Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Antiviral Activity of Kappaphycus alvarezii Seaweed against ZIKV

Author(s): Caroline de S. Barros, Claudio C. Cirne-Santos*, Priscilla O. Esteves, Max W. L. Gomes, Vítor W. Rabelo, Thamyres M. Santos, Valéria L. Teixeira and Izabel C.N. de P. Paixão*

Volume 24, Issue 18, 2024

Published on: 23 May, 2024

Page: [1589 - 1598] Pages: 10

DOI: 10.2174/0115680266294503240513044930

Price: $65

Abstract

Introduction: Zika virus (ZIKV) is a flavivirus transmitted through the bites of infected Aedes mosquitoes. These viruses can also be transmitted through sexual contact, vertical transmission, and possibly transfusion. Most cases are asymptomatic, but symptoms can include rash, conjunctivitis, fever, and arthralgia, which are characteristic of other arboviruses. Zika infection can lead to complications such as microcephaly, miscarriage, brain abnormalities, and Guillain-Barré syndrome (GBS).

Objective: The aim is to determine the inhibitory potential of the algae Kappaphycus alvarezii (K. alvarezii) on ZIKV replication.

Methodology: Cytotoxicity experiments were performed using Vero cells to determine the CC50, and ZIKV replication inhibition assays (ATCC® VR-1839™) were conducted to determine the EC50. The mechanism of action was also studied to assess any synergistic effect with Ribavirin.

Results: K. alvarezii demonstrated low toxicity with a CC50 of 423 μg/mL and a potent effect on ZIKV replication with an EC50 of 0.65 μg/mL and a Selectivity Index (SI) of 651, indicating the extract's safety. Virucidal effect assays were carried out to evaluate the possible mechanism of action, and the compound addition time was studied, showing the potential to delay the treatment of infected cells by up to 6 hours. A potential synergistic effect was observed when K. alvarezii extract was combined with suboptimal concentrations of Ribavirin, resulting in 99% inhibition of viral replication.

Conclusion: Our data demonstrate the significant potential of K. alvarezii extract and highlight the need for further studies to investigate its mechanism of action. We propose this extract as a potential anti-Zika compound.

Graphical Abstract

[1]
Fenical, W. Halogenation in the rhodopyta 1, 2. a review. J. Phycol., 1975, 11(3), 245-259.
[http://dx.doi.org/10.1111/j.0022-3646.1975.00245.x]
[2]
Teixeira, V.L.; Kelecom, A.; Gottlieb, O.R. Natural seaweed products. Quim. Nova, 1991, 14, 83-90.
[3]
Carpena, M.; Perez, G.P.; Oliveira, G.P.; Chamorro, F.; Otero, P.; Lopes, L.C.; Cao, H.; Gandara, S.J.; Prieto, M.A. Biological properties and potential of compounds extracted from red seaweeds. Phytochem. Rev., 2022, 1, 1-32.
[PMID: 35791430]
[4]
Bold, H.C. Introduction to the algae : Structure and reproduction; Prentice-Hall: Englewood Cliffs, N.J., 1978.
[5]
Kamiya, M.; Lindstrom, S.C.; Nakayama, T.; Yokoyama, A.; Lin, S-M.; Guiry, M.D.; Gurgel, C.F.D.; Huisman, J.M.; Kitayama, T.; Suzuki, M. Syllabus of plant families-A. Engler’s Syllabus der Pflanzenfamilien Part 2/2: Photoautotrophic eukaryotic Algae-Rhodophyta. Acta Bot. Hung., 2017, 59(3-4), 459-460.
[6]
Hayashi, L.; Hurtado, A.Q.; Msuya, F.E.; Lhonneur, B.G.; Critchley, A.T. Seaweeds and their role in globally changing environments; Springer: Dordrecht, 2010, pp. 251-283.
[http://dx.doi.org/10.1007/978-90-481-8569-6_15]
[7]
Hayashi, L.; Reis, R.P. Cultivation of the red algae Kappaphycus alvarezii in Brazil and its pharmacological potential. Rev. Bras. Farmacogn., 2012, 22(4), 748-752.
[http://dx.doi.org/10.1590/S0102-695X2012005000055]
[8]
McHugh, D.J. Production, properties and uses of alginates. Production and Utilization of Products from Commercial Seaweeds. FAO Fish. Tech. Pap., 1987, 288, 58-115.
[9]
Paula, E.J.; Pereira, R.T.L. Da marinomia a maricultura da alga exotica, Kappaphycus alvarezii para producao de carragenanas no Brasil. Panorama Aquicultura, 1998, 8, 10-15.
[http://dx.doi.org/10.1007/s10811-010-9647-y]
[10]
Athukorala, Y.; Lee, K.; Kim, S.; Jeon, Y. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresour. Technol., 2007, 98(9), 1711-1716.
[http://dx.doi.org/10.1016/j.biortech.2006.07.034] [PMID: 16973353]
[11]
Chagas, F.D.S.; Lima, G.C.; dos Santos, V.I.N.; Costa, L.E.C.; de Sousa, W.M.; Sombra, V.G.; de Araújo, D.F.; Barros, F.C.N.; Marinho-Soriano, E.; de Andrade Feitosa, J.P.; de Paula, R.C.M.; Pereira, M.G.; Freitas, A.L.P. Sulfated polysaccharide from the red algae Gelidiella acerosa: Anticoagulant, antiplatelet and antithrombotic effects. Int. J. Biol. Macromol., 2020, 159, 415-421.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.05.012] [PMID: 32387607]
[12]
Carvalhal, F.; Cristelo, R.; Resende, D.; Pinto, M.; Sousa, E.; da-Silva, C.M. Antithrombotics from the sea: Polysaccharides and beyond. Mar. Drugs, 2019, 17(3), 170.
[http://dx.doi.org/10.3390/md17030170] [PMID: 30884850]
[13]
Lomartire, S.; Gonçalves, A.M.M. Antiviral activity and mechanisms of seaweeds bioactive compounds on enveloped viruses—A review. Mar. Drugs, 2022, 20(6), 385.
[http://dx.doi.org/10.3390/md20060385] [PMID: 35736188]
[14]
Alvarez, C.; Félix, C.; Lemos, M. The antiviral potential of algal lectins. Mar. Drugs, 2023, 21(10), 515.
[http://dx.doi.org/10.3390/md21100515] [PMID: 37888450]
[15]
Sheekh, E.M.M.; Nassef, M.; Bases, E.; Shafay, S.E.; El-shenody, R. Antitumor immunity and therapeutic properties of marine seaweeds-derived extracts in the treatment of cancer. Cancer Cell Int., 2022, 22(1), 267.
[http://dx.doi.org/10.1186/s12935-022-02683-y] [PMID: 35999584]
[16]
Shafay, S.E.; Sheekh, M.E.; Bases, E.; Shenody, R.E. Antioxidant, antidiabetic, anti-inflammatory and anticancer potential of some seaweed extracts. Food Sci. Technol., 2021, 42, e20521.
[17]
Athukorala, Y.; Kim, K.N.; Jeon, Y.J. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem. Toxicol., 2006, 44(7), 1065-1074.
[http://dx.doi.org/10.1016/j.fct.2006.01.011] [PMID: 16516367]
[18]
Kumar, K.S.; Ganesan, K.; Rao, P.V.S. Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty – An edible seaweed. Food Chem., 2008, 107(1), 289-295.
[http://dx.doi.org/10.1016/j.foodchem.2007.08.016]
[19]
Sato, Y.; Morimoto, K.; Hirayama, M.; Hori, K. High mannose-specific lectin (KAA-2) from the red alga Kappaphycus alvarezii potently inhibits influenza virus infection in a strain-independent manner. Biochem. Biophys. Res. Commun., 2011, 405(2), 291-296.
[http://dx.doi.org/10.1016/j.bbrc.2011.01.031] [PMID: 21219864]
[20]
Hirayama, M.; Shibata, H.; Imamura, K.; Sakaguchi, T.; Hori, K. High-mannose specific lectin and its recombinants from a carrageenophyta Kappaphycus alvarezii represent a potent anti-HIV activity through high-affinity binding to the viral envelope glycoprotein gp120. Mar. Biotechnol., 2016, 18(1), 144-160.
[http://dx.doi.org/10.1007/s10126-015-9677-1] [PMID: 26593063]
[21]
Gatherer, D.; Kohl, A. Zika virus: A previously slow pandemic spreads rapidly through the Americas. J. Gen. Virol., 2016, 97(2), 269-273.
[http://dx.doi.org/10.1099/jgv.0.000381] [PMID: 26684466]
[22]
Dick, G.W.A.; Kitchen, S.F.; Haddow, A.J. Zika Virus (I). isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg., 1952, 46(5), 509-520.
[http://dx.doi.org/10.1016/0035-9203(52)90042-4] [PMID: 12995440]
[23]
MacNamara, F.N. Zika virus : A report on three cases of human infection during an epidemic of jaundice in Nigeria. Trans. R. Soc. Trop. Med. Hyg., 1954, 48(2), 139-145.
[http://dx.doi.org/10.1016/0035-9203(54)90006-1] [PMID: 13157159]
[24]
Diagne, C.T.; Diallo, D.; Faye, O.; Ba, Y.; Faye, O.; Gaye, A.; Dia, I.; Faye, O.; Weaver, S.C.; Sall, A.A.; Diallo, M. Potential of selected Senegalese Aedes spp. mosquitoes (Diptera: Culicidae) to transmit Zika virus. BMC Infect. Dis., 2015, 15(1), 492.
[http://dx.doi.org/10.1186/s12879-015-1231-2] [PMID: 26527535]
[25]
Aubry, M.; Finke, J.; Teissier, A.; Roche, C.; Broult, J.; Paulous, S.; Desprès, P.; Cao-Lormeau, V.M.; Musso, D. Seroprevalence of arboviruses among blood donors in French Polynesia, 2011–2013. Int. J. Infect. Dis., 2015, 41, 11-12.
[http://dx.doi.org/10.1016/j.ijid.2015.10.005] [PMID: 26482390]
[26]
Roth, A.; Mercier, A.; Lepers, C.; Hoy, D.; Duituturaga, S.; Benyon, E.; Guillaumot, L.; Souarès, Y. Concurrent outbreaks of dengue, chikungunya and zika virus infections – An unprecedented epidemic wave of mosquito-borne viruses in the pacific 2012–2014. Euro Surveill., 2014, 19(41), 20929.
[http://dx.doi.org/10.2807/1560-7917.ES2014.19.41.20929] [PMID: 25345518]
[27]
Pereira, H.V.F.S.; dos Santos, S.P.; Amâncio, A.P.R.L.; de Szejnfeld, O.P.S.; Flor, E.O.; de Tavares, S.J.; Ferreira, R.V.B.; Moll, T.F.; de Amorim, M.M.R.; Melo, A. Neurological outcomes of congenital Zika syndrome in toddlers and preschoolers: A case series. Lancet Child Adolesc. Health, 2020, 4(5), 378-387.
[http://dx.doi.org/10.1016/S2352-4642(20)30041-9] [PMID: 32199080]
[28]
[29]
Batista, M.; Braga, A.; Campos, G.; Souza, M.; Matos, R.; Lopes, T.; Candido, N.; Lima, M.; Machado, F.; Andrade, S.; Bittar, C.; Nogueira, M.; Carneiro, B.; Mariutti, R.; Arni, R.; Calmon, M.; Rahal, P. Natural products isolated from oriental medicinal herbs inactivate zika virus. Viruses, 2019, 11(1), 49.
[http://dx.doi.org/10.3390/v11010049] [PMID: 30641880]
[30]
Gonzaga, D.; Gomes, R.; Marra, R.; da Silva, F.; Gomes, M.; Ferreira, D.; Santos, R.; Pinto, A.; Ratcliffe, N.A.; Cirne-Santos, C.; Barros, C.; Ferreira, V.; Paixão, I.C. Inhibition of zika virus replication by synthetic bis-naphthoquinones. J. Braz. Chem. Soc., 2019, 30(8), 1697-1706.
[http://dx.doi.org/10.21577/0103-5053.20190071]
[31]
Claudio, C.C-S.; Caroline, S.B.; Caio, C.R.N.; Leonardo, S.C.A.; Renata, M.C.; Norman, A.R.; Valeria, L.T.; Davis, F.F.; Izabel, C.N.P.P. Antiviral effect of the seaweed Osmundaria obtusiloba against the Zika virus. J. Med. Plants Res., 2018, 12(25), 387-395.
[http://dx.doi.org/10.5897/JMPR2018.6624]
[32]
Santos, C.C.C.; Barros, C.S.; Nogueira, C.C.R.; Azevedo, R.C.; Yamamoto, K.A.; Meira, G.L.S.; Vasconcelos, Z.F.M.; Ratcliffe, N.A.; Teixeira, V.L.; Chanasit, S.J.; Ferreira, D.F.; Paixão, I.C.N.P. Inhibition by marine algae of chikungunya virus isolated from patients in a recent disease outbreak in Rio de Janeiro. Front. Microbiol., 2019, 10, 2426.
[http://dx.doi.org/10.3389/fmicb.2019.02426] [PMID: 31708898]
[33]
Esteves, P.O.; de Oliveira, M.C.; de Barros, S.C.; Santos, C.C.C.; Laneuvlille, V.T.; Paixão, P.I.C. Antiviral effect of caulerpin against chikungunya. Nat. Prod. Commun, 2019, 14(10), 1934578X19878295.
[http://dx.doi.org/10.1177/1934578X19878295]
[34]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[35]
Di Veroli, G.Y.; Fornari, C.; Wang, D.; Mollard, S.; Bramhall, J.L.; Richards, F.M.; Jodrell, D.I. Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics, 2016, 32(18), 2866-2868.
[http://dx.doi.org/10.1093/bioinformatics/btw230] [PMID: 27153664]
[36]
Fitton, J. Antiviral properties of marine algae. In: World Seaweed Resources; ETI Information Services: Wokingham, 2006; p. 7.
[37]
Venkatesh, R.; Shanthi, S.; Rajapandian, K.; Elamathi, S.; Thenmozhi, S.; Radha, N. Preliminary study on anti-xanthomonas activity, phytochemical analysis and characterization of antimicrobial compounds from Kappaphycus alvarezii. Asian J. Pharm. Clin. Res., 2011, 4(3), 46-51.
[38]
Nagarani, N.; Kumaraguru, A. Evaluation of anti-inflammatory, antidiabetic, cytotoxic activity of Kappaphycus alvarezii. Int. J. Pharma Bio Sci., 2013, 4(1), 921-929.
[39]
Pielnaa, P.; Al-Saadawe, M.; Saro, A.; Dama, M.F.; Zhou, M.; Huang, Y.; Huang, J.; Xia, Z. Zika virus-spread, epidemiology, genome, transmission cycle, clinical manifestation, associated challenges, vaccine and antiviral drug development. Virology, 2020, 543, 34-42.
[http://dx.doi.org/10.1016/j.virol.2020.01.015] [PMID: 32056845]
[40]
Santos, C.C.C.; de Barros, S.C.; de Oliveira, M.C.; Rabelo, V.W.H.; Azevedo, R.C.; Teixeira, V.L.; Ferreira, D.F.; de Paixão, P.I.C.N. in vitro studies on the inhibition of replication of zika and chikungunya viruses by dolastane isolated from seaweed Canistrocarpus cervicornis. Sci. Rep., 2020, 10(1), 8263.
[http://dx.doi.org/10.1038/s41598-020-65357-7] [PMID: 32427940]
[41]
Abdul Ahmad, S.A.; Palanisamy, U.D.; Tejo, B.A.; Chew, M.F.; Tham, H.W.; Syed Hassan, S. Geraniin extracted from the rind of Nephelium lappaceum binds to dengue virus type-2 envelope protein and inhibits early stage of virus replication. Virol. J., 2017, 14(1), 229.
[http://dx.doi.org/10.1186/s12985-017-0895-1] [PMID: 29162124]
[42]
Galabov, A.S. Virucidal agents in the eve of manorapid synergy. GMS Krankenhhyg. Interdiszip., 2007, 2(1), Doc18.
[PMID: 20200679]
[43]
Towers, S.; Brauer, F.; Castillo-Chavez, C.; Falconar, A.K.I.; Mubayi, A.; Romero-Vivas, C.M.E. Estimate of the reproduction number of the 2015 Zika virus outbreak in Barranquilla, Colombia, and estimation of the relative role of sexual transmission. Epidemics, 2016, 17, 50-55.
[http://dx.doi.org/10.1016/j.epidem.2016.10.003] [PMID: 27846442]
[44]
Buckheit, R.W., Jr; Watson, K.M.; Morrow, K.M.; Ham, A.S. Development of topical microbicides to prevent the sexual transmission of HIV. Antiviral Res., 2010, 85(1), 142-158.
[http://dx.doi.org/10.1016/j.antiviral.2009.10.013] [PMID: 19874851]
[45]
Abdelnabi, R.; Neyts, J.; Delang, L. Chikungunya Virus; Springer, 2016, pp. 243-253.
[http://dx.doi.org/10.1007/978-1-4939-3618-2_22]
[46]
Rebensburg, S.; Helfer, M.; Schneider, M.; Koppensteiner, H.; Eberle, J.; Schindler, M.; Gürtler, L.; Werner, B.R. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins. Sci. Rep., 2016, 6(1), 20394.
[http://dx.doi.org/10.1038/srep20394] [PMID: 26833261]
[47]
de Oliveira, A.; Prince, D.; Lo, C.Y.; Lee, L.H.; Chu, T.C. Antiviral activity of theaflavin digallate against herpes simplex virus type 1. Antiviral Res., 2015, 118, 56-67.
[http://dx.doi.org/10.1016/j.antiviral.2015.03.009] [PMID: 25818500]
[48]
Ottosen, S.; Parsley, T.B.; Yang, L.; Zeh, K.; van Doorn, L.J.; van der Veer, E.; Raney, A.K.; Hodges, M.R.; Patick, A.K. in vitro antiviral activity and preclinical and clinical resistance profile of miravirsen, a novel anti-hepatitis C virus therapeutic targeting the human factor miR-122. Antimicrob. Agents Chemother., 2015, 59(1), 599-608.
[http://dx.doi.org/10.1128/AAC.04220-14] [PMID: 25385103]
[49]
Yang, X.X.; Li, C.M.; Li, Y.F.; Wang, J.; Huang, C.Z. Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale, 2017, 9(41), 16086-16092.
[http://dx.doi.org/10.1039/C7NR06520E] [PMID: 29034936]
[50]
Thoka, B.; Jaimipak, T.; Onnome, S.; Yoksan, S.; Ubol, S.; Pulmanausahakul, R. The synergistic effect of nsP2-L618, nsP3-R117, and E2-K187 on the large plaque phenotype of chikungunya virus. Virus Genes, 2018, 54(1), 48-56.
[http://dx.doi.org/10.1007/s11262-017-1524-1] [PMID: 29185115]
[51]
Lu, J.W.; Hsieh, P.S.; Lin, C.C.; Hu, M.K.; Huang, S.M.; Wang, Y.M.; Liang, C.Y.; Gong, Z.; Ho, Y.J. Synergistic effects of combination treatment using EGCG and suramin against the chikungunya virus. Biochem. Biophys. Res. Commun., 2017, 491(3), 595-602.
[http://dx.doi.org/10.1016/j.bbrc.2017.07.157] [PMID: 28760340]
[52]
Snyder, B.; Goebel, S.; Koide, F.; Ptak, R.; Kalkeri, R. Synergistic antiviral activity of Sofosbuvir and type-I interferons (α and β) against Zika virus. J. Med. Virol., 2018, 90(1), 8-12.
[http://dx.doi.org/10.1002/jmv.24932] [PMID: 28851097]
[53]
Demidenko, E.; Miller, T.W. Statistical determination of synergy based on Bliss definition of drugs independence. PLoS One, 2019, 14(11), e0224137.
[http://dx.doi.org/10.1371/journal.pone.0224137] [PMID: 31765385]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy