA-30b/CNR1 network and the following PI3K/AKT activation. Exp. Mol. Pathol., 2020, 117, 104545.
[http://dx.doi.org/10.1016/j.yexmp.2020.104545] [PMID: 32976819]
[180]
Dong, L-X.; Zhang, Y-Y.; Bao, H-L.; Liu, Y.; Zhang, G-W.; An, F-M. LncRNA NEAT1 promotes Alzheimer’s disease by down regulating micro-27a-3p. Am. J. Transl. Res., 2021, 13(8), 8885-8896.
[PMID: 34540002]
[181]
Zhou, B.; Li, L.; Qiu, X.; Wu, J.; Xu, L.; Shao, W. Long non-coding RNA ANRIL knockdown suppresses apoptosis and pro-inflammatory cytokines while enhancing neurite outgrowth via binding microRNA-125a in a cellular model of Alzheimer’s disease. Mol. Med. Rep., 2020, 22(2), 1489-1497.
[http://dx.doi.org/10.3892/mmr.2020.11203] [PMID: 32626959]
[182]
Zhang, J.; Wang, R. Deregulated lncRNA MAGI2-AS3 in Alzheimer’s disease attenuates amyloid-β induced neurotoxicity and neuroinflammation by sponging miR-374b-5p. Exp. Gerontol., 2021, 144, 111180.
[http://dx.doi.org/10.1016/j.exger.2020.111180] [PMID: 33279663]
[183]
Modarresi, F.; Faghihi, M.A.; Patel, N.S.; Sahagan, B.G.; Wahlestedt, C.; Lopez-Toledano, M.A. Knockdown of BACE1-AS nonprotein-coding transcript modulates beta-amyloid-related hippocampal neurogenesis. Int. J. Alzheimers Dis., 2011, 2011, 1-11.
[http://dx.doi.org/10.4061/2011/929042] [PMID: 21785702]
[184]
Mori, Y.; Tsuji, M.; Oguchi, T.; Kasuga, K.; Kimura, A.; Futamura, A.; Sugimoto, A.; Kasai, H.; Kuroda, T.; Yano, S.; Hieda, S.; Kiuchi, Y.; Ikeuchi, T.; Ono, K. Serum BDNF as a potential biomarker of alzheimer’s disease: verification through assessment of serum, cerebrospinal fluid, and medial temporal lobe atrophy. Front. Neurol., 2021, 12, 653267.
[http://dx.doi.org/10.3389/fneur.2021.653267] [PMID: 33967943]
[185]
Massone, S.; Ciarlo, E.; Vella, S.; Nizzari, M.; Florio, T.; Russo, C.; Cancedda, R.; Pagano, A. NDM29, a RNA polymerase III-dependent non coding RNA, promotes amyloidogenic processing of APP and amyloid β secretion. Biochim. Biophys. Acta Mol. Cell Res., 2012, 1823(7), 1170-1177.
[http://dx.doi.org/10.1016/j.bbamcr.2012.05.001] [PMID: 22580042]
[186]
Lukiw, W.J. microRNA-146a signaling in alzheimer’s disease (AD) and prion disease (PrD). Front. Neurol., 2020, 11, 462.
[http://dx.doi.org/10.3389/fneur.2020.00462] [PMID: 32670176]
[187]
Tan, L.; Yu, J.T.; Liu, Q.Y.; Tan, M.S.; Zhang, W.; Hu, N.; Wang, Y.L.; Sun, L.; Jiang, T.; Tan, L. Circulating miR-125b as a biomarker of Alzheimer’s disease. J. Neurol. Sci., 2014, 336(1-2), 52-56.
[http://dx.doi.org/10.1016/j.jns.2013.10.002] [PMID: 24139697]
[188]
Madadi, S.; Saidijam, M.; Yavari, B.; Soleimani, M. Downregulation of serum miR-106b: a potential biomarker for Alzheimer disease. Arch. Physiol. Biochem., 2022, 128(4), 875-879.
[http://dx.doi.org/10.1080/13813455.2020.1734842] [PMID: 32141790]
[189]
Cao, J.; Huang, M.; Guo, L.; Zhu, L.; Hou, J.; Zhang, L.; Pero, A.; Ng, S.; El Gaamouch, F.; Elder, G.; Sano, M.; Goate, A.; Tcw, J.; Haroutunian, V.; Zhang, B.; Cai, D. MicroRNA-195 rescues ApoE4-induced cognitive deficits and lysosomal defects in Alzheimer’s disease pathogenesis. Mol. Psychiatry, 2021, 26(9), 4687-4701.
[http://dx.doi.org/10.1038/s41380-020-0824-3] [PMID: 32632205]
[190]
Siedlecki-Wullich, D.; Miñano-Molina, A. J.; Rodríguez-Álvarez, J. microRNAs as early biomarkers of Alzheimer’s disease: A synaptic perspective. Cells., 2021, 10(1), 133.
[http://dx.doi.org/10.3390/cells10010113] [PMID: 33435363]
[191]
Chen, F.; Chen, H.; Jia, Y.; Lu, H.; Tan, Q.; Zhou, X. MiR-149-5p inhibition reduces alzheimer’s disease β-amyloid generation in 293/APPsw cells by upregulating H4K16ac via KAT8. Exp. Ther. Med., 2020, 20(5), 1-1.
[PMID: 32934666]
[192]
Gong, G.; An, F.; Wang, Y.; Bian, M.; Yu, L.J.; Wei, C. miR-15b represses BACE1 expression in sporadic Alzheimer’s disease. Oncotarget, 2017, 8(53), 91551-91557.
[http://dx.doi.org/10.18632/oncotarget.21177] [PMID: 29207665]
[193]
Nagaraj, S.; Want, A.; Laskowska-Kaszub, K.; Fesiuk, A.; Vaz, S.; Logarinho, E.; Wojda, U. Candidate Alzheimer’s disease biomarker miR-483-5p lowers tau phosphorylation by direct ERK1/2 repression. Int. J. Mol. Sci., 2021, 22(7), 3653.
[http://dx.doi.org/10.3390/ijms22073653] [PMID: 33915734]
[194]
Nagaraj, S.; Laskowska-Kaszub, K.; Dębski, K.J.; Wojsiat, J.; Dąbrowski, M.; Gabryelewicz, T.; Kuźnicki, J.; Wojda, U. Profile of 6 microRNA in blood plasma distinguish early stage Alzheimer’s disease patients from non-demented subjects. Oncotarget, 2017, 8(10), 16122-16143.
[http://dx.doi.org/10.18632/oncotarget.15109] [PMID: 28179587]
[195]
Derkow, K.; Rössling, R.; Schipke, C.; Krüger, C.; Bauer, J.; Fähling, M.; Stroux, A.; Schott, E.; Ruprecht, K.; Peters, O.; Lehnardt, S. Distinct expression of the neurotoxic microRNA family let-7 in the cerebrospinal fluid of patients with Alzheimer’s disease. PLoS One, 2018, 13(7), e0200602.
[http://dx.doi.org/10.1371/journal.pone.0200602] [PMID: 30011310]
[196]
Müller, M.; Jäkel, L.; Bruinsma, I.B.; Claassen, J.A.; Kuiperij, H.B.; Verbeek, M.M. MicroRNA-29a is a candidate biomarker for alzheimer’s disease in cell-free cerebrospinal fluid. Mol. Neurobiol., 2016, 53(5), 2894-2899.
[http://dx.doi.org/10.1007/s12035-015-9156-8] [PMID: 25895659]
[197]
Wiedrick, J.T.; Phillips, J.I.; Lusardi, T.A.; McFarland, T.J.; Lind, B.; Sandau, U.S.; Harrington, C.A.; Lapidus, J.A.; Galasko, D.R.; Quinn, J.F.; Saugstad, J.A. Validation of MicroRNA biomarkers for alzheimer’s disease in human cerebrospinal fluid. J. Alzheimers Dis., 2019, 67(3), 875-891.
[http://dx.doi.org/10.3233/JAD-180539] [PMID: 30689565]
[198]
Denk, J.; Boelmans, K.; Siegismund, C.; Lassner, D.; Arlt, S.; Jahn, H. MicroRNA profiling of CSF reveals potential biomarkers to detect alzheimer’s disease. PLoS One, 2015, 10(5), e0126423.
[http://dx.doi.org/10.1371/journal.pone.0126423] [PMID: 25992776]
[199]
Cosín-Tomás, M.; Antonell, A.; Lladó, A.; Alcolea, D.; Fortea, J.; Ezquerra, M.; Lleó, A.; Martí, M.J.; Pallàs, M.; Sanchez-Valle, R.; Molinuevo, J.L.; Sanfeliu, C.; Kaliman, P. Plasma miR-34a-5p and miR-545-3p as early biomarkers of alzheimer’s disease: potential and limitations. Mol. Neurobiol., 2017, 54(7), 5550-5562.
[http://dx.doi.org/10.1007/s12035-016-0088-8] [PMID: 27631879]
[200]
Bekris, L.M.; Lutz, F.; Montine, T.J.; Yu, C.E.; Tsuang, D.; Peskind, E.R.; Leverenz, J.B. MicroRNA in Alzheimer’s disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers, 2013, 18(5), 455-466.
[http://dx.doi.org/10.3109/1354750X.2013.814073] [PMID: 23822153]
[201]
Akhter, R.; Shao, Y.; Shaw, M.; Formica, S.; Khrestian, M.; Leverenz, J.B.; Bekris, L.M. Regulation of ADAM10 by miR-140-5p and potential relevance for Alzheimer’s disease. Neurobiol. Aging, 2018, 63, 110-119.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.11.007] [PMID: 29253717]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy