Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Polyphenols Modulate the miRNAs Expression that Involved in Glioblastoma

Author(s): Maede Rezaie, Mohammad Nasehi, Mohammad Shimia, Mohamad Ebrahimnezhad, Bahman Yousefi* and Maryam Majidinia*

Volume 24, Issue 21, 2024

Published on: 18 April, 2024

Page: [1953 - 1969] Pages: 17

DOI: 10.2174/0113895575304605240408105201

Price: $65

Abstract

Glioblastoma multiforme (GBM), a solid tumor that develops from astrocytes, is one of the most aggressive types of brain cancer. While there have been improvements in the efficacy of treating GBM, many problems remain, especially with traditional therapy methods. Therefore, recent studies have extensively focused on developing novel therapeutic agents for combating glioblastoma. Natural polyphenols have been studied for their potential as chemopreventive and chemotherapeutic agents due to their wide range of positive qualities, including antioxidant, antiinflammatory, cytotoxic, antineoplastic, and immunomodulatory activities. These natural compounds have been suggested to act via modulated various macromolecules within cells, including microRNAs (miRNAs), which play a crucial role in the molecular milieu. In this article, we focus on how polyphenols may inhibit tumor growth by influencing the expression of key miRNAs that regulate oncogenes and tumor suppressor genes.

« Previous
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Zhai, K.; Siddiqui, M.; Abdellatif, B.; Liskova, A.; Kubatka, P.; Büsselberg, D. Natural compounds in glioblastoma therapy: Preclinical insights, mechanistic pathways, and outlook. Cancers, 2021, 13(10), 2317.
[http://dx.doi.org/10.3390/cancers13102317] [PMID: 34065960]
[3]
Tamimi, A.F.; Juweid, M. Epidemiology and outcome of glioblastoma; Exon Publications, 2017, pp. 143-153.
[http://dx.doi.org/10.15586/codon.glioblastoma.2017.ch8]
[4]
Lah, T.T.; Novak, M.; Breznik, B. Brain malignancies: Glioblastoma and brain metastases. Seminars in cancer biology; Elsevier, 2020.
[http://dx.doi.org/10.1016/j.semcancer.2019.10.010]
[5]
Ringel, F.; Pape, H.; Sabel, M.; Krex, D.; Bock, H.C.; Misch, M.; Weyerbrock, A.; Westermaier, T.; Senft, C.; Schucht, P.; Meyer, B.; Simon, M. Clinical benefit from resection of recurrent glioblastomas: results of a multicenter study including 503 patients with recurrent glioblastomas undergoing surgical resection. Neuro-oncol., 2016, 18(1), 96-104.
[http://dx.doi.org/10.1093/neuonc/nov145] [PMID: 26243790]
[6]
Kalokhe, G.; Grimm, S.A.; Chandler, J.P.; Helenowski, I.; Rademaker, A.; Raizer, J.J. Metastatic glioblastoma: case presentations and a review of the literature. J. Neurooncol., 2012, 107(1), 21-27.
[http://dx.doi.org/10.1007/s11060-011-0731-1] [PMID: 21964740]
[7]
Ghosh, S.; Kumar, V.; Mukherjee, H.; Lahiri, D.; Roy, P. Nutraceutical regulation of miRNAs involved in neurodegenerative diseases and brain cancers. Heliyon, 2021, 7(6), e07262.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07262] [PMID: 34195404]
[8]
Demir, Y.; Ceylan, H.; Türkeş, C.; Beydemir, Ş. Molecular docking and inhibition studies of vulpinic, carnosic and usnic acids on polyol pathway enzymes. J. Biomol. Struct. Dyn., 2022, 40(22), 12008-12021.
[http://dx.doi.org/10.1080/07391102.2021.1967195] [PMID: 34424822]
[9]
Yıldız, M.L.; Demir, Y.; Küfrevioğlu, Ö.I. Screening of in vitro and in silico effect of Fluorophenylthiourea compounds on glucose 6‐phosphate dehydrogenase and 6‐phosphogluconate dehydrogenase enzymes. J. Mol. Recognit., 2022, 35(12), e2987.
[http://dx.doi.org/10.1002/jmr.2987] [PMID: 36326002]
[10]
Sulumer, A.N.; Palabıyık, E.; Avcı, B.; Uguz, H.; Demir, Y.; Serhat Özaslan, M.; Aşkın, H. Protective effect of bromelain on some metabolic enzyme activities in tyloxapol‐induced hyperlipidemic rats. Biotechnol. Appl. Biochem., 2024, 71(1), 17-27.
[http://dx.doi.org/10.1002/bab.2517] [PMID: 37749825]
[11]
Davatgaran-Taghipour, Y.; Masoomzadeh, S.; Farzaei, M.H.; Bahramsoltani, R.; Karimi-Soureh, Z.; Rahimi, R.; Abdollahi, M. Polyphenol nanoformulations for cancer therapy: Experimental evidence and clinical perspective. Int. J. Nanomedicine, 2017, 12, 2689-2702.
[http://dx.doi.org/10.2147/IJN.S131973] [PMID: 28435252]
[12]
Erices, J.I.; Torres, Á.; Niechi, I.; Bernales, I.; Quezada, C. Current natural therapies in the treatment against glioblastoma. Phytother. Res., 2018, 32(11), 2191-2201.
[http://dx.doi.org/10.1002/ptr.6170] [PMID: 30109743]
[13]
Singh, S.K. Identification of human brain tumour initiating cells. Nature, 2004, 432(7015), 396-401.
[http://dx.doi.org/10.1038/nature03128]
[14]
Furnari, F.B.; Fenton, T.; Bachoo, R.M.; Mukasa, A.; Stommel, J.M.; Stegh, A.; Hahn, W.C.; Ligon, K.L.; Louis, D.N.; Brennan, C.; Chin, L.; DePinho, R.A.; Cavenee, W.K. Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes Dev., 2007, 21(21), 2683-2710.
[http://dx.doi.org/10.1101/gad.1596707] [PMID: 17974913]
[15]
Patel, A.P.; Tirosh, I.; Trombetta, J.J.; Shalek, A.K.; Gillespie, S.M.; Wakimoto, H.; Cahill, D.P.; Nahed, B.V.; Curry, W.T.; Martuza, R.L.; Louis, D.N.; Rozenblatt-Rosen, O.; Suvà, M.L.; Regev, A.; Bernstein, B.E. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 2014, 344(6190), 1396-1401.
[http://dx.doi.org/10.1126/science.1254257] [PMID: 24925914]
[16]
Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, ShU. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pacific journal of cancer prevention. APJCP, 2017, 18(1), 3-9.
[PMID: 28239999]
[17]
Lin, D.; Wang, M.; Chen, Y.; Gong, J.; Chen, L.; Shi, X.; Lan, F.; Chen, Z.; Xiong, T.; Sun, H.; Wan, S. Trends in intracranial glioma incidence and mortality in the United States, 1975-2018. Front. Oncol., 2021, 11, 748061.
[http://dx.doi.org/10.3389/fonc.2021.748061] [PMID: 34790574]
[18]
Komori, T. The 2016 WHO classification of tumours of the central nervous system: The major points of revision. Neurol. Med. Chir., 2017, 57(7), 301-311.
[http://dx.doi.org/10.2176/nmc.ra.2017-0010] [PMID: 28592714]
[19]
Wesseling, P.; Kros, J.M.; Jeuken, J.W.M. The pathological diagnosis of diffuse gliomas: Towards a smart synthesis of microscopic and molecular information in a multidisciplinary context. Diagn. Histopathol., 2011, 17(11), 486-494.
[http://dx.doi.org/10.1016/j.mpdhp.2011.08.005]
[20]
Thakkar, J.P.; Dolecek, T.A.; Horbinski, C.; Ostrom, Q.T.; Lightner, D.D.; Barnholtz-Sloan, J.S.; Villano, J.L. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol. Biomarkers Prev., 2014, 23(10), 1985-1996.
[http://dx.doi.org/10.1158/1055-9965.EPI-14-0275] [PMID: 25053711]
[21]
Ostrom, Q.T.; Gittleman, H.; Fulop, J.; Liu, M.; Blanda, R.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neurooncol., 2015, 17(Suppl 4)(Suppl 4), iv1-iv62.
[http://dx.doi.org/10.1093/neuonc/nov189] [PMID: 26511214]
[22]
Phillips, H.S.; Kharbanda, S.; Chen, R.; Forrest, W.F.; Soriano, R.H.; Wu, T.D.; Misra, A.; Nigro, J.M.; Colman, H.; Soroceanu, L.; Williams, P.M.; Modrusan, Z.; Feuerstein, B.G.; Aldape, K. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell, 2006, 9(3), 157-173.
[http://dx.doi.org/10.1016/j.ccr.2006.02.019] [PMID: 16530701]
[23]
Chen, J.; McKay, R.M.; Parada, L.F. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell, 2012, 149(1), 36-47.
[http://dx.doi.org/10.1016/j.cell.2012.03.009] [PMID: 22464322]
[24]
Alifieris, C.; Trafalis, D.T. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol. Ther., 2015, 152, 63-82.
[http://dx.doi.org/10.1016/j.pharmthera.2015.05.005] [PMID: 25944528]
[25]
Haar, C.P.; Hebbar, P.; Wallace, G.C., IV; Das, A.; Vandergrift, W.A., III; Smith, J.A.; Giglio, P.; Patel, S.J.; Ray, S.K.; Banik, N.L. Drug resistance in glioblastoma: A mini review. Neurochem. Res., 2012, 37(6), 1192-1200.
[http://dx.doi.org/10.1007/s11064-011-0701-1] [PMID: 22228201]
[26]
Stupp, R.; Hegi, M.E.; Mason, W.P.; Van den Bent, M.J.; Taphoorn, M.J.B.; Janzer, R.C.; Ludwin, S.K.; Allgeier, A.; Fisher, B.; Belanger, K.; Hau, P.; Brandes, A.A.; Gijtenbeek, J.; Marosi, C.; Vecht, C.J.; Mokhtari, K.; Wesseling, P.; Villa, S.; Eisenhauer, E.; Gorlia, T.; Weller, M.; Lacombe, D.; Cairncross, J.G.; Mirimanoff, R.O. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol., 2009, 10(5), 459-466.
[http://dx.doi.org/10.1016/S1470-2045(09)70025-7] [PMID: 19269895]
[27]
Goldie, J.H. Drug resistance in cancer: A perspective. Cancer Metastasis Rev., 2001, 20(1/2), 63-68.
[http://dx.doi.org/10.1023/A:1013164609041] [PMID: 11831649]
[28]
Anthiya, S.; Griveau, A.; Loussouarn, C.; Baril, P.; Garnett, M.; Issartel, J.P.; Garcion, E. MicroRNA-based drugs for brain tumors. Trends Cancer, 2018, 4(3), 222-238.
[http://dx.doi.org/10.1016/j.trecan.2017.12.008] [PMID: 29506672]
[29]
Godlewski, J.; Ferrer-Luna, R.; Rooj, A.K.; Mineo, M.; Ricklefs, F.; Takeda, Y.S.; Nowicki, M.O.; Salińska, E.; Nakano, I.; Lee, H.; Weissleder, R.; Beroukhim, R.; Chiocca, E.A.; Bronisz, A. MicroRNA signatures and molecular subtypes of glioblastoma: The role of extracellular transfer. Stem Cell Reports, 2017, 8(6), 1497-1505.
[http://dx.doi.org/10.1016/j.stemcr.2017.04.024] [PMID: 28528698]
[30]
Yi, J.; Li, S.; Wang, C.; Cao, N.; Qu, H.; Cheng, C.; Wang, Z.; Wang, L.; Zhou, L. Potential applications of polyphenols on main ncRNAs regulations as novel therapeutic strategy for cancer. Biomed. Pharmacother., 2019, 113, 108703.
[http://dx.doi.org/10.1016/j.biopha.2019.108703] [PMID: 30870719]
[31]
Lau, N.C.; Lim, L.P.; Weinstein, E.G.; Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science, 2001, 294(5543), 858-862.
[http://dx.doi.org/10.1126/science.1065062] [PMID: 11679671]
[32]
Denli, A.M.; Tops, B.B.J.; Plasterk, R.H.A.; Ketting, R.F.; Hannon, G.J. Processing of primary microRNAs by the Microprocessor complex. Nature, 2004, 432(7014), 231-235.
[http://dx.doi.org/10.1038/nature03049] [PMID: 15531879]
[33]
Terry, L.J.; Shows, E.B.; Wente, S.R. Crossing the nuclear envelope: Hierarchical regulation of nucleocytoplasmic transport. Science, 2007, 318(5855), 1412-1416.
[http://dx.doi.org/10.1126/science.1142204] [PMID: 18048681]
[34]
Pandima Devi, K.; Rajavel, T.; Daglia, M.; Nabavi, S.F.; Bishayee, A.; Nabavi, S.M. Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer. Semin. Cancer Biol., 2017, 46, 146-157.
[http://dx.doi.org/10.1016/j.semcancer.2017.02.001] [PMID: 28185862]
[35]
Li, H.; Chen, L.; Li, J.; Zhou, Q.; Huang, A.; Liu, W.; Wang, K.; Gao, L.; Qi, S.; Lu, Y. miR-519a enhances chemosensitivity and promotes autophagy in glioblastoma by targeting STAT3/Bcl2 signaling pathway. J. Hematol. Oncol., 2018, 11(1), 70.
[http://dx.doi.org/10.1186/s13045-018-0618-0] [PMID: 29843746]
[36]
Hou, Q.; Ruan, H.; Gilbert, J.; Wang, G.; Ma, Q.; Yao, W.D.; Man, H.Y. MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity. Nat. Commun., 2015, 6(1), 10045.
[http://dx.doi.org/10.1038/ncomms10045] [PMID: 26620774]
[37]
Soreq, H.; Wolf, Y. NeurimmiRs: microRNAs in the neuroimmune interface. Trends Mol. Med., 2011, 17(10), 548-555.
[http://dx.doi.org/10.1016/j.molmed.2011.06.009] [PMID: 21813326]
[38]
Fowler, A.; Thomson, D.; Giles, K.; Maleki, S.; Mreich, E.; Wheeler, H.; Leedman, P.; Biggs, M.; Cook, R.; Little, N.; Robinson, B.; McDonald, K. miR-124a is frequently down-regulated in glioblastoma and is involved in migration and invasion. Eur. J. Cancer, 2011, 47(6), 953-963.
[http://dx.doi.org/10.1016/j.ejca.2010.11.026] [PMID: 21196113]
[39]
Franzoni, E. miR-128 regulates neuronal migration, outgrowth and intrinsic excitability via the intellectual disability gene Phf6. elife, 2015, 4, e04263.
[40]
Campbell, K.; Booth, S.A. MicroRNA in neurodegenerative drug discovery: the way forward?; Taylor & Francis, 2015, pp. 9-16.
[41]
Li, T.; Zhu, J.; Guo, L.; Shi, X.; Liu, Y.; Yang, X. Differential effects of polyphenols-enriched extracts from hawthorn fruit peels and fleshes on cell cycle and apoptosis in human MCF-7 breast carcinoma cells. Food Chem., 2013, 141(2), 1008-1018.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.050] [PMID: 23790880]
[42]
Calin, G.A.; Sevignani, C.; Dumitru, C.D.; Hyslop, T.; Noch, E.; Yendamuri, S.; Shimizu, M.; Rattan, S.; Bullrich, F.; Negrini, M.; Croce, C.M. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA, 2004, 101(9), 2999-3004.
[http://dx.doi.org/10.1073/pnas.0307323101] [PMID: 14973191]
[43]
Ferdin, J.; Kunej, T.; Calin, G.A. Non-coding RNAs: identification of cancer-associated microRNAs by gene profiling. Technol. Cancer Res. Treat., 2010, 9(2), 123-138.
[http://dx.doi.org/10.1177/153303461000900202] [PMID: 20218735]
[44]
Croce, C.M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet., 2009, 10(10), 704-714.
[http://dx.doi.org/10.1038/nrg2634] [PMID: 19763153]
[45]
Aqeilan, R.I.; Calin, G.A.; Croce, C.M. miR-15a and miR-16-1 in cancer: discovery, function and future perspectives. Cell Death Differ., 2010, 17(2), 215-220.
[http://dx.doi.org/10.1038/cdd.2009.69] [PMID: 19498445]
[46]
Ferracin, M.; Pedriali, M.; Veronese, A.; Zagatti, B.; Gafà, R.; Magri, E.; Lunardi, M.; Munerato, G.; Querzoli, G.; Maestri, I.; Ulazzi, L.; Nenci, I.; Croce, C.M.; Lanza, G.; Querzoli, P.; Negrini, M. MicroRNA profiling for the identification of cancers with unknown primary tissue‐of‐origin. J. Pathol., 2011, 225(1), 43-53.
[http://dx.doi.org/10.1002/path.2915] [PMID: 21630269]
[47]
Mishra, P.J.; Mishra, P.J.; Banerjee, D.; Bertino, J.R. MiRSNPs or MiR-polymorphisms, new players in microRNA mediated regulation of the cell: Introducing microRNA pharmacogenomics. Cell Cycle, 2008, 7(7), 853-858.
[http://dx.doi.org/10.4161/cc.7.7.5666] [PMID: 18414050]
[48]
Chin, L.J.; Ratner, E.; Leng, S.; Zhai, R.; Nallur, S.; Babar, I.; Muller, R.U.; Straka, E.; Su, L.; Burki, E.A.; Crowell, R.E.; Patel, R.; Kulkarni, T.; Homer, R.; Zelterman, D.; Kidd, K.K.; Zhu, Y.; Christiani, D.C.; Belinsky, S.A.; Slack, F.J.; Weidhaas, J.B. A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res., 2008, 68(20), 8535-8540.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2129] [PMID: 18922928]
[49]
Mullany, L.E.; Herrick, J.S.; Wolff, R.K.; Buas, M.F.; Slattery, M.L. Impact of polymorphisms in microRNA biogenesis genes on colon cancer risk and microRNA expression levels: a population-based, case-control study. BMC Med. Genomics, 2016, 9(1), 21.
[http://dx.doi.org/10.1186/s12920-016-0181-x] [PMID: 27107574]
[50]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[51]
Kawahara, Y.; Megraw, M.; Kreider, E.; Iizasa, H.; Valente, L.; Hatzigeorgiou, A.G.; Nishikura, K. Frequency and fate of microRNA editing in human brain. Nucleic Acids Res., 2008, 36(16), 5270-5280.
[http://dx.doi.org/10.1093/nar/gkn479] [PMID: 18684997]
[52]
Yang, W.; Chendrimada, T.P.; Wang, Q.; Higuchi, M.; Seeburg, P.H.; Shiekhattar, R.; Nishikura, K. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol., 2006, 13(1), 13-21.
[http://dx.doi.org/10.1038/nsmb1041] [PMID: 16369484]
[53]
Galeano, F.; Tomaselli, S.; Locatelli, F.; Gallo, A. A-to-I RNA editing: The “ADAR” side of human cancer. Semin. Cell Dev. Biol., 2012, 23(3), 244-250.
[http://dx.doi.org/10.1016/j.semcdb.2011.09.003] [PMID: 21930228]
[54]
Choudhury, Y.; Tay, F.C.; Lam, D.H.; Sandanaraj, E.; Tang, C.; Ang, B.T.; Wang, S. Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J. Clin. Invest., 2012, 122(11), 4059-4076.
[http://dx.doi.org/10.1172/JCI62925] [PMID: 23093778]
[55]
Yang, J.S.; Phillips, M.D.; Betel, D.; Mu, P.; Ventura, A.; Siepel, A.C.; Chen, K.C.; Lai, E.C. Widespread regulatory activity of vertebrate microRNA* species. RNA, 2011, 17(2), 312-326.
[http://dx.doi.org/10.1261/rna.2537911] [PMID: 21177881]
[56]
Chen, L.; Chen, X.R.; Zhang, R.; Li, P.; Liu, Y.; Yan, K.; Jiang, X.D. MicroRNA-107 inhibits glioma cell migration and invasion by modulating Notch2 expression. J. Neurooncol., 2013, 112(1), 59-66.
[http://dx.doi.org/10.1007/s11060-012-1037-7] [PMID: 23299462]
[57]
Majidinia, M.; Alizadeh, E.; Yousefi, B.; Akbarzadeh, M.; Mihanfar, A.; Rahmati-Yamchi, M.; Zarghami, N. Co-inhibition of notch and nf-κb signaling pathway decreases proliferation through downregulating iκb-α and hes-1 expression in human ovarian cancer OVCAR-3 cells. Drug Res., 2017, 67(1), 13-19.
[PMID: 27684192]
[58]
Loftus, J.C.; Ross, J.T.D.; Paquette, K.M.; Paulino, V.M.; Nasser, S.; Yang, Z.; Kloss, J.; Kim, S.; Berens, M.E.; Tran, N.L. miRNA expression profiling in migrating glioblastoma cells: Regulation of cell migration and invasion by miR-23b via targeting of Pyk2. PLoS One, 2012, 7(6), e39818.
[http://dx.doi.org/10.1371/journal.pone.0039818] [PMID: 22745829]
[59]
Mّller, H.G.; Rasmussen, A.P.; Andersen, H.H.; Johnsen, K.B.; Henriksen, M.; Duroux, M. A systematic review of microRNA in glioblastoma multiforme: Micro-modulators in the mesenchymal mode of migration and invasion. Mol. Neurobiol., 2013, 47(1), 131-144.
[http://dx.doi.org/10.1007/s12035-012-8349-7] [PMID: 23054677]
[60]
Malzkorn, B.; Wolter, M.; Liesenberg, F.; Grzendowski, M.; Stühler, K.; Meyer, H.E.; Reifenberger, G. Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol., 2010, 20(3), 539-550.
[http://dx.doi.org/10.1111/j.1750-3639.2009.00328.x] [PMID: 19775293]
[61]
Sun, G.; Cao, Y.; Shi, L.; Sun, L.; Wang, Y.; Chen, C.; Wan, Z.; Fu, L.; You, Y. Overexpressed miRNA-137 inhibits human glioma cells growth by targeting Rac1. Cancer Biother. Radiopharm., 2013, 28(4), 327-334.
[http://dx.doi.org/10.1089/cbr.2012.1380] [PMID: 25310349]
[62]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[63]
Han, X.; Wang, J.; Sun, Y. Circulating Tumor DNA as biomarkers for cancer detection. Genom. Proteom. Bioinforma., 2017, 15(2), 59-72.
[http://dx.doi.org/10.1016/j.gpb.2016.12.004] [PMID: 28392479]
[64]
Ellingson, B.M.; Chung, C.; Pope, W.B.; Boxerman, J.L.; Kaufmann, T.J. Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape. J. Neurooncol., 2017, 134(3), 495-504.
[http://dx.doi.org/10.1007/s11060-017-2375-2] [PMID: 28382534]
[65]
Boisselier, B. Gلllego Pérez-Larraya, J.; Rossetto, M.; Labussière, M.; Ciccarino, P.; Marie, Y.; Delattre, J.Y.; Sanson, M. Detection of IDH1 mutation in the plasma of patients with glioma. Neurology, 2012, 79(16), 1693-1698.
[http://dx.doi.org/10.1212/WNL.0b013e31826e9b0a] [PMID: 23035067]
[66]
Capper, D.; Simon, M.; Langhans, C.D.; Okun, J.G.; Tonn, J.C.; Weller, M.; Deimling, A.; Hartmann, C. 2‐Hydroxyglutarate concentration in serum from patients with gliomas does not correlate with IDH1/2 mutation status or tumor size. Int. J. Cancer, 2012, 131(3), 766-768.
[http://dx.doi.org/10.1002/ijc.26425] [PMID: 21913188]
[67]
Contreras-Naranjo, J.C.; Wu, H.J.; Ugaz, V.M. Microfluidics for exosome isolation and analysis: Enabling liquid biopsy for personalized medicine. Lab Chip, 2017, 17(21), 3558-3577.
[http://dx.doi.org/10.1039/C7LC00592J] [PMID: 28832692]
[68]
Kucharzewska, P.; Belting, M. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. J. Extracell. Vesicles, 2013, 2(1), 20304.
[http://dx.doi.org/10.3402/jev.v2i0.20304] [PMID: 24009895]
[69]
Morishita, M.; Takahashi, Y.; Nishikawa, M.; Sano, K.; Kato, K.; Yamashita, T.; Imai, T.; Saji, H.; Takakura, Y. Quantitative analysis of tissue distribution of the B16BL6-derived exosomes using a streptavidin-lactadherin fusion protein and iodine-125-labeled biotin derivative after intravenous injection in mice. J. Pharm. Sci., 2015, 104(2), 705-713.
[http://dx.doi.org/10.1002/jps.24251] [PMID: 25393546]
[70]
Shao, H.; Chung, J.; Lee, K.; Balaj, L.; Min, C.; Carter, B.S.; Hochberg, F.H.; Breakefield, X.O.; Lee, H.; Weissleder, R. Chip-based analysis of exosomal mRNA mediating drug resistance in glioblastoma. Nat. Commun., 2015, 6(1), 6999.
[http://dx.doi.org/10.1038/ncomms7999] [PMID: 25959588]
[71]
Muller, L.; Muller-Haegele, S.; Mitsuhashi, M.; Gooding, W.; Okada, H.; Whiteside, T.L. Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. OncoImmunology, 2015, 4(6), e1008347.
[http://dx.doi.org/10.1080/2162402X.2015.1008347] [PMID: 26155415]
[72]
Regazzo, G.; Terrenato, I.; Spagnuolo, M.; Carosi, M.; Cognetti, G.; Cicchillitti, L.; Sperati, F.; Villani, V.; Carapella, C.; Piaggio, G.; Pelosi, A.; Rizzo, M.G. A restricted signature of serum miRNAs distinguishes glioblastoma from lower grade gliomas. J. Exp. Clin. Cancer Res., 2016, 35(1), 124.
[http://dx.doi.org/10.1186/s13046-016-0393-0] [PMID: 27476114]
[73]
Wang, Q.; Li, P.; Li, A.; Jiang, W.; Wang, H.; Wang, J.; Xie, K. Plasma specific miRNAs as predictive biomarkers for diagnosis and prognosis of glioma. J. Exp. Clin. Cancer Res., 2012, 31(1), 97.
[http://dx.doi.org/10.1186/1756-9966-31-97] [PMID: 23174013]
[74]
Zhao, H.; Shen, J.; Hodges, T.R.; Song, R.; Fuller, G.N.; Heimberger, A.B. Serum microRNA profiling in patients with glioblastoma: A survival analysis. Mol. Cancer, 2017, 16(1), 59.
[http://dx.doi.org/10.1186/s12943-017-0628-5] [PMID: 28284220]
[75]
Piwecka, M.; Rolle, K.; Belter, A.; Barciszewska, A.M.; Żywicki, M.; Michalak, M.; Nowak, S.; Naskręt-Barciszewska, M.Z.; Barciszewski, J. Comprehensive analysis of microRNA expression profile in malignant glioma tissues. Mol. Oncol., 2015, 9(7), 1324-1340.
[http://dx.doi.org/10.1016/j.molonc.2015.03.007] [PMID: 25864039]
[76]
Xu, Q.; Liu, L.Z.; Qian, X.; Chen, Q.; Jiang, Y.; Li, D.; Lai, L.; Jiang, B.H. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res., 2012, 40(2), 761-774.
[http://dx.doi.org/10.1093/nar/gkr730] [PMID: 21917858]
[77]
Wei, J.; Nduom, E.K.; Kong, L.Y.; Hashimoto, Y.; Xu, S.; Gabrusiewicz, K.; Ling, X.; Huang, N.; Qiao, W.; Zhou, S.; Ivan, C.; Fuller, G.N.; Gilbert, M.R.; Overwijk, W.; Calin, G.A.; Heimberger, A.B. MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro-oncol., 2016, 18(5), 639-648.
[http://dx.doi.org/10.1093/neuonc/nov292] [PMID: 26658052]
[78]
Alvarado, A.G.; Turaga, S.M.; Sathyan, P.; Mulkearns-Hubert, E.E.; Otvos, B.; Silver, D.J.; Hale, J.S.; Flavahan, W.A.; Zinn, P.O.; Sinyuk, M.; Li, M.; Guda, M.R.; Velpula, K.K.; Tsung, A.J.; Nakano, I.; Vogelbaum, M.A.; Majumder, S.; Rich, J.N.; Lathia, J.D. Coordination of self-renewal in glioblastoma by integration of adhesion and microRNA signaling. Neuro-oncol., 2016, 18(5), 656-666.
[http://dx.doi.org/10.1093/neuonc/nov196] [PMID: 26374689]
[79]
El Fatimy, R.; Subramanian, S.; Uhlmann, E.J.; Krichevsky, A.M. Genome editing reveals glioblastoma addiction to microRNA-10b. Mol. Ther., 2017, 25(2), 368-378.
[http://dx.doi.org/10.1016/j.ymthe.2016.11.004] [PMID: 28153089]
[80]
Fareh, M.; Almairac, F.; Turchi, L.; Burel-Vandenbos, F.; Paquis, P.; Fontaine, D.; Lacas-Gervais, S.; Junier, M.P.; Chneiweiss, H.; Virolle, T. Cell-based therapy using miR-302-367 expressing cells represses glioblastoma growth. Cell Death Dis., 2017, 8(3), e2713-e2713.
[http://dx.doi.org/10.1038/cddis.2017.117] [PMID: 28358371]
[81]
Wang, Y.; Jiang, F.; Xiong, Y.; Cheng, X.; Qiu, Z.; Song, R. LncRNA TTN-AS1 sponges miR-376a-3p to promote colorectal cancer progression via upregulating KLF15. Life Sci., 2020, 244, 116936.
[http://dx.doi.org/10.1016/j.lfs.2019.116936] [PMID: 31610194]
[82]
Cheng, Z.; Zou, X.; Jin, Y.; Gao, S.; Lv, J.; Li, B.; Cui, R. The Role of KLF4 in Alzheimer’s Disease. Front. Cell. Neurosci., 2018, 12, 325.
[http://dx.doi.org/10.3389/fncel.2018.00325] [PMID: 30297986]
[83]
Chen, Y.; Peng, S.; Cen, H.; Lin, Y.; Huang, C.; Chen, Y.; Shan, H.; Su, Y.; Zeng, L. MicroRNA hsa-miR-623 directly suppresses MMP1 and attenuates IL-8-induced metastasis in pancreatic cancer. Int. J. Oncol., 2019, 55(1), 142-156.
[http://dx.doi.org/10.3892/ijo.2019.4803] [PMID: 31115512]
[84]
Luo, H.; Xu, R.; Chen, B.; Dong, S.; Zhou, F.; Yu, T.; Xu, G.; Zhang, J.; Wang, Y.; You, Y. MicroRNA-940 inhibits glioma cells proliferation and cell cycle progression by targeting CKS1. Am. J. Transl. Res., 2019, 11(8), 4851-4865.
[PMID: 31497204]
[85]
Wang, J.; Chen, C.; Yan, X.; Wang, P. The role of miR-382-5p in glioma cell proliferation, migration and invasion. OncoTargets Ther., 2019, 12, 4993-5002.
[http://dx.doi.org/10.2147/OTT.S196322] [PMID: 31417288]
[86]
Zhou, X.; Yang, Y.; Ma, P.; Wang, N.; Yang, D.; Tu, Q.; Sun, B.; Xiang, T.; Zhao, X.; Hou, Z.; Fang, X. TRIM44 is indispensable for glioma cell proliferation and cell cycle progression through AKT/p21/p27 signaling pathway. J. Neurooncol., 2019, 145(2), 211-222.
[http://dx.doi.org/10.1007/s11060-019-03301-0] [PMID: 31605296]
[87]
Cui, D.; Wang, K.; Liu, Y.; Gao, J.; Cui, J. MicroRNA-623 Inhibits Epithelial–Mesenchymal Transition to Attenuate Glioma Proliferation by Targeting TRIM44. OncoTargets Ther., 2020, 13, 9291-9303.
[http://dx.doi.org/10.2147/OTT.S250497] [PMID: 33061418]
[88]
Jordan, M.L.; Delunas, L.R. Quality of life and patterns of nontraditional therapy use by patients with cancer. Oncol. Nurs. Forum, 2001.
[89]
Peacock, O.; Lee, A.C.; Cameron, F.; Tarbox, R.; Vafadar-Isfahani, N.; Tufarelli, C.; Lund, J.N. Inflammation and MiR-21 pathways functionally interact to downregulate PDCD4 in colorectal cancer. PLoS One, 2014, 9(10), e110267.
[http://dx.doi.org/10.1371/journal.pone.0110267] [PMID: 25310697]
[90]
Jiao, W.; Leng, X.; Zhou, Q.; Wu, Y.; Sun, L.; Tan, Y.; Ni, H.; Dong, X.; Shen, T.; Liu, Y.; Li, J. Different miR‐21‐3p isoforms and their different features in colorectal cancer. Int. J. Cancer, 2017, 141(10), 2103-2111.
[http://dx.doi.org/10.1002/ijc.30902] [PMID: 28734015]
[91]
Diosdado, B.; van de Wiel, M.A.; Terhaar Sive Droste, J.S.; Mongera, S.; Postma, C.; Meijerink, W.J.H.J.; Carvalho, B.; Meijer, G.A. MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br. J. Cancer, 2009, 101(4), 707-714.
[http://dx.doi.org/10.1038/sj.bjc.6605037] [PMID: 19672269]
[92]
Dews, M.; Homayouni, A.; Yu, D.; Murphy, D.; Sevignani, C.; Wentzel, E.; Furth, E.E.; Lee, W.M.; Enders, G.H.; Mendell, J.T.; Thomas-Tikhonenko, A. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat. Genet., 2006, 38(9), 1060-1065.
[http://dx.doi.org/10.1038/ng1855] [PMID: 16878133]
[93]
Botti, G.; Marra, L.; Malzone, M.; Anniciello, A.; Botti, C.; Franco, R.; Cantile, M. LncRNA HOTAIR as prognostic circulating marker and potential therapeutic target in patients with tumor diseases. Curr. Drug Targets, 2016, 18(1), 27-34.
[http://dx.doi.org/10.2174/1389450117666151209122950] [PMID: 26648066]
[94]
Yousefi, B. Peroxisome proliferator-activated receptors and their ligands in cancer drug-resistance: Opportunity or challenge. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 2016, 16(12), 1541-1545.
[http://dx.doi.org/10.2174/1871520616666160204112941]
[95]
Yousefi, B.; Samadi, N.; Baradaran, B.; Rameshknia, V.; Shafiei-Irannejad, V.; Majidinia, M.; Targhaze, N.; Zarghami, N. Differential effects of peroxisome proliferator-activated receptor agonists on doxorubicin-resistant human myelogenous leukemia (K562/DOX) cells. Cell. Mol. Biol., 2015, 61(8), 118-122.
[PMID: 26718439]
[96]
Ahmadi, D.; Zarei, M.; Rahimi, M.; Khazaie, M.; Asemi, Z.; Mir, S.M.; Sadeghpour, A.; Karimian, A.; Alemi, F.; Rahmati-Yamchi, M.; Salehi, R.; Jadidi-Niaragh, F.; Yousefi, M.; Khelgati, N.; Majidinia, M.; Safa, A.; Yousefi, B. Preparation and in-vitro evaluation of pH-responsive cationic cyclodextrin coated magnetic nanoparticles for delivery of methotrexate to the Saos-2 bone cancer cells. J. Drug Deliv. Sci. Technol., 2020, 57, 101584.
[http://dx.doi.org/10.1016/j.jddst.2020.101584]
[97]
Guan, Y.; Li, M.; Qiu, Z.; Xu, J.; Zhang, Y.; Hu, N.; Zhang, X.; Guo, W.; Yuan, J.; Shi, Q.; Wang, W. Comprehensive analysis of DOK family genes expression, immune characteristics, and drug sensitivity in human tumors. J. Adv. Res., 2022, 36, 73-87.
[http://dx.doi.org/10.1016/j.jare.2021.06.008] [PMID: 35127166]
[98]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Curcumin nanoformulations: A future nanomedicine for cancer. Drug Discov. Today, 2012, 17(1-2), 71-80.
[http://dx.doi.org/10.1016/j.drudis.2011.09.009] [PMID: 21959306]
[99]
Shi, X.; Valizadeh, A.; Mir, S.M.; Asemi, Z.; Karimian, A.; Majidina, M.; Safa, A.; Yosefi, B. miRNA-29a reverses P-glycoprotein-mediated drug resistance and inhibits proliferation via up-regulation of PTEN in colon cancer cells. Eur. J. Pharmacol., 2020, 880, 173138.
[http://dx.doi.org/10.1016/j.ejphar.2020.173138] [PMID: 32416187]
[100]
Schexnayder, C.; Stratford, R. Genistein and glyceollin effects on ABCC2 (MRP2) and ABCG2 (BCRP) in Caco-2 cells. Int. J. Environ. Res. Public Health, 2015, 13(1), 17.
[http://dx.doi.org/10.3390/ijerph13010017] [PMID: 26703673]
[101]
Desai, V.; Bhushan, A. Natural bioactive compounds: Alternative approach to the treatment of glioblastoma multiforme. BioMed Res. Int., 2017.
[http://dx.doi.org/10.1155/2017/9363040]
[102]
Loria, R.; Bon, G.; Perotti, V.; Gallo, E.; Bersani, I.; Baldassari, P.; Porru, M.; Leonetti, C.; Di Carlo, S.; Visca, P.; Brizzi, M.F.; Anichini, A.; Mortarini, R.; Falcioni, R. Sema6A and Mical1 control cell growth and survival of BRAFV600E human melanoma cells. Oncotarget, 2015, 6(5), 2779-2793.
[http://dx.doi.org/10.18632/oncotarget.2995] [PMID: 25576923]
[103]
Kim, S.J.; Hwang, E.; Yi, S.S.; Song, K.D.; Lee, H.K.; Heo, T.H.; Park, S.K.; Jung, Y.J.; Jun, H.S. Sea buckthorn leaf extract inhibits glioma cell growth by reducing reactive oxygen species and promoting apoptosis. Appl. Biochem. Biotechnol., 2017, 182(4), 1663-1674.
[http://dx.doi.org/10.1007/s12010-017-2425-4] [PMID: 28181191]
[104]
Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol., 2021, 22(2), 96-118.
[http://dx.doi.org/10.1038/s41580-020-00315-9] [PMID: 33353982]
[105]
Goenka, A.; Ganesh, S. Role of long non-coding RNAs in cellular stress response; Proc. Indian Natl. Sci. Acad, 2018.
[106]
Peng, Z.; Liu, C.; Wu, M. New insights into long noncoding RNAs and their roles in glioma. Mol. Cancer, 2018, 17(1), 61.
[http://dx.doi.org/10.1186/s12943-018-0812-2] [PMID: 29458374]
[107]
Balas, M.M.; Johnson, A.M. Exploring the mechanisms behind long noncoding RNAs and cancer. Noncoding RNA Res., 2018, 3(3), 108-117.
[http://dx.doi.org/10.1016/j.ncrna.2018.03.001] [PMID: 30175284]
[108]
Slack, F.J.; Chinnaiyan, A.M. The role of non-coding RNAs in oncology. Cell, 2019, 179(5), 1033-1055.
[http://dx.doi.org/10.1016/j.cell.2019.10.017] [PMID: 31730848]
[109]
Jain, A.K.; Xi, Y.; McCarthy, R.; Allton, K.; Akdemir, K.C.; Patel, L.R.; Aronow, B.; Lin, C.; Li, W.; Yang, L.; Barton, M.C. LncPRESS1 is a p53-regulated LncRNA that safeguards pluripotency by disrupting SIRT6-mediated de-acetylation of histone H3K56. Mol. Cell, 2016, 64(5), 967-981.
[http://dx.doi.org/10.1016/j.molcel.2016.10.039] [PMID: 27912097]
[110]
Lin, A.; Li, C.; Xing, Z.; Hu, Q.; Liang, K.; Han, L.; Wang, C.; Hawke, D.H.; Wang, S.; Zhang, Y.; Wei, Y.; Ma, G.; Park, P.K.; Zhou, J.; Zhou, Y.; Hu, Z.; Zhou, Y.; Marks, J.R.; Liang, H.; Hung, M.C.; Lin, C.; Yang, L. The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer. Nat. Cell Biol., 2016, 18(2), 213-224.
[http://dx.doi.org/10.1038/ncb3295] [PMID: 26751287]
[111]
Stackhouse, C.T.; Gillespie, G.Y.; Willey, C.D. Exploring the roles of lncRNAs in GBM pathophysiology and their therapeutic potential. Cells, 2020, 9(11), 2369.
[http://dx.doi.org/10.3390/cells9112369] [PMID: 33126510]
[112]
Desai, V.; Bhushan, A. Natural Bioactive Compounds: Alternative approach to the treatment of glioblastoma multiforme. BioMed Res. Int., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/9363040] [PMID: 29359162]
[113]
Vengoji, R.; Bhushan, A. Natural products: A hope for glioblastoma patients. Oncotarget, 2018, 9(31), 22194-22219.
[114]
Chen, T.; da Fonseca, C. Schönthal, A. Intranasal perillyl alcohol for glioma therapy: Molecular mechanisms and clinical development. Int. J. Mol. Sci., 2018, 19(12), 3905.
[http://dx.doi.org/10.3390/ijms19123905] [PMID: 30563210]
[115]
Bryukhovetskiy, I.; Lyakhova, I.; Mischenko, P.; Milkina, E.; Zaitsev, S.; Khotimchenko, Y.; Bryukhovetskiy, A.; Polevshchikov, A.; Kudryavtsev, I.; Khotimchenko, M.; Zhidkov, M. Alkaloids of fascaplysin are effective conventional chemotherapeutic drugs, inhibiting the proliferation of C6 glioma cells and causing their death in vitro. Oncol. Lett., 2017, 13(2), 738-746.
[http://dx.doi.org/10.3892/ol.2016.5478] [PMID: 28356953]
[116]
Bangaru, M.L.; Chen, S.; Woodliff, J.; Kansra, S. Curcumin (diferuloylmethane) induces apoptosis and blocks migration of human medulloblastoma cells. Anticancer Res., 2010, 30(2), 499-504.
[PMID: 20332461]
[117]
Wang, K.; Fu, X.; Li, Y.; Hou, Y.; Yang, M.; Sun, J.; Yi, S.; Fan, C.; Fu, X.; Zhai, J.; Sun, B. Induction of s-phase arrest in human glioma cells by selenocysteine, a natural selenium-containing agent via triggering reactive oxygen species-mediated dna damage and modulating mapks and akt pathways. Neurochem. Res., 2016, 41(6), 1439-1447.
[http://dx.doi.org/10.1007/s11064-016-1854-8] [PMID: 26846141]
[118]
Mirzaei, H.; Fathullahzadeh, S.; Khanmohammadi, R.; Darijani, M.; Momeni, F.; Masoudifar, A.; Goodarzi, M.; Mardanshah, O.; Stenvang, J.; Jaafari, M.R.; Mirzaei, H.R. State of the art in microRNA as diagnostic and therapeutic biomarkers in chronic lymphocytic leukemia. J. Cell. Physiol., 2018, 233(2), 888-900.
[http://dx.doi.org/10.1002/jcp.25799] [PMID: 28084621]
[119]
Keshavarzi, M.; Darijani, M.; Momeni, F.; Moradi, P.; Ebrahimnejad, H.; Masoudifar, A.; Mirzaei, H. Molecular imaging and oral cancer diagnosis and therapy. J. Cell. Biochem., 2017, 118(10), 3055-3060.
[http://dx.doi.org/10.1002/jcb.26042] [PMID: 28390191]
[120]
Munoz, J.L.; Bliss, S.A.; Greco, S.J.; Ramkissoon, S.H.; Ligon, K.L.; Rameshwar, P. Delivery of functional anti-mir-9 by mesenchymal stem cell–derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol. Ther. Nucleic Acids, 2013, 2(10), e126.
[http://dx.doi.org/10.1038/mtna.2013.60] [PMID: 24084846]
[121]
Zhou, S.; Zhang, S.; Shen, H.; Chen, W.; Xu, H.; Chen, X.; Sun, D.; Zhong, S.; Zhao, J.; Tang, J. Curcumin inhibits cancer progression through regulating expression of microRNAs. Tumour Biol., 2017, 39(2)
[http://dx.doi.org/10.1177/1010428317691680] [PMID: 28222667]
[122]
Roy, S.; Yu, Y.; Padhye, S.B.; Sarkar, F.H.; Majumdar, A.P.N. Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21. PLoS One, 2013, 8(7), e68543.
[http://dx.doi.org/10.1371/journal.pone.0068543] [PMID: 23894315]
[123]
Golden, E.B.; Lam, P.Y.; Kardosh, A.; Gaffney, K.J.; Cadenas, E.; Louie, S.G.; Petasis, N.A.; Chen, T.C. Schönthal, A.H. Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid–based proteasome inhibitors. Blood, 2009, 113(23), 5927-5937.
[http://dx.doi.org/10.1182/blood-2008-07-171389] [PMID: 19190249]
[124]
Chakrabarti, M.; Ai, W.; Banik, N.L.; Ray, S.K. Overexpression of miR-7-1 increases efficacy of green tea polyphenols for induction of apoptosis in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cells. Neurochem. Res., 2013, 38(2), 420-432.
[http://dx.doi.org/10.1007/s11064-012-0936-5] [PMID: 23192662]
[125]
Kim, H.E.; Oh, J.H.; Lee, S.K.; Oh, Y.J. Ginsenoside RH-2 induces apoptotic cell death in rat C6 glioma via a reactive oxygen and caspase-dependent but Bcl-XL-independent pathway. Life Sci., 1999, 65(3), PL33-PL40.
[http://dx.doi.org/10.1016/S0024-3205(99)00252-0] [PMID: 10447219]
[126]
Wu, N.; Wu, G.; Hu, R.; Li, M.; Feng, H. Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA-128. Acta Pharmacol. Sin., 2011, 32(3), 345-353.
[http://dx.doi.org/10.1038/aps.2010.220] [PMID: 21372826]
[127]
Han, J.; Chen, Q. MiR-16 modulate temozolomide resistance by regulating BCL-2 in human glioma cells. Int. J. Clin. Exp. Pathol., 2015, 8(10), 12698-12707.
[PMID: 26722459]
[128]
Zhang, S.; Liu, X.; Sun, C.; Yang, J.; Wang, L.; Liu, J.; Gong, L.; Jing, Y. Apigenin attenuates experimental autoimmune myocarditis by modulating th1/th2 cytokine balance in mice. Inflammation, 2016, 39(2), 678-686.
[http://dx.doi.org/10.1007/s10753-015-0294-y] [PMID: 26658748]
[129]
Chen, X.J.; Wu, M.Y.; Li, D.H.; You, J. Apigenin inhibits glioma cell growth through promoting microRNA-16 and suppression of BCL-2 and nuclear factor-κB/MMP-9. Mol. Med. Rep., 2016, 14(3), 2352-2358.
[http://dx.doi.org/10.3892/mmr.2016.5460] [PMID: 27430517]
[130]
Dirscherl, K.; Karlstetter, M.; Ebert, S.; Kraus, D.; Hlawatsch, J.; Walczak, Y.; Moehle, C.; Fuchshofer, R.; Langmann, T. Luteolin triggers global changes in the microglial transcriptome leading to a unique anti-inflammatory and neuroprotective phenotype. J. Neuroinflammation, 2010, 7(1), 3.
[http://dx.doi.org/10.1186/1742-2094-7-3] [PMID: 20074346]
[131]
Albani, D.; Polito, L.; Forloni, G. Sirtuins as novel targets for Alzheimer’s disease and other neurodegenerative disorders: Experimental and genetic evidence. J. Alzheimers Dis., 2010, 19(1), 11-26.
[http://dx.doi.org/10.3233/JAD-2010-1215] [PMID: 20061622]
[132]
Saiko, P.; Szakmary, A.; Jaeger, W.; Szekeres, T. Resveratrol and its analogs: Defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat. Res. Rev. Mutat. Res., 2008, 658(1-2), 68-94.
[http://dx.doi.org/10.1016/j.mrrev.2007.08.004] [PMID: 17890139]
[133]
Kiskova, T.; Kubatka, P.; Büsselberg, D.; Kassayova, M. The plant-derived compound resveratrol in brain cancer: A review. Biomolecules, 2020, 10(1), 161.
[http://dx.doi.org/10.3390/biom10010161] [PMID: 31963897]
[134]
Chan, J.A.; Krichevsky, A.M.; Kosik, K.S. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res., 2005, 65(14), 6029-6033.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0137] [PMID: 16024602]
[135]
Corsten, M.F.; Miranda, R.; Kasmieh, R.; Krichevsky, A.M.; Weissleder, R.; Shah, K. MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. Cancer Res., 2007, 67(19), 8994-9000.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1045] [PMID: 17908999]
[136]
Li, H.; Jia, Z.; Li, A.; Jenkins, G.; Yang, X.; Hu, J.; Guo, W. Resveratrol repressed viability of U251 cells by miR-21 inhibiting of NF-κB pathway. Mol. Cell. Biochem., 2013, 382(1-2), 137-143.
[http://dx.doi.org/10.1007/s11010-013-1728-1] [PMID: 23793554]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy