Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Risk of Type 1 Diabetes Mellitus in SARS CoV-2 Patients

In Press, (this is not the final "Version of Record"). Available online 24 May, 2024
Author(s): Shweta Chahal, Rojin G. Raj* and Ranjeet Kumar
Published on: 24 May, 2024

Article ID: e240524230298

DOI: 10.2174/0115733998290807240522045553

Price: $95

Abstract

Recent studies have found that a link between people with type 1 diabetes mellitus (T1DM) are at higher risk of morbidity as well as mortality from COVID-19 infection, indicating a need for vaccination. T1DM appears to impair innate and adaptive immunity. The overabundance of pro-inflammatory cytokines produced in COVID-19 illness that is severe and potentially fatal is known as a "cytokine storm." Numerous cohorts have revealed chronic inflammation as a key risk factor for unfavorable COVID-19 outcomes. TNF-α, interleukin (IL)-1a, IL-1, IL-2, IL-6, and other cytokines were found in higher concentrations in patients with T1DM. Even more importantly, oxidative stress contributes significantly to the severity and course of COVID- 19's significant role in the progression and severity of COVID-19 diseases. Severe glucose excursions, a defining characteristic of type 1 diabetes, are widely recognized for their potent role as mediating agents of oxidative stress via several routes, such as heightened production of advanced glycation end products (AGEs) and activation of protein kinase C (PKC). Furthermore, persistent endothelial dysfunction and hypercoagulation found in T1DM may impair microcirculation and endothelium, which could result in the development of various organ failure and acute breathing syndrome.

[1]
Hashemi M. Management of environmental health to prevent an outbreak of COVID-19 A review Environmental and Health Management of Novel Coronavirus Disease (COVID-19). Amsterdam: Elsevier 2021; pp. 235-67.
[2]
Koliaki C, Tentolouris A, Eleftheriadou I, Melidonis A, Dimitriadis G, Tentolouris N. Clinical management of diabetes mellitus in the era of COVID-19: Practical issues, peculiarities and concerns. J Clin Med 2020; 9(7): 2288.
[http://dx.doi.org/10.3390/jcm9072288] [PMID: 32708504]
[3]
Verma A, Rajput R, Verma S, Balania VKB, Jangra B. Impact of lockdown in COVID 19 on glycemic control in patients with type 1 Diabetes Mellitus. Diabetes Metab Syndr 2020; 14(5): 1213-6.
[http://dx.doi.org/10.1016/j.dsx.2020.07.016] [PMID: 32679527]
[4]
Zhang Y, Cui Y, Shen M, et al. Association of diabetes mellitus with disease severity and prognosis in COVID-19: A retrospective cohort study. Diabetes Res Clin Pract 2020; 165: 108227.
[http://dx.doi.org/10.1016/j.diabres.2020.108227] [PMID: 32446795]
[5]
Kumar A, Arora A, Sharma P, et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes Metab Syndr 2020; 14(4): 535-45.
[http://dx.doi.org/10.1016/j.dsx.2020.04.044] [PMID: 32408118]
[6]
Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: From pathophysiology to clinical management. Nat Rev Endocrinol 2021; 17(1): 11-30.
[http://dx.doi.org/10.1038/s41574-020-00435-4] [PMID: 33188364]
[7]
Holman N, Knighton P, Kar P, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: A population-based cohort study. Lancet Diabetes Endocrinol 2020; 8(10): 823-33.
[http://dx.doi.org/10.1016/S2213-8587(20)30271-0] [PMID: 32798471]
[8]
Ebekozien OA, Noor N, Gallagher MP, Alonso GT. Type 1 diabetes and COVID-19: Preliminary findings from a multicenter surveillance study in the US. Diabetes Care 2020; 43(8): e83-5.
[http://dx.doi.org/10.2337/dc20-1088] [PMID: 32503837]
[9]
Brufsky A. Hyperglycemia, hydroxychloroquine, and the COVID‐19 pandemic. J Med Virol 2020; 92(7): 770-5.
[http://dx.doi.org/10.1002/jmv.25887] [PMID: 32293710]
[10]
Yang JK, Feng Y, Yuan MY, et al. Plasma glucose levels and diabetes are independent predictors for mortality and morbidity in patients with SARS. Diabet Med 2006; 23(6): 623-8.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01861.x] [PMID: 16759303]
[11]
Barron E, Bakhai C, Kar P, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: A whole-population study. Lancet Diabetes Endocrinol 2020; 8(10): 813-22.
[http://dx.doi.org/10.1016/S2213-8587(20)30272-2] [PMID: 32798472]
[12]
DiMeglio LA. COVID-19 and children with diabetes-updates, unknowns, and next steps: First, do no extrapolation. Diabetes Care 2020; 43(11): 2631-4.
[13]
d’Annunzio G, Maffeis C, Cherubini V, et al. Caring for children and adolescents with type 1 diabetes mellitus: Italian Society for Pediatric Endocrinology and Diabetology (ISPED) statements during COVID-19 pandemia. Diabetes Res Clin Pract 2020; 168: 108372.
[http://dx.doi.org/10.1016/j.diabres.2020.108372] [PMID: 32827594]
[14]
Tittel SR, Rosenbauer J, Kamrath C, et al. Did the COVID-19 lockdown affect the incidence of pediatric type 1 diabetes in Germany? Diabetes Care 2020; 43(11): e172-3.
[http://dx.doi.org/10.2337/dc20-1633] [PMID: 32826282]
[15]
Kountouri A, Korakas E, Ikonomidis I, et al. Type 1 diabetes mellitus in the SARS-CoV-2 pandemic: Oxidative stress as a major patho-physiological mechanism linked to adverse clinical outcomes. Antioxidants 2021; 10(5): 752.
[http://dx.doi.org/10.3390/antiox10050752] [PMID: 34065123]
[16]
Castaño L, Eisenbarth GS. Type-I diabetes: A chronic autoimmune disease of human, mouse, and rat. Annu Rev Immunol 1990; 8(1): 647-79.
[http://dx.doi.org/10.1146/annurev.iy.08.040190.003243] [PMID: 2188676]
[17]
Lederman MM, Schiffman G, Rodman HM. Pneumococcal immunization in adult diabetics. Diabetes 1981; 30(2): 119-21.
[http://dx.doi.org/10.2337/diab.30.2.119] [PMID: 7202857]
[18]
Pozzilli P, Gale EAM, Visallil N, et al. The immune response to influenza vaccination in diabetic patients. Diabetologia 1986; 29(12): 850-4.
[http://dx.doi.org/10.1007/BF00870139] [PMID: 3569690]
[19]
Valle A, Giamporcaro GM, Scavini M, et al. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes 2013; 62(6): 2072-7.
[http://dx.doi.org/10.2337/db12-1345] [PMID: 23349491]
[20]
Jackson MH, Collier A, Nicoll JJ, et al. Neutrophil count and activation in vascular disease. Scott Med J 1992; 37(2): 41-3.
[http://dx.doi.org/10.1177/003693309203700205] [PMID: 1609264]
[21]
Marhoffer W, Stein M, Schleinkofer L, Federlin K. Evidence of ex vivo and in vitro impaired neutrophil oxidative burst and phagocytic capacity in type 1 diabetes mellitus. Diabetes Res Clin Pract 1993; 19(3): 183-8.
[http://dx.doi.org/10.1016/0168-8227(93)90112-I] [PMID: 8319516]
[22]
Delamaire M, Maugendre D, Moreno M, Le Goff MC, Allannic H, Genetet B. Exploration of the various steps of polymorphonuclear neutrophil function in diabetic patients. J Mal Vasc 1995; 20(2): 107-12.
[PMID: 7650435]
[23]
Merad M, Martin JC. Author Correction: Pathological inflammation in patients with COVID-19: A key role for monocytes and macrophages. Nat Rev Immunol 2020; 20(7): 448.
[http://dx.doi.org/10.1038/s41577-020-0353-y] [PMID: 32488203]
[24]
Wang JZ, Zhang RY, Bai J. An anti-oxidative therapy for ameliorating cardiac injuries of critically ill COVID-19-infected patients. Int J Cardiol 2020; 312: 137-8.
[http://dx.doi.org/10.1016/j.ijcard.2020.04.009] [PMID: 32321655]
[25]
Barnes BJ, Adrover JM, Baxter-Stoltzfus A, et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med 2020; 217(6): e20200652.
[http://dx.doi.org/10.1084/jem.20200652] [PMID: 32302401]
[26]
Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: Is immunity the second function of chromatin? J Cell Biol 2012; 198(5): 773-83.
[http://dx.doi.org/10.1083/jcb.201203170] [PMID: 22945932]
[27]
Wang Y, Xiao Y, Zhong L, et al. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with β-cell autoimmunity in patients with type 1 diabetes. Diabetes 2014; 63(12): 4239-48.
[http://dx.doi.org/10.2337/db14-0480] [PMID: 25092677]
[28]
Qin J, Fu S, Speake C, Greenbaum CJ, Odegard JM. NETosis-associated serum biomarkers are reduced in type 1 diabetes in association with neutrophil count. Clin Exp Immunol 2016; 184(3): 318-22.
[http://dx.doi.org/10.1111/cei.12783] [PMID: 26939803]
[29]
Riyapa D, Buddhisa S, Korbsrisate S, et al. Neutrophil extracellular traps exhibit antibacterial activity against burkholderia pseudomallei and are influenced by bacterial and host factors. Infect Immun 2012; 80(11): 3921-9.
[http://dx.doi.org/10.1128/IAI.00806-12] [PMID: 22927051]
[30]
Joshi MB, Lad A, Bharath Prasad AS, Balakrishnan A, Ramachandra L, Satyamoorthy K. High glucose modulates IL‐6 mediated immune homeostasis through impeding neutrophil extracellular trap formation. FEBS Lett 2013; 587(14): 2241-6.
[http://dx.doi.org/10.1016/j.febslet.2013.05.053] [PMID: 23735697]
[31]
Li Y, Liu Y, Chu C-Q. Th17 cells in type 1 diabetes: Role in the pathogenesis and regulation by gut microbiome. Mediators Inflamm 2015; 2015: 638470.
[http://dx.doi.org/10.1155/2015/638470]
[32]
Bradshaw EM, Raddassi K, Elyaman W, et al. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cy-tokines inducing Th17 cells. J Immunol 2009; 183(7): 4432-9.
[http://dx.doi.org/10.4049/jimmunol.0900576] [PMID: 19748982]
[33]
Kaizer EC, Glaser CL, Chaussabel D, Banchereau J, Pascual V, White PC. Gene expression in peripheral blood mononuclear cells from children with diabetes. J Clin Endocrinol Metab 2007; 92(9): 3705-11.
[http://dx.doi.org/10.1210/jc.2007-0979] [PMID: 17595242]
[34]
Menart-Houtermans B, Rütter R, Nowotny B, et al. Leukocyte profiles differ between type 1 and type 2 diabetes and are associated with metabolic phenotypes: Results from the German Diabetes Study (GDS). Diabetes Care 2014; 37(8): 2326-33.
[http://dx.doi.org/10.2337/dc14-0316] [PMID: 25061140]
[35]
Long SA, Buckner JH. CD4+FOXP3+ T regulatory cells in human autoimmunity: More than a numbers game. J Immunol 2011; 187(5): 2061-6.
[http://dx.doi.org/10.4049/jimmunol.1003224] [PMID: 21856944]
[36]
Kukreja A, Cost G, Marker J, et al. Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 2002; 109(1): 131-40.
[http://dx.doi.org/10.1172/JCI0213605] [PMID: 11781358]
[37]
Huang I, Lim MA, Pranata R. Diabetes mellitus is associated with increased mortality and severity of disease in COVID-19 pneumonia – A systematic review, meta-analysis, and meta-regression. Diabetes Metab Syndr 2020; 14(4): 395-403.
[http://dx.doi.org/10.1016/j.dsx.2020.04.018] [PMID: 32334395]
[38]
Chen Y. Effects of hypertension, diabetes and coronary heart disease on COVID-19 diseases severity: A systematic review and meta-analysis. MedRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.25.20043133]
[39]
Pambianco G, Costacou T, Orchard TJ. The prediction of major outcomes of type 1 diabetes: A 12-year prospective evaluation of three separate definitions of the metabolic syndrome and their components and estimated glucose disposal rate: The Pittsburgh Epidemiology of Diabetes Complications Study experience. Diabetes Care 2007; 30(5): 1248-54.
[http://dx.doi.org/10.2337/dc06-2053] [PMID: 17303788]
[40]
Priya G, Kalra S. A review of insulin resistance in type 1 diabetes: Is there a place for adjunctive metformin? Diabetes Ther 2018; 9(1): 349-61.
[http://dx.doi.org/10.1007/s13300-017-0333-9] [PMID: 29139080]
[41]
Kaul K, Apostolopoulou M, Roden M. Insulin resistance in type 1 diabetes mellitus. Metabolism 2015; 64(12): 1629-39.
[http://dx.doi.org/10.1016/j.metabol.2015.09.002] [PMID: 26455399]
[42]
Nishida K, Otsu K. Inflammation and metabolic cardiomyopathy. Cardiovasc Res 2017; 113(4): 389-98.
[http://dx.doi.org/10.1093/cvr/cvx012] [PMID: 28395010]
[43]
Pan X, Kaminga AC, Wen SW, Acheampong K, Liu A. Omentin-1 in diabetes mellitus: A systematic review and meta-analysis. PLoS One 2019; 14(12): e0226292.
[http://dx.doi.org/10.1371/journal.pone.0226292] [PMID: 31821362]
[44]
Luc K, Schramm-Luc A, Guzik TJ, Mikolajczyk TP. Oxidative stress and inflammatory markers in prediabetes and diabetes. J Physiol Pharmacol 2019; 70(6)
[PMID: 32084643]
[45]
Domingueti CP, Dusse LMSA, Carvalho MG, de Sousa LP, Gomes KB, Fernandes AP. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. J Diabetes Complications 2016; 30(4): 738-45.
[http://dx.doi.org/10.1016/j.jdiacomp.2015.12.018] [PMID: 26781070]
[46]
Gouda W, Mageed L, Abd El Dayem SM, Ashour E, Afify M. Evaluation of pro-inflammatory and anti-inflammatory cytokines in type 1 diabetes mellitus. Bull Natl Res Cent 2018; 42(1): 14.
[http://dx.doi.org/10.1186/s42269-018-0016-3]
[47]
Dogan Y. MathML Namespace. 2006. Available From: http://www.w3.org/1998/Math/MathML
[48]
Talaat IM, Nasr A, Alsulaimani AA, et al. Association between type 1, type 2 cytokines, diabetic autoantibodies and 25-hydroxyvitamin D in children with type 1 diabetes. J Endocrinol Invest 2016; 39(12): 1425-34.
[http://dx.doi.org/10.1007/s40618-016-0514-9] [PMID: 27541155]
[49]
Ururahy MAG, Loureiro MB, Freire-Neto FP, et al. Increased TLR2 expression in patients with type 1 diabetes: Evidenced risk of microalbuminuria. Pediatr Diabetes 2012; 13(2): 147-54.
[http://dx.doi.org/10.1111/j.1399-5448.2011.00794.x] [PMID: 21848584]
[50]
Hunt KJ, Baker NL, Cleary PA, Klein R, Virella G, Lopes-Virella MF. Longitudinal association between endothelial dysfunction, inflam-mation, and clotting biomarkers with subclinical atherosclerosis in Type 1 Diabetes: An evaluation of the DCCT/EDIC cohort. Diabetes Care 2015; 38(7): 1281-9.
[http://dx.doi.org/10.2337/dc14-2877] [PMID: 25852210]
[51]
Devaraj S, Glaser N, Griffen S, Wang-Polagruto J, Miguelino E, Jialal I. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 2006; 55(3): 774-9.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-1417] [PMID: 16505242]
[52]
Wu C, Chen X, Cai Y, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus dis-ease 2019 pneumonia in Wuhan, China. JAMA Intern Med 2020; 180(7): 934-43.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994] [PMID: 32167524]
[53]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: Consider cytokine storm syndromes and immunosup-pression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[54]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 414(6865): 813-20.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[55]
Delgado-Roche L, Mesta F. Oxidative stress as key player in severe acute respiratory syndrome coronavirus (SARS-CoV) infection. Arch Med Res 2020; 51(5): 384-7.
[http://dx.doi.org/10.1016/j.arcmed.2020.04.019] [PMID: 32402576]
[56]
Fatima N, Faisal SM, Zubair S, et al. Role of pro-inflammatory cytokines and biochemical markers in the pathogenesis of type 1 diabetes: Correlation with age and glycemic condition in diabetic human subjects. PLoS One 2016; 11(8): e0161548.
[http://dx.doi.org/10.1371/journal.pone.0161548] [PMID: 27575603]
[57]
Firoozrai M, Nourbakhsh M, Razzaghy-Azar M. Erythrocyte susceptibility to oxidative stress and antioxidant status in patients with type 1 diabetes. Diabetes Res Clin Pract 2007; 77(3): 427-32.
[http://dx.doi.org/10.1016/j.diabres.2007.02.001] [PMID: 17360068]
[58]
Gleisner A, Martinez L, Pino R, et al. Oxidative stress markers in plasma and urine of prepubertal patients with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2006; 19(8): 995-1000.
[http://dx.doi.org/10.1515/JPEM.2006.19.8.995] [PMID: 16995584]
[59]
Rincón J, Correia D, Arcaya JL, et al. Role of Angiotensin II type 1 receptor on renal NAD(P)H oxidase, oxidative stress and inflammation in nitric oxide inhibition induced-hypertension. Life Sci 2015; 124: 81-90.
[http://dx.doi.org/10.1016/j.lfs.2015.01.005] [PMID: 25623850]
[60]
Beltrán-García J, Osca-Verdegal R, Pallardó FV, et al. Oxidative stress and inflammation in COVID-19-associated sepsis: The potential role of anti-oxidant therapy in avoiding disease progression. Antioxidants 2020; 9(10): 936.
[http://dx.doi.org/10.3390/antiox9100936] [PMID: 33003552]
[61]
Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Med Hypotheses 2020; 143: 110102.
[http://dx.doi.org/10.1016/j.mehy.2020.110102] [PMID: 32721799]
[62]
Nanduri J, Yuan G, Kumar GK, Semenza GL, Prabhakar NR. Transcriptional responses to intermittent hypoxia. Respir Physiol Neurobiol 2008; 164(1-2): 277-81.
[http://dx.doi.org/10.1016/j.resp.2008.07.006] [PMID: 18692603]
[63]
Cavezzi A, Troiani E, Corrao S. COVID-19: Hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clin Pract 2020; 10(2): 1271.
[http://dx.doi.org/10.4081/cp.2020.1271] [PMID: 32509258]
[64]
Schechter AN, Gladwin MT. Hemoglobin and the paracrine and endocrine functions of nitric oxide. N Engl J Med 2003; 348(15): 1483-5.
[http://dx.doi.org/10.1056/NEJMcibr023045] [PMID: 12686706]
[65]
Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288(5789): 373-6.
[http://dx.doi.org/10.1038/288373a0]
[66]
Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007; 115(10): 1285-95.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.652859] [PMID: 17353456]
[67]
Machnica L, Deja G, Polanska J, et al. Blood pressure disturbances and endothelial dysfunction markers in children and adolescents with type 1 diabetes. Atherosclerosis 2014; 237(1): 129-34.
[http://dx.doi.org/10.1016/j.atherosclerosis.2014.09.006] [PMID: 25238220]
[68]
Perrin RM, Harper SJ, Bates DO. A role for the endothelial glycocalyx in regulating microvascular permeability in diabetes mellitus. Cell Biochem Biophys 2007; 49(2): 65-72.
[http://dx.doi.org/10.1007/s12013-007-0041-6] [PMID: 17906361]
[69]
Onat D, Brillon D, Colombo PC, Schmidt AM. Human vascular endothelial cells: A model system for studying vascular inflammation in diabetes and atherosclerosis. Curr Diab Rep 2011; 11(3): 193-202.
[http://dx.doi.org/10.1007/s11892-011-0182-2] [PMID: 21337131]
[70]
Lemkes BA, Nieuwdorp M, Hoekstra JBL, Holleman F. The glycocalyx and cardiovascular disease in diabetes: Should we judge the endothelium by its cover? Diabetes Technol Ther 2012; 14(S1) (Suppl. 1): S-3-S-10.
[http://dx.doi.org/10.1089/dia.2012.0011] [PMID: 22650222]
[71]
Nieuwdorp M, van Haeften TW, Gouverneur MCLG, et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 2006; 55(2): 480-6.
[http://dx.doi.org/10.2337/diabetes.55.02.06.db05-1103] [PMID: 16443784]
[72]
Giannini C, Mohn A, Chiarelli F, Kelnar CJH. Macrovascular angiopathy in children and adolescents with type 1 diabetes. Diabetes Metab Res Rev 2011; 27(5): 436-60.
[http://dx.doi.org/10.1002/dmrr.1195] [PMID: 21433262]
[73]
Kessler L, Wiesel ML, Attali P, Mossard JM, Cazenave JP, Pinget M. Von Willebrand factor in diabetic angiopathy. Diabetes Metab 1998; 24(4): 327-36.
[PMID: 9805643]
[74]
Margetic S. Inflammation and haemostasis. Biochem Med (Zagreb) 2012; 22(1): 49-62.
[75]
Wautier JL, Guillausseau PJ. Diabetes, advanced glycation endproducts and vascular disease. Vasc Med 1998; 3(2): 131-7.
[http://dx.doi.org/10.1177/1358836X9800300207] [PMID: 9796076]
[76]
Yamagishi S, Matsui T. Advanced glycation end products, oxidative stress and diabetic nephropathy. Oxid Med Cell Longev 2010; 3(2): 101-8.
[http://dx.doi.org/10.4161/oxim.3.2.11148] [PMID: 20716934]
[77]
Sena CM, Pereira AM, Seiça R. Endothelial dysfunction — A major mediator of diabetic vascular disease. Biochim Biophys Acta Mol Basis Dis 2013; 1832(12): 2216-31.
[http://dx.doi.org/10.1016/j.bbadis.2013.08.006] [PMID: 23994612]
[78]
He L. Expression of elevated levels of pro‐inflammatory cytokines in SARS‐CoV‐infected ACE2+ cells in SARS patients: Relation to the acute lung injury and pathogenesis of SARS. J Pathol 2006; 210(3): 288-97.
[79]
Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020; 395(10234): 1417-8.
[http://dx.doi.org/10.1016/S0140-6736(20)30937-5] [PMID: 32325026]
[80]
Su H, Yang M, Wan C, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int 2020; 98(1): 219-27.
[http://dx.doi.org/10.1016/j.kint.2020.04.003] [PMID: 32327202]
[81]
Copin MC, Parmentier E, Duburcq T, Poissy J, Mathieu D. Time to consider histologic pattern of lung injury to treat critically ill patients with COVID-19 infection. Intensive Care Med 2020; 46(6): 1124-6.
[http://dx.doi.org/10.1007/s00134-020-06057-8] [PMID: 32328726]
[82]
Morel O. Prothrombotic changes in diabetes mellitus. Semin Thromb Hemost 2013; 39(5): 477-88.
[83]
Winocour PD, Watala C, Perry DW, Kinlough-Rathbone RL. Decreased platelet membrane fluidity due to glycation or acetylation of membrane proteins. Thromb Haemost 1992; 68(5): 577-82.
[http://dx.doi.org/10.1055/s-0038-1646320] [PMID: 1455404]
[84]
Assert R, Scherk G, Bumbure A, Pirags V, Schatz H, Pfeiffer AFH. Regulation of protein kinase C by short term hyperglycaemia in human platelets in vivo and in vitro. Diabetologia 2001; 44(2): 188-95.
[http://dx.doi.org/10.1007/s001250051598] [PMID: 11270675]
[85]
Schaeffer G, Wascher TC, Kostner GM, Graier WF. Alterations in platelet Ca 2+ signalling in diabetic patients is due to increased formation of superoxide anions and reduced nitric oxide production. Diabetologia 1999; 42(2): 167-76.
[http://dx.doi.org/10.1007/s001250051135] [PMID: 10064096]
[86]
Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020; 395(10229): 1054-62.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[87]
Bornstein SR, Rubino F, Khunti K, et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol 2020; 8(6): 546-50.
[http://dx.doi.org/10.1016/S2213-8587(20)30152-2] [PMID: 32334646]
[88]
Bindom SM, Lazartigues E. The sweeter side of ACE2: Physiological evidence for a role in diabetes. Mol Cell Endocrinol 2009; 302(2): 193-202.
[http://dx.doi.org/10.1016/j.mce.2008.09.020] [PMID: 18948167]
[89]
Roca-Ho H, Riera M, Palau V, Pascual J, Soler M. Characterization of ACE and ACE2 expression within different organs of the NOD mouse. Int J Mol Sci 2017; 18(3): 563.
[http://dx.doi.org/10.3390/ijms18030563] [PMID: 28273875]
[90]
Monteil V. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell 2020; 181(4): 905-13.
[91]
Yu MG, Keenan HA, Shah HS, et al. Residual β cell function and monogenic variants in long-duration type 1 diabetes patients. J Clin Invest 2019; 129(8): 3252-63.
[http://dx.doi.org/10.1172/JCI127397] [PMID: 31264968]
[92]
Li J, Wang X, Chen J, Zuo X, Zhang H, Deng A. COVID ‐19 infection may cause ketosis and ketoacidosis. Diabetes Obes Metab 2020; 22(10): 1935-41.
[http://dx.doi.org/10.1111/dom.14057] [PMID: 32314455]
[93]
Rabbone I, Schiaffini R, Cherubini V, et al. Has COVID-19 delayed the diagnosis and worsened the presentation of type 1 diabetes in children? Diabetes Care 2020; 43(11): 2870-2.
[http://dx.doi.org/10.2337/dc20-1321] [PMID: 32778554]
[94]
Kamrath C, Mönkemöller K, Biester T, et al. Ketoacidosis in children and adolescents with newly diagnosed type 1 diabetes during the COVID-19 pandemic in Germany. JAMA 2020; 324(8): 801-4.
[http://dx.doi.org/10.1001/jama.2020.13445] [PMID: 32702751]
[95]
Yang JK, Lin SS, Ji XJ, Guo LM. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol 2010; 47(3): 193-9.
[http://dx.doi.org/10.1007/s00592-009-0109-4] [PMID: 19333547]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy