Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Recent Advances in Fluorescent Probes for G-quadruplex DNAs / RNAs

Author(s): Hongyan Yang, Ping Xu, Fei Pan, Jinhong Gao, Libo Yuan* and Kui Lu*

Volume 24, Issue 21, 2024

Published on: 24 May, 2024

Page: [1940 - 1952] Pages: 13

DOI: 10.2174/0113895575301818240510151309

Price: $65

Abstract

Guanine-quadruplexes (G4s) are high-level structures formed by the folding of guaninerich nucleic acid sequences. G4s play important roles in various physiological processes, such as gene transcription, replication, recombination, and maintenance of chromosomal stability. Specific and sensitive monitoring of G4s lays the foundation for further understanding the structure, content, distribution, and function of G4s in organisms, which is important for the treatment and diagnosis of diseases. Moreover, visualization of G4s will provide new ideas for developing antitumor strategies targeting G4s. The design and development of G4-specific ligands are challenging due to the subtle differences in the structure of G4s. This review focuses on the progress of research on G4 fluorescent probes and their binding mechanisms to G4s. Finally, the challenges and future prospects for better detection and targeting of G4s in different organisms are discussed. This paper provides ideas for the development of novel G4 fluorescent probes.

[1]
Heddi, B.; Martín-Pintado, N.; Serimbetov, Z.; Kari, T.M.A.; Phan, A.T. G-quadruplexes with (4 n - 1) guanines in the G-tetrad core: formation of a G-triad·water complex and implication for small-molecule binding. Nucleic Acids Res., 2016, 44(2), 910-916.
[http://dx.doi.org/10.1093/nar/gkv1357] [PMID: 26673723]
[2]
Bhattacharyya, D.; Mirihana Arachchilage, G.; Basu, S. Metal cations in G-quadruplex folding and stability. Front Chem., 2016, 4, 38.
[http://dx.doi.org/10.3389/fchem.2016.00038] [PMID: 27668212]
[3]
Verma, A.; Yadav, V.K.; Basundra, R.; Kumar, A.; Chowdhury, S. Evidence of genome-wide G4 DNA-mediated gene expression in human cancer cells. Nucleic Acids Res., 2009, 37(13), 4194-4204.
[http://dx.doi.org/10.1093/nar/gkn1076] [PMID: 19211664]
[4]
Wang, W.; Hu, S.; Gu, Y.; Yan, Y.; Stovall, D.B.; Li, D.; Sui, G. Human MYC G-quadruplex: From discovery to a cancer therapeutic target. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2), 188410.
[http://dx.doi.org/10.1016/j.bbcan.2020.188410] [PMID: 32827579]
[5]
Huppert, J.L.; Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res., 2005, 33(9), 2908-2916.
[http://dx.doi.org/10.1093/nar/gki609] [PMID: 15914667]
[6]
Ma, Y.; Iida, K.; Nagasawa, K. Topologies of G-quadruplex: Biological functions and regulation by ligands. Biochem. Biophys. Res. Commun., 2020, 531(1), 3-17.
[http://dx.doi.org/10.1016/j.bbrc.2019.12.103] [PMID: 31948752]
[7]
Hazel, P.; Huppert, J.; Balasubramanian, S.; Neidle, S. Loop-length-dependent folding of G-quadruplexes. J. Am. Chem. Soc., 2004, 126(50), 16405-16415.
[http://dx.doi.org/10.1021/ja045154j] [PMID: 15600342]
[8]
Varizhuk, A.; Ischenko, D.; Tsvetkov, V.; Novikov, R.; Kulemin, N.; Kaluzhny, D.; Vlasenok, M.; Naumov, V.; Smirnov, I.; Pozmogova, G. The expanding repertoire of G4 DNA structures. Biochimie, 2017, 135, 54-62.
[http://dx.doi.org/10.1016/j.biochi.2017.01.003] [PMID: 28109719]
[9]
Chambers, V.S.; Marsico, G.; Boutell, J.M.; Di Antonio, M.; Smith, G.P.; Balasubramanian, S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol., 2015, 33(8), 877-881.
[http://dx.doi.org/10.1038/nbt.3295] [PMID: 26192317]
[10]
Hänsel-Hertsch, R.; Beraldi, D.; Lensing, S.V.; Marsico, G.; Zyner, K.; Parry, A.; Di Antonio, M.; Pike, J.; Kimura, H.; Narita, M.; Tannahill, D.; Balasubramanian, S. G-quadruplex structures mark human regulatory chromatin. Nat. Genet., 2016, 48(10), 1267-1272.
[http://dx.doi.org/10.1038/ng.3662] [PMID: 27618450]
[11]
Kwok, C.K.; Marsico, G.; Sahakyan, A.B.; Chambers, V.S.; Balasubramanian, S. rG4-seq reveals widespread formation of G-quadruplex structures in the human transcriptome. Nat. Methods, 2016, 13(10), 841-844.
[http://dx.doi.org/10.1038/nmeth.3965] [PMID: 27571552]
[12]
Guo, J.U.; Bartel, D.P. RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria. Science, 2016, 353(6306), aaf5371.
[http://dx.doi.org/10.1126/science.aaf5371] [PMID: 27708011]
[13]
Kastl, M.; Hersperger, F.; Kierdorf, K.; Paeschke, K. Detection of G-Quadruplex DNA structures in macrophages. Methods Mol. Biol., 2024, 2713, 453-462.
[http://dx.doi.org/10.1007/978-1-0716-3437-0_30] [PMID: 37639141]
[14]
Kosiol, N.; Juranek, S.; Brossart, P.; Heine, A.; Paeschke, K. G-quadruplexes: A promising target for cancer therapy. Mol. Cancer, 2021, 20(1), 40.
[http://dx.doi.org/10.1186/s12943-021-01328-4] [PMID: 33632214]
[15]
Ruggiero, E.; Richter, S.N. G-quadruplexes and G-quadruplex ligands: Targets and tools in antiviral therapy. Nucleic Acids Res., 2018, 46(7), 3270-3283.
[http://dx.doi.org/10.1093/nar/gky187] [PMID: 29554280]
[16]
Tan, J.H.; Gu, L.Q.; Wu, J.Y. Design of selective G-quadruplex ligands as potential anticancer agents. Mini Rev. Med. Chem., 2008, 8(11), 1163-1178.
[http://dx.doi.org/10.2174/138955708785909880] [PMID: 18855731]
[17]
Abiri, A.; Lavigne, M.; Rezaei, M.; Nikzad, S.; Zare, P.; Mergny, J.L.; Rahimi, H.R. Unlocking G-quadruplexes as antiviral targets. Pharmacol. Rev., 2021, 73(3), 897-923.
[http://dx.doi.org/10.1124/pharmrev.120.000230] [PMID: 34045305]
[18]
Liu, T.; Wu, Y.; Qin, L.; Luo, Q.; Li, W.; Cheng, Y.; Tu, Y.; You, H. Nonselective intercalation of G-quadruplex-targeting ligands into double-stranded dna quantified by single-molecule stretching. J. Phys. Chem. B, 2023, 127(26), 5859-5868.
[http://dx.doi.org/10.1021/acs.jpcb.3c03031] [PMID: 37357414]
[19]
Guittat, L.; Alberti, P.; Rosu, F.; Van Miert, S.; Thetiot, E.; Pieters, L.; Gabelica, V.; De Pauw, E.; Ottaviani, A.; Riou, J.F.; Mergny, J.L. Interactions of cryptolepine and neocryptolepine with unusual DNA structures. Biochimie, 2003, 85(5), 535-547.
[http://dx.doi.org/10.1016/S0300-9084(03)00035-X] [PMID: 12763313]
[20]
Justin Thomas, K.R.; Lin, J.T.; Tao, Y.T.; Ko, C.W. Light-emitting carbazole derivatives: Potential electroluminescent materials. J. Am. Chem. Soc., 2001, 123(38), 9404-9411.
[http://dx.doi.org/10.1021/ja010819s] [PMID: 11562223]
[21]
Deng, J.; Zhong, N.; Zhang, X.; Li, C.; Xu, C.; Zhao, J. A carbazole functionalized semiconducting compound as a heavy atom free photosensitizer for phototherapy against lung cancer. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(47), 10764-10769.
[http://dx.doi.org/10.1039/D0TB02314K] [PMID: 33179712]
[22]
Chang, C.C.; Kuo, I.C.; Lin, J.J.; Lu, Y.C.; Chen, C.T.; Back, H.T.; Lou, P.J.; Chang, T.C. A novel carbazole derivative, BMVC: A potential antitumor agent and fluorescence marker of cancer cells. Chem. Biodivers., 2004, 1(9), 1377-1384.
[http://dx.doi.org/10.1002/cbdv.200490100] [PMID: 17191915]
[23]
Chang, C.C.; Wu, J.Y.; Chien, C.W.; Wu, W.S.; Liu, H.; Kang, C.C.; Yu, L.J.; Chang, T.C. A fluorescent carbazole derivative: High sensitivity for quadruplex DNA. Anal. Chem., 2003, 75(22), 6177-6183.
[http://dx.doi.org/10.1021/ac034789i] [PMID: 14615998]
[24]
Chou, Y.S.; Chang, C.C.; Chang, T.C.; Yang, T.L.; Young, T.H.; Lou, P.J. Photo-induced antitumor effect of 3,6-bis(1-methyl-4-vinylpyridinium) carbazole diiodide. BioMed Res. Int., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/930281] [PMID: 23509809]
[25]
Yang, T.L.; Lin, L.; Lou, P.J.; Chang, T.C.; Young, T.H. Detection of cell carcinogenic transformation by a quadruplex DNA binding fluorescent probe. PLoS One, 2014, 9(1), e86143.
[http://dx.doi.org/10.1371/journal.pone.0086143] [PMID: 24489694]
[26]
Liu, W.; Lin, C.; Wu, G.; Dai, J.; Chang, T.C.; Yang, D. Structures of 1:1 and 2:1 complexes of BMVC and MYC promoter G-quadruplex reveal a mechanism of ligand conformation adjustment for G4-recognition. Nucleic Acids Res., 2019, 47(22), gkz1015.
[http://dx.doi.org/10.1093/nar/gkz1015] [PMID: 31740959]
[27]
Wu, G.; Tillo, D.; Ray, S.; Chang, T.C.; Schneekloth, J.S., Jr; Vinson, C.; Yang, D. Custom G4 microarrays reveal selective G-quadruplex recognition of small molecule BMVC: A large-scale assessment of ligand binding selectivity. Molecules, 2020, 25(15), 3465.
[http://dx.doi.org/10.3390/molecules25153465] [PMID: 32751510]
[28]
Lin, I.T.; Tsai, Y.L.; Kang, C.C.; Huang, W.C.; Wang, C.L.; Lin, M.Y.; Lou, P.J.; Shih, J.Y.; Wang, H.C.; Wu, H.D.; Tsai, T.H.; Jan, I.S.; Chang, T.C. BMVC test, an improved fluorescence assay for detection of malignant pleural effusions. Cancer Med., 2014, 3(1), 162-173.
[http://dx.doi.org/10.1002/cam4.179] [PMID: 24408009]
[29]
Li, Y.C.; Wang, J.H.; Tsai, L.K.; Chen, Y.A.; Chang, T.C.; Lou, P.J.; Young, T.H. 3,6-Bis(1-methyl-4-vinylpyridinium)-carbazole diiodide as a marker for tracking living neural stem/precursor cells. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(10), 2067-2074.
[http://dx.doi.org/10.1039/C4TB01903B] [PMID: 32262374]
[30]
Hu, M.H.; Guo, R.J.; Chen, S.B.; Huang, Z.S.; Tan, J.H. Development of an engineered carbazole/thiazole orange conjugating probe for G-quadruplexes. Dyes Pigments, 2017, 137, 191-199.
[http://dx.doi.org/10.1016/j.dyepig.2016.10.022]
[31]
Wang, Z.F.; Chang, T.C. Molecular engineering of G-quadruplex ligands based on solvent effect of polyethylene glycol. Nucleic Acids Res., 2012, 40(17), 8711-8720.
[http://dx.doi.org/10.1093/nar/gks578] [PMID: 22735707]
[32]
Tseng, T.Y.; Chien, C.H.; Chu, J.F.; Huang, W.C.; Lin, M.Y.; Chang, C.C.; Chang, T.C. Fluorescent probe for visualizing guanine-quadruplex DNA by fluorescence lifetime imaging microscopy. J. Biomed. Opt., 2013, 18(10), 101309-101309.
[http://dx.doi.org/10.1117/1.JBO.18.10.101309] [PMID: 23839279]
[33]
Tseng, T.Y.; Chen, W.W.; Chu, I.T.; Wang, C.L.; Chang, C.C.; Lin, M.C.; Lou, P.J.; Chang, T.C. The G-quadruplex fluorescent probe 3,6-bis(1-methyl-2-vinyl-pyridinium) carbazole diiodide as a biosensor for human cancers. Sci. Rep., 2018, 8(1), 16082.
[http://dx.doi.org/10.1038/s41598-018-34378-8] [PMID: 30382130]
[34]
Tseng, T.Y.; Chu, I.T.; Lin, S.J.; Li, J.; Chang, T.C. Binding of small molecules to G-quadruplex DNA in cells revealed by fluorescence lifetime imaging microscopy of o-BMVC foci. Molecules, 2018, 24(1), 35.
[http://dx.doi.org/10.3390/molecules24010035] [PMID: 30583464]
[35]
Tseng, T.Y.; Liu, S.Y.; Wang, C.L.; Chang, T.C. Antisense oligonucleotides used to identify telomeric G-quadruplexes in metaphase chromosomes and fixed cells by fluorescence lifetime imaging microscopy of o-BMVC foci. Molecules, 2020, 25(18), 4083.
[http://dx.doi.org/10.3390/molecules25184083] [PMID: 32906697]
[36]
Lin, J.H.; Chen, X.; Hu, M.H. Detection of G-quadruplex structures with a minimalistic crescent-shaped carbazole-indolium ligand. Sens. Actuators B Chem., 2022, 358, 131498.
[http://dx.doi.org/10.1016/j.snb.2022.131498]
[37]
Głuszyńska, A.; Juskowiak, B.; Rubiś, B. Binding study of the fluorescent carbazole derivative with human telomeric G-quadruplexes. Molecules, 2018, 23(12), 3154.
[http://dx.doi.org/10.3390/molecules23123154] [PMID: 30513661]
[38]
Gao, F.; Cao, S.; Sun, W.; Long, S.; Fan, J.; Peng, X. Development of a two-photon carbazole derivative probe for fluorescent visualization of G-quadruplex DNA in cells. Dyes Pigments, 2019, 171, 107749.
[http://dx.doi.org/10.1016/j.dyepig.2019.107749]
[39]
Yu, Q.Q.; Gao, J.J.; Lang, X.X.; Li, H.Y.; Wang, M.Q. Microenvironment‐sensitive fluorescent ligand binds ascaris telomere antiparallel G‐Quadruplex DNA with blue‐shift and enhanced emission. ChemBioChem, 2021, 22(6), 1042-1048.
[http://dx.doi.org/10.1002/cbic.202000671] [PMID: 33140570]
[40]
Mendieta-Wejebe, J.E.; Rosales-Hernández, M.C.; Padilla-Martínez, I.I.; García-Báez, E.V.; Cruz, A. Design, synthesis and biological activities of (Thio)urea benzothiazole derivatives. Int. J. Mol. Sci., 2023, 24(11), 9488.
[http://dx.doi.org/10.3390/ijms24119488] [PMID: 37298442]
[41]
Lee, L.G.; Chen, C.H.; Chiu, L.A. Thiazole orange: A new dye for reticulocyte analysis. Cytometry, 1986, 7(6), 508-517.
[http://dx.doi.org/10.1002/cyto.990070603] [PMID: 2430763]
[42]
Rye, H.S.; Quesada, M.A.; Peck, K.; Mathies, R.A. GIazer, A.N. High-sensitivity two-color detection of double-stranded DNA with a confocal fluorescence gel scanner using ethidium homodimer and thiazole orange. Nucleic Acids Res., 1991, 19(2), 327-333.
[http://dx.doi.org/10.1093/nar/19.2.327] [PMID: 2014172]
[43]
Li, X.; Gan, L.; Ou, Q.; Zhang, X.; Cai, S.; Wu, D.; Chen, M.; Xia, Y.; Chen, J.; Yang, B. Enzyme-free and label-free fluorescence sensor for the detection of liver cancer related short gene. Biosens. Bioelectron., 2015, 66, 399-404.
[http://dx.doi.org/10.1016/j.bios.2014.11.049] [PMID: 25483916]
[44]
Mohanty, J.; Barooah, N.; Dhamodharan, V.; Harikrishna, S.; Pradeepkumar, P.I.; Bhasikuttan, A.C. Thioflavin T as an efficient inducer and selective fluorescent sensor for the human telomeric G-quadruplex DNA. J. Am. Chem. Soc., 2013, 135(1), 367-376.
[http://dx.doi.org/10.1021/ja309588h] [PMID: 23215453]
[45]
Xu, S.; Li, Q.; Xiang, J.; Yang, Q.; Sun, H.; Guan, A.; Wang, L.; Liu, Y.; Yu, L.; Shi, Y.; Chen, H.; Tang, Y. Directly lighting up RNA G-quadruplexes from test tubes to living human cells. Nucleic Acids Res., 2015, 43(20), gkv1040.
[http://dx.doi.org/10.1093/nar/gkv1040] [PMID: 26476445]
[46]
Lubitz, I.; Zikich, D.; Kotlyar, A. Specific high-affinity binding of thiazole orange to triplex and G-quadruplex DNA. Biochemistry, 2010, 49(17), 3567-3574.
[http://dx.doi.org/10.1021/bi1000849] [PMID: 20329708]
[47]
Li, L.L.; Xu, H.R.; Li, K.; Yang, Q.; Pan, S.L.; Yu, X.Q. Mitochondrial G-quadruplex targeting probe with near-infrared fluorescence emission. Sens. Actuators B Chem., 2019, 286, 575-582.
[http://dx.doi.org/10.1016/j.snb.2019.01.169]
[48]
Fei, X.; Gu, Y.; Li, C.; Yang, X. Study on synthesis and spectrum of novel styryl cyanine dyes with a carbazole bridged chain. J. Fluoresc., 2012, 22(3), 807-814.
[http://dx.doi.org/10.1007/s10895-011-1014-0] [PMID: 22108901]
[49]
Gu, Y.; Lin, D.; Tang, Y.; Fei, X.; Wang, C.; Zhang, B.; Zhou, J. A light-up probe targeting for Bcl-2 2345 G-quadruplex DNA with carbazole TO. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 191, 180-188.
[http://dx.doi.org/10.1016/j.saa.2017.10.012] [PMID: 29032342]
[50]
Yan, J.W.; Ye, W.J.; Chen, S.B.; Wu, W.B.; Hou, J.Q.; Ou, T.M.; Tan, J.H.; Li, D.; Gu, L.Q.; Huang, Z.S. Development of a universal colorimetric indicator for G-quadruplex structures by the fusion of thiazole orange and isaindigotone skeleton. Anal. Chem., 2012, 84(15), 6288-6292.
[http://dx.doi.org/10.1021/ac300207r] [PMID: 22839657]
[51]
Long, W.; Zheng, B.X.; Li, Y.; Huang, X.H.; Lin, D.M.; Chen, C.C.; Hou, J.Q.; Ou, T.M.; Wong, W.L.; Zhang, K.; Lu, Y.J. Rational design of small-molecules to recognize G-quadruplexes of c-MYC promoter and telomere and the evaluation of their in vivo antitumor activity against breast cancer. Nucleic Acids Res., 2022, 50(4), 1829-1848.
[http://dx.doi.org/10.1093/nar/gkac090] [PMID: 35166828]
[52]
Siddiqui-Jain, A.; Grand, C.L.; Bearss, D.J.; Hurley, L.H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c- MYC transcription. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11593-11598.
[http://dx.doi.org/10.1073/pnas.182256799] [PMID: 12195017]
[53]
Stsiapura, V.I.; Maskevich, A.A.; Kuzmitsky, V.A.; Uversky, V.N.; Kuznetsova, I.M.; Turoverov, K.K. Thioflavin T as a molecular rotor: Fluorescent properties of thioflavin T in solvents with different viscosity. J. Phys. Chem. B, 2008, 112(49), 15893-15902.
[http://dx.doi.org/10.1021/jp805822c] [PMID: 19367903]
[54]
Biancardi, A.; Biver, T.; Burgalassi, A.; Mattonai, M.; Secco, F.; Venturini, M. Mechanistic aspects of thioflavin-T self-aggregation and DNA binding: Evidence for dimer attack on DNA grooves. Phys. Chem. Chem. Phys., 2014, 16(37), 20061-20072.
[http://dx.doi.org/10.1039/C4CP02838D] [PMID: 25130260]
[55]
Sugimoto, S.; Arita-Morioka, K.; Mizunoe, Y.; Yamanaka, K.; Ogura, T. Thioflavin T as a fluorescence probe for monitoring RNA metabolism at molecular and cellular levels. Nucleic Acids Res., 2015, 43(14), e92-e92.
[http://dx.doi.org/10.1093/nar/gkv338] [PMID: 25883145]
[56]
Xu, S.; Li, Q.; Xiang, J.; Yang, Q.; Sun, H.; Guan, A.; Wang, L.; Liu, Y.; Yu, L.; Shi, Y.; Chen, H.; Tang, Y. Thioflavin T as an efficient fluorescence sensor for selective recognition of RNA G-quadruplexes. Sci. Rep., 2016, 6(1), 24793.
[http://dx.doi.org/10.1038/srep24793] [PMID: 27098781]
[57]
Guan, A.; Zhang, X.F.; Sun, X.; Li, Q.; Xiang, J.F.; Wang, L.X.; Lan, L.; Yang, F.M.; Xu, S.J.; Guo, X.M.; Tang, Y.L. Ethyl-substitutive Thioflavin T as a highly-specific fluorescence probe for detecting G-quadruplex structure. Sci. Rep., 2018, 8(1), 2666.
[http://dx.doi.org/10.1038/s41598-018-20960-7] [PMID: 29422637]
[58]
Zheng, B.X.; She, M.T.; Long, W.; Xu, Y.Y.; Zhang, Y.H.; Huang, X.H.; Liu, W.; Hou, J.Q.; Wong, W.L.; Lu, Y.J. A small-sized benzothiazole–indolium fluorescent probe: The study of interaction specificity targeting c-MYC promoter G-quadruplex structures and live cell imaging. Chem. Commun., 2020, 56(95), 15016-15019.
[http://dx.doi.org/10.1039/D0CC06525K] [PMID: 33185205]
[59]
Sakamoto, T.; Yu, Z.; Otani, Y. Dual-color fluorescence switch-on probe for imaging g-quadruplex and double-stranded DNA in living cells. Anal. Chem., 2022, 94(10), 4269-4276.
[http://dx.doi.org/10.1021/acs.analchem.1c04804] [PMID: 35234461]
[60]
Li, T.; Wang, E.; Dong, S. Parallel G-quadruplex-specific fluorescent probe for monitoring DNA structural changes and label-free detection of potassium ion. Anal. Chem., 2010, 82(18), 7576-7580.
[http://dx.doi.org/10.1021/ac1019446] [PMID: 20726508]
[61]
Martino, L.; Pagano, B.; Fotticchia, I.; Neidle, S.; Giancola, C. Shedding light on the interaction between TMPyP4 and human telomeric quadruplexes. J. Phys. Chem. B, 2009, 113(44), 14779-14786.
[http://dx.doi.org/10.1021/jp9066394] [PMID: 19824637]
[62]
Han, F.X.; Wheelhouse, R.T.; Hurley, L.H. Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for the differential effects on telomerase inhibition. J. Am. Chem. Soc., 1999, 121(15), 3561-3570.
[http://dx.doi.org/10.1021/ja984153m]
[63]
Grand, C.L.; Han, H.; Muñoz, R.M.; Weitman, S.; Von Hoff, D.D.; Hurley, L.H.; Bearss, D.J. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol. Cancer Ther., 2002, 1(8), 565-573.
[PMID: 12479216]
[64]
Artusi, S.; Ruggiero, E.; Nadai, M.; Tosoni, B.; Perrone, R.; Ferino, A.; Zanin, I.; Xodo, L.; Flamand, L.; Richter, S.N. Antiviral activity of the G-quadruplex ligand TMPyP4 against herpes simplex virus-1. Viruses, 2021, 13(2), 196.
[http://dx.doi.org/10.3390/v13020196] [PMID: 33525505]
[65]
Haldar, S.; Zhang, Y.; Xia, Y.; Islam, B.; Liu, S.; Gervasio, F.L.; Mulholland, A.J.; Waller, Z.A.E.; Wei, D.; Haider, S. Mechanistic insights into the ligand-induced unfolding of an RNA G-quadruplex. J. Am. Chem. Soc., 2022, 144(2), 935-950.
[http://dx.doi.org/10.1021/jacs.1c11248] [PMID: 34989224]
[66]
Zhu, L.N.; Zhao, S.J.; Wu, B.; Li, X.Z.; Kong, D.M. A new cationic porphyrin derivative (TMPipEOPP) with large side arm substituents: A highly selective G-quadruplex optical probe. PLoS One, 2012, 7(5), e35586.
[http://dx.doi.org/10.1371/journal.pone.0035586] [PMID: 22629300]
[67]
Zhu, L.N.; Wu, B.; Kong, D.M. Specific recognition and stabilization of monomeric and multimeric G-quadruplexes by cationic porphyrin TMPipEOPP under molecular crowding conditions. Nucleic Acids Res., 2013, 41(7), 4324-4335.
[http://dx.doi.org/10.1093/nar/gkt103] [PMID: 23430152]
[68]
Zhu, L.N.; Shi, S.; Yang, L.; Zhang, M.; Liu, K.K.; Zhang, L.N. Water soluble cationic porphyrin TMPipEOPP-induced G-quadruplex and double-stranded DNA photocleavage and cell phototoxicity. RSC Advances, 2016, 6(16), 13080-13087.
[http://dx.doi.org/10.1039/C5RA24964C]
[69]
Huo, Y.F.; Zhu, L.N.; Liu, K.K.; Zhang, L.N.; Zhang, R.; Kong, D.M. Water-soluble cationic metalloporphyrins: Specific G-Quadruplex-stabilizing ability and reversible chirality of aggregates induced by AT-Rich DNA. Inorg. Chem., 2017, 56(11), 6330-6342.
[http://dx.doi.org/10.1021/acs.inorgchem.7b00426] [PMID: 28474900]
[70]
Zhang, R.; Cheng, M.; Zhang, L.M.; Zhu, L.N.; Kong, D.M. Asymmetric cationic porphyrin as a new G-quadruplex probe with Wash-Free Cancer-Targeted imaging ability under acidic microenvironments. ACS Appl. Mater. Interfaces, 2018, 10(16), 13350-13360.
[http://dx.doi.org/10.1021/acsami.8b01901] [PMID: 29619818]
[71]
Kovaleva, O.A.; Tsvetkov, V.B.; Shchyolkina, A.K.; Borisova, O.F.; Ol’shevskaya, V.A.; Makarenkov, A.V.; Semeikin, A.S.; Shtil, A.A.; Kaluzhny, D.N. The role of carboxymethyl substituents in the interaction of tetracationic porphyrins with DNA. Eur. Biophys. J., 2012, 41(9), 723-732.
[http://dx.doi.org/10.1007/s00249-012-0848-y] [PMID: 22903195]
[72]
Kovaleva, O.A.; Tsvetkov, V.B.; Mamaeva, O.K.; Ol’shevskaya, V.A.; Makarenkov, A.V.; Dezhenkova, L.G.; Semeikin, A.S.; Borisova, O.F.; Shtil, A.A.; Shchyolkina, A.K.; Kaluzhny, D.N. Preferential DNA photocleavage potency of Zn(II) over Ni(II) derivatives of carboxymethyl tetracationic porphyrin: The role of the mode of binding to DNA. Eur. Biophys. J., 2014, 43(10-11), 545-554.
[http://dx.doi.org/10.1007/s00249-014-0984-7] [PMID: 25164439]
[73]
Beniaminov, A.D.; Novikov, R.A.; Mamaeva, O.K.; Mitkevich, V.A.; Smirnov, I.P.; Livshits, M.A.; Shchyolkina, A.K.; Kaluzhny, D.N. Light-induced oxidation of the telomeric G4 DNA in complex with Zn(II) tetracarboxymethyl porphyrin. Nucleic Acids Res., 2016, 44(21), gkw947.
[http://dx.doi.org/10.1093/nar/gkw947] [PMID: 27915287]
[74]
Xie, X.; Zuffo, M.; Teulade-Fichou, M.P.; Granzhan, A. Identification of optimal fluorescent probes for G-quadruplex nucleic acids through systematic exploration of mono- and distyryl dye libraries. Beilstein J. Org. Chem., 2019, 15(1), 1872-1889.
[http://dx.doi.org/10.3762/bjoc.15.183] [PMID: 31467609]
[75]
Pandith, A.; Nagarajachari, U.; Siddappa, R.K.G.; Lee, S.; Park, C.J.; Sannathammegowda, K.; Seo, Y.J. Loop-mediated fluorescent probes for selective discrimination of parallel and antiparallel G-Quadruplexes. Bioorg. Med. Chem., 2021, 35, 116077.
[http://dx.doi.org/10.1016/j.bmc.2021.116077] [PMID: 33631656]
[76]
Hong, Y.; Xiong, H.; Lam, J.W.Y.; Häußler, M.; Liu, J.; Yu, Y.; Zhong, Y.; Sung, H.H.Y.; Williams, I.D.; Wong, K.S.; Tang, B.Z. Fluorescent bioprobes: Structural matching in the docking processes of aggregation-induced emission fluorogens on DNA surfaces. Chemistry, 2010, 16(4), 1232-1245.
[http://dx.doi.org/10.1002/chem.200900778] [PMID: 19957315]
[77]
Kotras, C.; Fossépré, M.; Roger, M.; Gervais, V.; Richeter, S.; Gerbier, P.; Ulrich, S.; Surin, M.; Clément, S. A cationic tetraphenylethene as a light-up supramolecular probe for DNA G-quadruplexes. Front Chem., 2019, 7, 493.
[http://dx.doi.org/10.3389/fchem.2019.00493] [PMID: 31355185]
[78]
Yu, K.K.; Li, K.; He, H.Z.; Liu, Y.H.; Bao, J.K.; Yu, X.Q. A label-free fluorescent probe for accurate mitochondrial G-quadruplex structures tracking via assembly hindered rotation induced emission. Sens. Actuators B Chem., 2020, 321, 128479.
[http://dx.doi.org/10.1016/j.snb.2020.128479]
[79]
Wang, X.; Yu, B.Y.; Lin, J.H.; Yan, Y.; Hu, M.H. Development of a near-infrared fluorescent ligand that visualizes and stabilizes G-quadruplexes by decorating the triphenylamine scaffold. Sens. Actuators B Chem., 2021, 330, 129391.
[http://dx.doi.org/10.1016/j.snb.2020.129391]
[80]
Kucharska, K.; Pilz, M.; Bielec, K.; Kalwarczyk, T.; Kuźma, P.; Hołyst, R. Two intercalation mechanisms of oxazole yellow dimer (Yoyo-1) into DNA. Molecules, 2021, 26(12), 3748.
[http://dx.doi.org/10.3390/molecules26123748] [PMID: 34205435]
[81]
Wu, T.Y.; Chen, X.C.; Tang, G.X.; Shao, W.; Li, Z.C.; Chen, S.B.; Huang, Z.S.; Tan, J.H. Development and characterization of benzoselenazole derivatives as potent and selective c-MYC transcription inhibitors. J. Med. Chem., 2023, 66(8), 5484-5499.
[http://dx.doi.org/10.1021/acs.jmedchem.2c01808] [PMID: 37036951]
[82]
Ma, Y.; Wakabayashi, Y.; Watatani, N.; Saito, R.; Hirokawa, T.; Tera, M.; Nagasawa, K. Vinylnaphthalene-bearing hexaoxazole as a fluorescence turn-on type G-quadruplex ligand. Org. Biomol. Chem., 2021, 19(37), 8035-8040.
[http://dx.doi.org/10.1039/D1OB01500A] [PMID: 34492672]
[83]
Wang, M.Q.; Liao, Y.F.; Zhang, S.H.; Yu, Q.Q.; Huang, J.Q. Synthesis, G-Quadruplex DNA binding and cytotoxic properties of naphthalimide substituted styryl dyes. Bioorg. Med. Chem., 2020, 28(5), 115325.
[http://dx.doi.org/10.1016/j.bmc.2020.115325] [PMID: 31982241]
[84]
Kang, Y.; Wei, C. A stilbene derivative as dual-channel fluorescent probe for mitochondrial G-quadruplex DNA in living cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2022, 278, 121316.
[http://dx.doi.org/10.1016/j.saa.2022.121316] [PMID: 35569198]
[85]
Wang, M.Q.; Gao, J.J.; Yu, Q.Q.; Liu, H.B. An amphiphilic BODIPY-based selective probe for parallel G4 DNA targeting via disaggregation-induced emission. New J. Chem., 2020, 44(32), 13557-13564.
[http://dx.doi.org/10.1039/D0NJ02887H]
[86]
Deiana, M.; Mosser, M.; Le Bahers, T.; Dumont, E.; Dudek, M.; Denis-Quanquin, S.; Sabouri, N.; Andraud, C.; Matczyszyn, K.; Monnereau, C.; Guy, L. Light-induced in situ chemical activation of a fluorescent probe for monitoring intracellular G-quadruplex structures. Nanoscale, 2021, 13(32), 13795-13808.
[http://dx.doi.org/10.1039/D1NR02855C] [PMID: 34477654]
[87]
You, D.; Liu, L.; Yang, Q.; Wu, X.; Li, S.; Li, A. A far-red aza-crown ether fluorescent probe for selective G-quadruplex DNA targeting. Dyes Pigments, 2020, 176, 108222.
[http://dx.doi.org/10.1016/j.dyepig.2020.108222]
[88]
Hu, M.H. Pyrazine-based G-quadruplex fluorescent probes: Transformation between aggregation-induced emission and disaggregation-induced emission via slight variations in structures. Sens. Actuators B Chem., 2021, 328, 128990.
[http://dx.doi.org/10.1016/j.snb.2020.128990]
[89]
Di Antonio, M.; Ponjavic, A.; Radzevičius, A.; Ranasinghe, R.T.; Catalano, M.; Zhang, X.; Shen, J.; Needham, L.M.; Lee, S.F.; Klenerman, D.; Balasubramanian, S. Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat. Chem., 2020, 12(9), 832-837.
[http://dx.doi.org/10.1038/s41557-020-0506-4] [PMID: 32690897]
[90]
Hu, M.H.; Zhou, J.; Luo, W.H.; Chen, S.B.; Huang, Z.S.; Wu, R.; Tan, J.H. Development of a smart fluorescent sensor that specifically recognizes the c-MYC G-quadruplex. Anal. Chem., 2019, 91(3), 2480-2487.
[http://dx.doi.org/10.1021/acs.analchem.8b05298] [PMID: 30618242]
[91]
Saha, P.; Kumar, Y.P.; Das, T.; Müller, D.; Bessi, I.; Schwalbe, H.; Dash, J. G-quadruplex-specific cell-permeable guanosine-anthracene conjugate inhibits telomere elongation and induces apoptosis by repressing the c-MYC gene. Bioconjug. Chem., 2019, 30(12), 3038-3045.
[http://dx.doi.org/10.1021/acs.bioconjchem.9b00655] [PMID: 31663728]
[92]
Zhai, Q.; Gao, C.; Ding, J.; Zhang, Y.; Islam, B.; Lan, W.; Hou, H.; Deng, H.; Li, J.; Hu, Z.; Mohamed, H.I.; Xu, S.; Cao, C.; Haider, S.M.; Wei, D. Selective recognition of c-MYC Pu22 G-quadruplex by a fluorescent probe. Nucleic Acids Res., 2019, 47(5), 2190-2204.
[http://dx.doi.org/10.1093/nar/gkz059] [PMID: 30759259]
[93]
Mohamed, H.I.; Gao, C.; Gui, Z.; Song, Z.; Wei, D. A novel fluorescent probe with a pyrazolo[4,3- c]quinoline core selectively recognizes c-MYC promoter G-quadruplexes. New J. Chem., 2022, 46(18), 8619-8625.
[http://dx.doi.org/10.1039/D1NJ00098E]
[94]
Yan, J.W.; Chen, S.B.; Liu, H.Y.; Ye, W.J.; Ou, T.M.; Tan, J.H.; Li, D.; Gu, L.Q.; Huang, Z.S. Development of a new colorimetric and red-emitting fluorescent dual probe for G-quadruplex nucleic acids. Chem. Commun., 2014, 50(52), 6927-6930.
[http://dx.doi.org/10.1039/C4CC01472C] [PMID: 24841696]
[95]
Chen, S.B.; Hu, M.H.; Liu, G.C.; Wang, J.; Ou, T.M.; Gu, L.Q.; Huang, Z.S.; Tan, J.H. Visualization of NRAS RNA G-quadruplex structures in cells with an engineered fluorogenic hybridization probe. J. Am. Chem. Soc., 2016, 138(33), 10382-10385.
[http://dx.doi.org/10.1021/jacs.6b04799] [PMID: 27508892]
[96]
Chen, X.C.; Tang, G.X.; Luo, W.H.; Shao, W.; Dai, J.; Zeng, S.T.; Huang, Z.S.; Chen, S.B.; Tan, J.H. Monitoring and modulating mtDNA G-quadruplex dynamics reveal its close relationship to cell glycolysis. J. Am. Chem. Soc., 2021, 143(49), 20779-20791.
[http://dx.doi.org/10.1021/jacs.1c08860] [PMID: 34865478]
[97]
Wang, M.; Mao, Z.; Kang, T.S.; Wong, C.Y.; Mergny, J.L.; Leung, C.H.; Ma, D.L. Conjugating a groove-binding motif to an Ir(III) complex for the enhancement of G-quadruplex probe behavior. Chem. Sci., 2016, 7(4), 2516-2523.
[http://dx.doi.org/10.1039/C6SC00001K] [PMID: 28660021]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy