Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

A Review on Indole-triazole Molecular Hybrids as a Leading Edge in Drug Discovery: Current Landscape and Future Perspectives

Author(s): Suman Rohilla*, Garima Goyal, Paras Berwal and Nancy Mathur

Volume 24, Issue 18, 2024

Published on: 17 May, 2024

Page: [1557 - 1588] Pages: 32

DOI: 10.2174/0115680266307132240509065351

Price: $65

Abstract

Molecular hybridization is a rational design strategy used to create new ligands or prototypes by identifying and combining specific pharmacophoric subunits from the molecular structures of two or more known bioactive derivatives. Molecular hybridization is a valuable technique in drug discovery, enabling the modulation of unwanted side effects and the creation of potential dual-acting drugs that combine the effects of multiple therapeutic agents. Indole-triazole conjugates have emerged as promising candidates for new drug development. The indole and triazole moieties can be linked through various synthetic strategies, such as click chemistry or other coupling reactions, to generate a library of diverse compounds for biological screening. The achievable structural diversity with indole-triazole conjugates offers avenues to optimize their pharmacokinetic and pharmacodynamic attributes, amplifying their therapeutic efficacy. Researchers have extensively tailored both indole and triazole frameworks with diverse modifications to comprehend their impact on the drug's pharmacokinetic and pharmacodynamic characteristics. The current review article endeavours to explore and discuss various research strategies to design indoletriazole hybrids and elucidate their significance in a variety of pathological conditions. The insights provided herein are anticipated to be beneficial for the researchers and will likely encourage further exploration in this field.

Graphical Abstract

[1]
Zabiulla, Al-Ostoot FH, Al-Ghorbani M, Khanum SA. Recent investigation on heterocycles with one nitrogen [piperidine, pyridine and quinoline], two nitrogen [1,3,4-thiadiazole and pyrazole] and three nitrogen [1, 2, 4-triazole]: A review. J. Indian Chem. Soc., 2022, 19(1), 23-54.
[2]
Qadir, T.; Amin, A.; Sharma, P.K.; Jeelani, I.; Abe, H. A review on medicinally important heterocyclic compounds. Open Med. Chem. J., 2022, 16(1), e187410452202280.
[http://dx.doi.org/10.2174/18741045-v16-e2202280]
[3]
Amin, A.; Qadir, T.; Sharma, P.K.; Jeelani, I.; Abe, H. A Review on The Medicinal And Industrial Applications of N-Containing Heterocycles. Open Med. Chem. J., 2022, 16(1), e187410452209010.
[http://dx.doi.org/10.2174/18741045-v16-e2209010]
[4]
Kerru, N.; Gummidi, L.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 2020, 25(8), 1909.
[http://dx.doi.org/10.3390/molecules25081909] [PMID: 32326131]
[5]
Peerzada, M.N.; Hamel, E.; Bai, R.; Supuran, C.T.; Azam, A. Deciphering the key heterocyclic scaffolds in targeting microtubules, kinases and carbonic anhydrases for cancer drug development. Pharmacol. Ther., 2021, 225, 107860.
[http://dx.doi.org/10.1016/j.pharmthera.2021.107860] [PMID: 33895188]
[6]
Kabir, E.; Uzzaman, M. A review on biological and medicinal impact of heterocyclic compounds. Results in Chemistry, 2022, 4, 100606.
[http://dx.doi.org/10.1016/j.rechem.2022.100606]
[7]
Lessa, R.C.S. Synthetic Organic Molecules as Metallic Corrosion Inhibitors: General Aspects and Trends. Organics, 2023, 4(2), 232-250.
[http://dx.doi.org/10.3390/org4020019]
[8]
Shaikh, A.Z.; Jadhav, H.; Borse, D.M.; Jain, R.S. A Short Review on Structures and Synthesis of some Heterocyclic Compounds. Asian J. Res. Chem, 2021, 14(2), 149-151.
[9]
Tran, T.N.; Henary, M. Synthesis and applications of nitrogen-containing heterocycles as antiviral agents. Molecules, 2022, 27(9), 2700.
[http://dx.doi.org/10.3390/molecules27092700] [PMID: 35566055]
[10]
Sharma, P.K.; Amin, A.; Kumar, M. A review: Medicinally important nitrogen sulphur containing heterocycles. Open Med. Chem. J., 2020, 14(1), 49-64.
[http://dx.doi.org/10.2174/1874104502014010049]
[11]
Walsh, C.T. Nature loves nitrogen heterocycles. Tetrahedron Lett., 2015, 56(23), 3075-3081.
[http://dx.doi.org/10.1016/j.tetlet.2014.11.046]
[12]
Abdolmaleki, A.; Shiri, F.; Ghasemi, J.B. Use of molecular docking as a decision-making tool in drug discovery.Molecular Docking for Computer-Aided Drug Design; Academic Press, 2021, pp. 229-243.
[http://dx.doi.org/10.1016/B978-0-12-822312-3.00010-2]
[13]
Mishra, K.N.; Upadhyay, H.C. Coumarin-1,2,3-triazole hybrids as leading-edge anticancer agents. Frontiers in Drug Discovery, 2022, 2, 1072448.
[http://dx.doi.org/10.3389/fddsv.2022.1072448]
[14]
Kumar, A.; Singh, A.K.; Singh, H.; Vijayan, V.; Kumar, D.; Naik, J.; Thareja, S.; Yadav, J.P.; Pathak, P.; Grishina, M.; Verma, A.; Khalilullah, H.; Jaremko, M.; Emwas, A.H.; Kumar, P. Nitrogen Containing Heterocycles as Anticancer Agents: A Medicinal Chemistry Perspective. Pharmaceuticals, 2023, 16(2), 299.
[http://dx.doi.org/10.3390/ph16020299] [PMID: 37259442]
[15]
Kumar, S.; Khokra, S.L.; Yadav, A. Triazole analogues as potential pharmacological agents: A brief review. Future. J. Pharm. Sci., 2021, 7(1), 106.
[http://dx.doi.org/10.1186/s43094-021-00241-3] [PMID: 34056014]
[16]
Kumar, S. Ritika, A brief review of the biological potential of indole derivatives. Future. J. Pharm. Sci., 2020, 6(1), 121.
[http://dx.doi.org/10.1186/s43094-020-00141-y]
[17]
Bianco, M.C.A.D.; Marinho, D.I.L.F.; Hoelz, L.V.B.; Bastos, M.M.; Boechat, N. Pyrroles as privileged scaffolds in the search for new potential HIV inhibitors. Pharmaceuticals, 2021, 14(9), 893.
[http://dx.doi.org/10.3390/ph14090893] [PMID: 34577593]
[18]
Taweel, M.A.G.; Ibrahim, M.M.; Khan, S.; Saidi, A.H.M.; Alshamrani, M.; Alhumaydhi, F.A.; Alharthi, S.S. Medicinal importance and chemosensing applications of pyridine derivatives: A review. Crit. Rev. Anal. Chem., 2022, 20, 1-18.
[http://dx.doi.org/10.1080/10408347.2022.2089839] [PMID: 35724248]
[19]
Mohammed, M.; Haj, N. Synthesis and Pharmacological Characterization of Metronidazole-Oxadiazole Derivatives. Iran. J. Med. Sci., 2023, 48(2), 167-175.
[http://dx.doi.org/10.30476/ijms.2022.95534.2691] [PMID: 36895463]
[20]
Tabassum, K.; Ekta, P.; Kavitkumar, P. Imidazole and pyrazole: Privileged scaffolds for anti-infective activity. Mini Rev. Org. Chem., 2018, 15(6), 459-475.
[http://dx.doi.org/10.2174/1570193X15666171211170100]
[21]
Gupta, O.; Pradhan, T.; Chawla, G. An updated review on diverse range of biological activities of 1,2,4-triazole derivatives: Insight into structure activity relationship. J. Mol. Struct., 2023, 1274, 134487.
[http://dx.doi.org/10.1016/j.molstruc.2022.134487]
[22]
Price, A.T.O.; Emery, F.S.; Dehaen, W. Synthetic Pathways to Pyrido[3,4-c]pyridazines and Their Polycyclic Derivatives. Organics, 2022, 3(4), 430-445.
[http://dx.doi.org/10.3390/org3040028]
[23]
Ali, A.A. 1, 2, 3-triazoles: Synthesis and biological application; Intech Open, 2020.
[http://dx.doi.org/10.5772/intechopen.92692]
[24]
Ajani, O.O.; Iyaye, K.T.; Ademosun, O.T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs – A review. RSC Advances, 2022, 12(29), 18594-18614.
[http://dx.doi.org/10.1039/D2RA02896D] [PMID: 35873320]
[25]
Alagarsamy, V.; Chitra, K.; Saravanan, G.; Solomon, V.R.; Sulthana, M.T.; Narendhar, B. An overview of quinazolines: Pharmacological significance and recent developments. Eur. J. Med. Chem., 2018, 151, 628-685.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.076] [PMID: 29656203]
[26]
Teixeira, M.M.; Carvalho, D.T.; Sousa, E.; Pinto, E. New Antifungal Agents with Azole Moieties. Pharmaceuticals, 2022, 15(11), 1427.
[http://dx.doi.org/10.3390/ph15111427] [PMID: 36422557]
[27]
Ziarani, M.G.; Moradi, R.; Ahmadi, T.; Lashgari, N. Recent advances in the application of indoles in multicomponent reactions. RSC Advances, 2018, 8(22), 12069-12103.
[http://dx.doi.org/10.1039/C7RA13321A] [PMID: 35539427]
[28]
Wan, Y.; Li, Y.; Yan, C.; Yan, M.; Tang, Z. Indole: A privileged scaffold for the design of anti-cancer agents. Eur. J. Med. Chem., 2019, 183, 111691.
[http://dx.doi.org/10.1016/j.ejmech.2019.111691] [PMID: 31536895]
[29]
Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B, 2022, 12(7), 3006-3027.
[http://dx.doi.org/10.1016/j.apsb.2022.03.021] [PMID: 35865090]
[30]
Boddy, A.J.; Bull, J.A. Stereoselective synthesis and applications of spirocyclic oxindoles. Org. Chem. Front., 2021, 8(5), 1026-1084.
[http://dx.doi.org/10.1039/D0QO01085E]
[31]
Teng, D.; Zhang, H.; Mendonca, A. An efficient synthesis of a spirocyclic oxindole analogue. Molecules, 2006, 11(9), 700-706.
[http://dx.doi.org/10.3390/11090700] [PMID: 17971744]
[32]
Hauguel, C.; Pozzo, J.L.; Hamze, A.; Provot, O. Recent Advances in Synthesis of Pyrrolo[3,2‐ b]indole and Indolo[3,2‐ b]indole Derivatives. Asian J. Org. Chem., 2022, 11(9), e202200306.
[http://dx.doi.org/10.1002/ajoc.202200306]
[33]
Mushtaq, I.; Ahmed, A. Synthesis of biologically active sulfonamide-based indole analogs: A review. Future J. Pharmaceutical Sciences., 2023, 9(1), 1-3. Available from: https://fjps.springeropen.com/articles/10.1186/s43094-023-00500-5#article-info
[34]
Kashyap, P.; Kalaiselvan, V.; Kumar, R.; Kumar, S. Ajmalicine and reserpine: Indole alkaloids as multi-target directed ligands towards factors implicated in Alzheimer’s disease. Molecules, 2020, 25(7), 1609.
[http://dx.doi.org/10.3390/molecules25071609] [PMID: 32244635]
[35]
Chen, Y.L.; Dai, Y.H.; Wang, A.D.; Zhou, Z.Y.; Lei, M.; Liu, J.; Lin, B.; Xia, M.Y.; Wang, D. Two New Indole Alkaloids from Toad Venom of Bufo bufo gargarizans. Molecules, 2020, 25(19), 4511.
[http://dx.doi.org/10.3390/molecules25194511] [PMID: 33019706]
[36]
Plazas, E.; Faraone, N. Indole Alkaloids from Psychoactive Mushrooms: Chemical and Pharmacological Potential as Psychotherapeutic Agents. Biomedicines, 2023, 11(2), 461.
[http://dx.doi.org/10.3390/biomedicines11020461] [PMID: 36830997]
[37]
Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Simple indole alkaloids and those with a nonrearranged monoterpenoid unit. Nat. Prod. Rep., 2015, 32(10), 1389-1471.
[http://dx.doi.org/10.1039/C5NP00032G] [PMID: 26151910]
[38]
Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Simple indole alkaloids and those with a non-rearranged monoterpenoid unit. Nat. Prod. Rep., 2013, 30(5), 694-752.
[http://dx.doi.org/10.1039/c3np20118j] [PMID: 23467716]
[39]
Batiha, G.E.S.; Alkazmi, L.M.; Nadwa, E.H.; Rashwan, E.K.; Beshbishy, A.M.; Shaheen, H.; Wasef, L. Physostigmine: A plant alkaloid isolated from Physostigma venenosum: A review on pharmacokinetics, pharmacological and toxicological activities. J. Drug Deliv. Ther., 2020, 10(1-s), 187-190.
[http://dx.doi.org/10.22270/jddt.v10i1-s.3866]
[40]
Kim, J.G.; Leem, Y.E.; Kwon, I.; Kang, J.S.; Bae, Y.M.; Cho, H. Estrogen modulates serotonin effects on vasoconstriction through Src inhibition. Experimental & Molecular Medicine., 2018, 50(12), 1-9. Available from: https://www.nature.com/articles/s12276-018-0193-z#article-
[41]
Almagro, L.; Pérez, F.F.; Pedreño, M. Indole alkaloids from Catharanthus roseus: Bioproduction and their effect on human health. Molecules, 2015, 20(2), 2973-3000.
[http://dx.doi.org/10.3390/molecules20022973] [PMID: 25685907]
[42]
Wibowo, S.A.D.N.; Soebad, D.M.; Soebadi, M.A. Yohimbine as a treatment for erectile dysfunction: A systematic review and meta-analysis. Turk. J. Urol., 2021, 47(6), 482-488.
[http://dx.doi.org/10.5152/tud.2021.21206] [PMID: 35118966]
[43]
Wibowo, J.T.; Ahmadi, P.; Rahmawati, S.I.; Bayu, A.; Putra, M.Y.; Kijjoa, A. Marine-derived indole alkaloids and their biological and pharmacological activities. Mar. Drugs, 2021, 20(1), 3.
[http://dx.doi.org/10.3390/md20010003] [PMID: 35049859]
[44]
Liabsuetrakul, T.; Choobun, T.; Peeyananjarassri, K.; Islam, Q.M. Prophylactic use of ergot alkaloids in the third stage of labour. Cochrane Libr., 2018, 2018(6), CD005456.
[http://dx.doi.org/10.1002/14651858.CD005456.pub3] [PMID: 29879293]
[45]
Theja, I.; Sowmya, P.; Kuber, R.B. Updated review on extraction, isolation and quantitative estimation of ergot alkaloids. Bull. Pharm. Sci., 2022, 45(1), 63-74.
[http://dx.doi.org/10.21608/bfsa.2022.239196]
[46]
Vigerelli, H.; Sciani, J.M.; Eula, M.A.C.; Sato, L.A.; Antoniazzi, M.M.; Jared, C.; Pimenta, D.C. Biological effects and biodistribution of bufotenine on mice. BioMed Res. Int., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/1032638] [PMID: 29955598]
[47]
Panda, S.S.; Girgis, A.S.; Aziz, M.N.; Bekheit, M.S. Spirooxindole: A versatile biologically active heterocyclic scaffold. Molecules, 2023, 28(2), 618.
[http://dx.doi.org/10.3390/molecules28020618] [PMID: 36677676]
[48]
Liu, S.F.; Lee, C.K.; Huang, K.C.; Lin, L.Y.; Hsieh, M.Y.; Lin, T.T. Long-Term Effect of Non-Selective Beta-Blockers in Patients With Rheumatoid Arthritis After Myocardial Infarction—A Nationwide Cohort Study. Front. Pharmacol., 2021, 12, 726044.
[http://dx.doi.org/10.3389/fphar.2021.726044] [PMID: 34621167]
[49]
Chalmers, J.; Mourad, J.J.; Villatte, B.R.; De Champvallins, M.; Mancia, G. Benefit of treatment based on indapamide mostly combined with perindopril on mortality and cardiovascular outcomes: A pooled analysis of four trials. J. Hypertens., 2023, 41(3), 508-515.
[http://dx.doi.org/10.1097/HJH.0000000000003368]
[50]
Summ, O.; Andreou, A.P.; Akerman, S.; Holland, P.R.; Hoffmann, J.; Goadsby, P.J. Differential actions of indomethacin: Clinical relevance in headache. Pain, 2021, 162(2), 591-599.
[http://dx.doi.org/10.1097/j.pain.0000000000002032] [PMID: 32796319]
[51]
Wahaib, K.; Beggs, A.E.; Campbell, H.; Kodali, L.; Ford, P.D. Panobinostat: A histone deacetylase inhibitor for the treatment of relapsed or refractory multiple myeloma. Am. J. Health Syst. Pharm., 2016, 73(7), 441-450.
[http://dx.doi.org/10.2146/ajhp150487] [PMID: 27001985]
[52]
Dhuguru, J.; Skouta, R. Role of indole scaffolds as pharmacophores in the development of anti-lung cancer agents. Molecules, 2020, 25(7), 1615.
[http://dx.doi.org/10.3390/molecules25071615] [PMID: 32244744]
[53]
Kaushik, N.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.; Verma, A.; Choi, E. Biomedical importance of indoles. Molecules, 2013, 18(6), 6620-6662.
[http://dx.doi.org/10.3390/molecules18066620] [PMID: 23743888]
[54]
Famiglini, V.; Silvestri, R. Focus on chirality of HIV-1 non-nucleoside reverse transcriptase inhibitors. Molecules, 2016, 21(2), 221.
[http://dx.doi.org/10.3390/molecules21020221] [PMID: 26891289]
[55]
Maletic, V.; Eramo, A.; Gwin, K.; Offord, S.J.; Duffy, R.A. The role of norepinephrine and its α-adrenergic receptors in the pathophysiology and treatment of major depressive disorder and schizophrenia: A systematic review. Front. Psychiatry, 2017, 8, 42.
[http://dx.doi.org/10.3389/fpsyt.2017.00042] [PMID: 28367128]
[56]
Mills, J.; Crowe, S.M. Delavirdine.InKucers’ The Use of Antibiotics; CRC Press, 2017, pp. 3959-3969.
[57]
Church, M.K.; Casale, T.B. Principles of pharmacotherapy; Allergy E-Book, 2011, p. 147.
[58]
Schamiloglu, S.; Lewis, E.; Keeshen, C.M.; Hergarden, A.C.; Bender, K.J.; Whistler, J.L. Arrestin-3 Agonism at Dopamine D3 Receptors Defines a Subclass of Second-Generation Antipsychotics That Promotes Drug Tolerance. Biol. Psychiatry, 2023, 94(7), 531-542.
[http://dx.doi.org/10.1016/j.biopsych.2023.03.006] [PMID: 36931452]
[59]
Phillips, R.M.; Hendriks, H.R.; Sweeney, J.B.; Reddy, G.; Peters, G.J. Efficacy, pharmacokinetic and pharmacodynamic evaluation of apaziquone in the treatment of non-muscle invasive bladder cancer. Expert Opin. Drug Metab. Toxicol., 2017, 13(7), 783-791.
[http://dx.doi.org/10.1080/17425255.2017.1341490] [PMID: 28637373]
[60]
Zhou, Y.W.; Xie, Y.; Tang, L.S.; Pu, D.; Zhu, Y.J.; Liu, J.Y.; Ma, X.L. Therapeutic targets and interventional strategies in COVID-19: Mechanisms and clinical studies. Signal Transduct. Target. Ther., 2021, 6(1), 317.
[http://dx.doi.org/10.1038/s41392-021-00733-x] [PMID: 34446699]
[61]
Puledda, F.; Silva, E.M.; Suwanlaong, K.; Goadsby, P.J. Migraine: From pathophysiology to treatment. J. Neurol., 2023, 270(7), 3654-3666.
[http://dx.doi.org/10.1007/s00415-023-11706-1] [PMID: 37029836]
[62]
Chow, J.; Thompson, A.J.; Iqbal, F.; Zaidi, W.; Syed, N.I. The antidepressant sertraline reduces synaptic transmission efficacy and synaptogenesis between identified lymnaea neurons. Front. Mar. Sci., 2020, 7, 603789.
[http://dx.doi.org/10.3389/fmars.2020.603789]
[63]
Matin, M.M.; Matin, P.; Rahman, M.R.; Ben Hadda, T.; Almalki, F.A.; Mahmud, S.; Ghoneim, M.M.; Alruwaily, M.; Alshehri, S. Triazoles and their derivatives: Chemistry, synthesis, and therapeutic applications. Front. Mol. Biosci., 2022, 9, 864286.
[http://dx.doi.org/10.3389/fmolb.2022.864286] [PMID: 35547394]
[64]
Aggarwal, R.; Sumran, G. An insight on medicinal attributes of 1,2,4-triazoles. Eur. J. Med. Chem., 2020, 205, 112652.
[http://dx.doi.org/10.1016/j.ejmech.2020.112652] [PMID: 32771798]
[65]
Ali, A.A. 1, 2, 3-triazoles: Synthesis and biological application; Intech Open, 2020.
[http://dx.doi.org/10.5772/intechopen.92692]
[66]
Vala, D.P.; Vala, R.M.; Patel, H.M. Versatile Synthetic Platform for 1,2,3-Triazole Chemistry. ACS Omega, 2022, 7(42), 36945-36987.
[http://dx.doi.org/10.1021/acsomega.2c04883] [PMID: 36312377]
[67]
Guo, H.Y.; Chen, Z.A.; Shen, Q.K.; Quan, Z.S. Application of triazoles in the structural modification of natural products. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1115-1144.
[http://dx.doi.org/10.1080/14756366.2021.1890066] [PMID: 34167422]
[68]
Zhou, J.; Wei, Z.; Xu, B.; Liu, M.; Xu, R.; Wu, X. Pharmacovigilance of triazole antifungal agents: Analysis of the FDA adverse event reporting system (FAERS) database. Front. Pharmacol., 2022, 13, 1039867.
[http://dx.doi.org/10.3389/fphar.2022.1039867] [PMID: 36588707]
[69]
Gupta, N.; Kodan, P.; Mittal, A.; Singh, G.; Netto, G.; Ramteke, P.; Malla, S.; Kumar, R.; Kumar, T.P.; Singh, K.; Aggarwal, A.; Desai, D.; Soneja, M.; Xess, I.; Wig, N. Role of voriconazole in the management of invasive central nervous system aspergillosis: A case series from a tertiary care centre in India. J. Fungi, 2020, 6(3), 139.
[http://dx.doi.org/10.3390/jof6030139] [PMID: 32824829]
[70]
Peyton, L.R.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: A review. Drugs Today, 2015, 51(12), 705-718.
[http://dx.doi.org/10.1358/dot.2015.51.12.2421058] [PMID: 26798851]
[71]
Mejía, S.P.; Sánchez, A.; Vásquez, V.; Orozco, J. Functional nanocarriers for delivering itraconazole against fungal intracellular infections. Front. Pharmacol., 2021, 12, 685391.
[http://dx.doi.org/10.3389/fphar.2021.685391] [PMID: 34262456]
[72]
Li, W.; Xia, F.; Zhou, H.; Qiu, H.; Wu, D.; Ma, X.; Sun, A. Efficacy of posaconazole prophylaxis for fungal disease in hematology patients treated with chemotherapy and transplantation: An open-label, prospective, observational study. Front. Microbiol., 2020, 11, 349.
[http://dx.doi.org/10.3389/fmicb.2020.00349] [PMID: 32265849]
[73]
Wong, T.Y.; Loo, Y.S.; Veettil, S.K.; Wong, P.S.; Divya, G.; Ching, S.M.; Menon, R.K. Efficacy and safety of posaconazole for the prevention of invasive fungal infections in immunocompromised patients: A systematic review with meta-analysis and trial sequential analysis. Sci. Rep., 2020, 10(1), 14575.
[http://dx.doi.org/10.1038/s41598-020-71571-0] [PMID: 32884060]
[74]
Li, T.; Zhu, Y.; Fan, S.; Liu, X.; Xu, H.; Liang, Y. A randomized clinical trial of the efficacy and safety of terconazole vaginal suppository versus oral fluconazole for treating severe vulvovaginal candidiasis. Med. Mycol., 2015, 53(5), 455-461.
[http://dx.doi.org/10.1093/mmy/myv017] [PMID: 25877666]
[75]
Panebianco, M.; Prabhakar, H.; Marson, A.G. Rufinamide add-on therapy for drug-resistant epilepsy. Cochrane Libr., 2020, 11(11), CD011772.
[http://dx.doi.org/10.1002/14651858.CD011772.pub3] [PMID: 33179247]
[76]
Marzi, M.; Farjam, M.; Kazeminejad, Z.; Shiroudi, A.; Kouhpayeh, A.; Zarenezhad, E. A recent overview of 1, 2, 3-triazole-containing hybrids as novel antifungal agents: Focusing on synthesis, mechanism of action, and structure-activity relationship (SAR). J. Chem., 2022, 2022, 1-50.
[http://dx.doi.org/10.1155/2022/7884316]
[77]
Wu, S.; Ji, X.; Wang, J.; Wu, H.; Han, J.; Zhang, H.; Xu, J.; Qian, M. Fungicide bromuconazole has the potential to induce hepatotoxicity at the physiological, metabolomic and transcriptomic levels in rats. Environ. Pollut., 2021, 280, 116940.
[http://dx.doi.org/10.1016/j.envpol.2021.116940] [PMID: 33789219]
[78]
Szumilak, M.; Owczarek, W.A.; Stanczak, A. Hybrid drugs—A strategy for overcoming anticancer drug resistance? Molecules, 2021, 26(9), 2601.
[http://dx.doi.org/10.3390/molecules26092601] [PMID: 33946916]
[79]
Gontijo, V.S.; Viegas, F.P.D.; Ortiz, C.J.C.; Silva, F.M.; Damasio, C.M.; Rosa, M.C.; Campos, T.G.; Couto, D.S.; Dias, T.K.S.; Viegas, C. Molecular hybridization as a tool in the design of multi-target directed drug candidates for neurodegenerative diseases. Curr. Neuropharmacol., 2020, 18(5), 348-407.
[http://dx.doi.org/10.2174/1385272823666191021124443] [PMID: 31631821]
[80]
Singh, A.K.; Kumar, A.; Singh, H.; Sonawane, P.; Paliwal, H.; Thareja, S.; Pathak, P.; Grishina, M.; Jaremko, M.; Emwas, A.H.; Yadav, J.P.; Verma, A.; Khalilullah, H.; Kumar, P. Concept of hybrid drugs and recent advancements in anticancer hybrids. Pharmaceuticals, 2022, 15(9), 1071.
[http://dx.doi.org/10.3390/ph15091071] [PMID: 36145292]
[81]
Sunil, R.J.; Pal, S.; Jayashree, A. Molecular hybridization-An emanating tool in drug design. Med. Chem., 2019, 9(6), 93-95.
[82]
Yele, V.; Pindiprolu, S.K.S.S.; Sana, S.; Ramamurty, D.S.V.N.M.; Madasi, J.R.K.; Vadlamani, S. Synthesis and Preclinical Evaluation of Indole Triazole Conjugates as Microtubule Targeting Agents that are Effective against MCF-7 Breast Cancer Cell Lines. Anticancer. Agents Med. Chem., 2021, 21(8), 1047-1055.
[http://dx.doi.org/10.2174/1871520620666200925102940] [PMID: 32981511]
[83]
Berdzik, N.; Jasiewicz, B.; Ostrowski, K.; Sierakowska, A.; Szlaużys, M.; Nowak, D.; Mrówczyńska, L. Novel gramine-based bioconjugates obtained by click chemistry as cytoprotective compounds and potent antibacterial and antifungal agents. Nat. Prod. Res., 2023, 26, 1-7. Advance online publication
[http://dx.doi.org/10.1080/14786419.2023.2261139] [PMID: 37752775]
[84]
Ponnam, D.; Arigari, N.K.; Naga, K.V.S.S.; Jonnala, K.K.; Singh, S.; Meena, A.; Misra, P.; Luqman, S. Synthesis of non‐toxic anticancer active forskolin‐indole‐triazole conjugates along with their in silico succinate dehydrogenase inhibition studies. J. Heterocycl. Chem., 2021, 58(11), 2090-2101.
[http://dx.doi.org/10.1002/jhet.4332]
[85]
Richmond, S.R.; Touchberry, C.D.; Gallagher, P.M. Forskolin attenuates the action of insulin on the Akt-mTOR pathway in human skeletal muscle. Appl. Physiol. Nutr. Metab., 2009, 34(5), 916-925.
[http://dx.doi.org/10.1139/H09-096] [PMID: 19935854]
[86]
Wu, M.K.; Man, R.J.; Liao, Y.J.; Zhu, H.L.; Zhou, Z.G. Discovery of novel indole‐1, 2, 4‐triazole derivatives as tubulin polymerization inhibitors. Drug Dev. Res., 2021, 82(7), 1008-1020.
[87]
Sharma, S.; Poliks, B.; Chiauzzi, C.; Ravindra, R.; Blanden, A.R.; Bane, S. Characterization of the colchicine binding site on avian tubulin isotype betaVI. Biochemistry, 2010, 49(13), 2932-2942.
[http://dx.doi.org/10.1021/bi100159p] [PMID: 20178367]
[88]
Flynn, B.L.; Gill, G.S.; Grobelny, D.W.; Chaplin, J.H.; Paul, D.; Leske, A.F.; Lavranos, T.C.; Chalmers, D.K.; Charman, S.A.; Kostewicz, E.; Shackleford, D.M.; Morizzi, J.; Hamel, E.; Jung, M.K.; Kremmidiotis, G. Discovery of 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105), a tubulin polymerization inhibitor with potent antiproliferative and tumor vascular disrupting properties. J. Med. Chem., 2011, 54(17), 6014-6027.
[http://dx.doi.org/10.1021/jm200454y] [PMID: 21774499]
[89]
Yu, K.; Li, R.; Yang, Z.; Wang, F.; Wu, W.; Wang, X.; Nie, C.; Chen, L. Discovery of a potent microtubule-targeting agent: Synthesis and biological evaluation of water-soluble amino acid prodrug of combretastatin A-4 derivatives. Bioorg. Med. Chem. Lett., 2015, 25(11), 2302-2307.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.028] [PMID: 25933592]
[90]
Tanitame, A.; Oyamada, Y.; Ofuji, K.; Fujimoto, M.; Iwai, N.; Hiyama, Y.; Suzuki, K.; Ito, H.; Terauchi, H.; Kawasaki, M.; Nagai, K.; Wachi, M.; Yamagishi, J. Synthesis and antibacterial activity of a novel series of potent DNA gyrase inhibitors. Pyrazole derivatives. J. Med. Chem., 2004, 47(14), 3693-3696.
[http://dx.doi.org/10.1021/jm030394f] [PMID: 15214796]
[91]
Singh, P.; Swain, B.; Thacker, P.S.; Sigalapalli, D.K.; Yadav, P.P.; Angeli, A.; Supuran, C.T.; Arifuddin, M. Synthesis and carbonic anhydrase inhibition studies of sulfonamide based indole-1,2,3-triazole chalcone hybrids. Bioorg. Chem., 2020, 99, 103839.
[http://dx.doi.org/10.1016/j.bioorg.2020.103839] [PMID: 32289586]
[92]
Nocentini, A.; Donald, W.A. Supuran, CT Human carbonic anhydrases: Tissue distribution, physiological role, and druggability.InCarbonic anhydrases; Academic Press, 2019, pp. 151-185.
[93]
Supuran, C.T. Indisulam: An anticancer sulfonamide in clinical development. Expert Opin. Investig. Drugs, 2003, 12(2), 283-287.
[http://dx.doi.org/10.1517/13543784.12.2.283] [PMID: 12556221]
[94]
Hicklin, D.J.; Ellis, L.M. Ellis. Role of the vascular endothelial growth factor pathway in tumor growth a nd angiogenesis. J. Clin. Oncol., 2005, 23, 1011e.
[95]
Syed, R.; Singh, V.; Shin, H.S.V.; Patel, R. Kinase inhibitor indole derivatives as anticancer agents: A patent review. Recent Patents Anticancer Drug Discov., 2017, 12(1), 55-72.
[http://dx.doi.org/10.2174/1574892811666161003112119]
[96]
Kaur, R.; Dwivedi, R.A.; Kumar, B.; Kumar, V. Recent developments on 1, 2, 4-triazole nucleus in anticancer compounds: A review. Anticancer. Agents in Medicinal Chemistry, 2016, 16(4), 465-489.
[97]
Zhang, Q.; Peng, Y.; Wang, X.I.; Keenan, S.M.; Arora, S.; Welsh, W.J. Highly potent triazole-based tubulin polymerization inhibitors. J. Med. Chem., 2007, 50(4), 749-754.
[http://dx.doi.org/10.1021/jm061142s] [PMID: 17249649]
[98]
Hussain, A.S.A.; Farghaly, T.A.; Zaki, M.E.A.; Abdulwahab, H.G.; Qurashi, A.N.T.; Muhammad, Z.A. Discovery of novel indolyl-1,2,4-triazole hybrids as potent vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors with potential anti-renal cancer activity. Bioorg. Chem., 2020, 105, 104330.
[http://dx.doi.org/10.1016/j.bioorg.2020.104330] [PMID: 33038552]
[99]
Boraei, AT; Singh, PK; Sechi, M; Satta, S Discovery of novel functionalized 1, 2, 4-triazoles as PARP-1 inhibitors in breast cancer: Design, synthesis and antitumor activity evaluation. European Journal of Medicinal Chemistry, 2019, 15, 182:111621.
[100]
Jeggo, P.A.; Löbrich, M. How cancer cells hijack DNA double-strand break repair pathways to gain genomic instability. Biochem. J., 2015, 471(1), 1-11.
[http://dx.doi.org/10.1042/BJ20150582] [PMID: 26392571]
[101]
Jaiswal, M.K.; Tiwari, V.K. Growing Impact of Intramolecular Click Chemistry in Organic Synthesis. Chem. Rec., 2023, 23(11), e202300167.
[http://dx.doi.org/10.1002/tcr.202300167] [PMID: 37522634]
[102]
Manjula, R; Gokhale, N; Unni, S; Deshmukh, P; Reddyrajula, R; Bharath, MS; Dalimba, U; Padmanabhan, B Design, synthesis, in-vitro evaluation and molecular docking studies of novel indole derivatives as inhibitors of SIRT1 and SIRT2. Bioorganic Chemistry., 2019, 1, 92:103281.
[103]
Singh, M.S.; Chowdhury, S.; Koley, S. Advances of azide-alkyne cycloaddition-click chemistry over the recent decade. Tetrahedron, 2016, 72(35), 5257-5283.
[http://dx.doi.org/10.1016/j.tet.2016.07.044]
[104]
Zhou, Z.; Ma, T.; Zhu, Q.; Xu, Y.; Zha, X. Recent advances in inhibitors of sirtuin1/2: An update and perspective. Future Med. Chem., 2018, 10(8), 907-934.
[http://dx.doi.org/10.4155/fmc-2017-0207] [PMID: 29642711]
[105]
Donmez, G.; Outeiro, T.F. SIRT1 and SIRT2: Emerging targets in neurodegeneration. EMBO Mol. Med., 2013, 5(3), 344-352.
[http://dx.doi.org/10.1002/emmm.201302451] [PMID: 23417962]
[106]
Gour, J.; Gatadi, S.; Pooladanda, V.; Ghouse, S.M.; Malasala, S.; Madhavi, Y.V.; Godugu, C.; Nanduri, S. Facile synthesis of 1,2,3-triazole-fused indolo- and pyrrolo[1,4]diazepines, DNA-binding and evaluation of their anticancer activity. Bioorg. Chem., 2019, 93, 103306.
[http://dx.doi.org/10.1016/j.bioorg.2019.103306] [PMID: 31586710]
[107]
Naaz, F.; Pallavi, P.M.C.; Shafi, S.; Mulakayala, N.; Yar, S.M.; Kumar, S.H.M. 1,2,3-triazole tethered Indole-3-glyoxamide derivatives as multiple inhibitors of 5-LOX, COX-2 & tubulin: Their anti-proliferative & anti-inflammatory activity. Bioorg. Chem., 2018, 81, 1-20.
[http://dx.doi.org/10.1016/j.bioorg.2018.07.029] [PMID: 30081353]
[108]
Wang, B.; Wu, L.; Chen, J.; Dong, L.; Chen, C.; Wen, Z.; Hu, J.; Fleming, I.; Wang, D.W. Metabolism pathways of arachidonic acids: Mechanisms and potential therapeutic targets. Signal Transduct. Target. Ther., 2021, 6(1), 94.
[http://dx.doi.org/10.1038/s41392-020-00443-w] [PMID: 33637672]
[109]
Gregor, J.I.; Kilian, M.; Heukamp, I.; Kiewert, C.; Kristiansen, G.; Schimke, I.; Walz, M.K.; Jacobi, C.A.; Wenger, F.A. Effects of selective COX-2 and 5-LOX inhibition on prostaglandin and leukotriene synthesis in ductal pancreatic cancer in Syrian hamster. Prostaglandins Leukot. Essent. Fatty Acids, 2005, 73(2), 89-97.
[http://dx.doi.org/10.1016/j.plefa.2005.04.016] [PMID: 15964750]
[110]
Choppara, P.; Bethu, M.S.; Prasad, V.Y.; Rao, V.J.; Ranjan, U.T.J.; Prasad, S.G.V.; Doradla, R.; Murthy, Y.L.N. Synthesis, characterization and cytotoxic investigations of novel bis(indole) analogues besides antimicrobial study. Arab. J. Chem., 2019, 12(8), 2721-2731.
[http://dx.doi.org/10.1016/j.arabjc.2015.05.015]
[111]
Cai, H.; Huang, X.; Xu, S.; Shen, H.; Zhang, P.; Huang, Y.; Jiang, J.; Sun, Y.; Jiang, B.; Wu, X.; Yao, H.; Xu, J. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. Eur. J. Med. Chem., 2016, 108, 89-103.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.013] [PMID: 26638042]
[112]
Wang, G.; Li, C.; He, L.; Lei, K.; Wang, F.; Pu, Y.; Yang, Z.; Cao, D.; Ma, L.; Chen, J.; Sang, Y.; Liang, X.; Xiang, M.; Peng, A.; Wei, Y.; Chen, L. Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents. Bioorg. Med. Chem., 2014, 22(7), 2060-2079.
[http://dx.doi.org/10.1016/j.bmc.2014.02.028] [PMID: 24629450]
[113]
Kumar, D.; Kumar, M.N.; Tantak, M.P.; Ogura, M.; Kusaka, E.; Ito, T. Synthesis and identification of α-cyano bis(indolyl)chal] cones as novel anticancer agents. Bioorg. Med. Chem. Lett., 2014, 24(22), 5170-5174.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.085] [PMID: 25442306]
[114]
Al-Wabli, R.I.; Alsulami, M.A.; Bukhari, S.I.; Moubayed, N.M.S.; Al-Mutairi, M.S.; Attia, M.I. Design, synthesis, and antimicrobial activity of certain new indole-1, 2, 4 triazole conjugates. Molecules, 2021, 26(8), 2292.
[http://dx.doi.org/10.3390/molecules26082292] [PMID: 33920952]
[115]
Mokariya, J.A.; Kalola, A.G.; Prasad, P.; Patel, M.P. Simultaneous ultrasound- and microwave-assisted one-pot ‘click’ synthesis of 3-formyl-indole clubbed 1,2,3-triazole derivatives and their biological evaluation. Mol. Divers., 2022, 26(2), 963-979.
[http://dx.doi.org/10.1007/s11030-021-10212-8] [PMID: 33834361]
[116]
Meleddu, R.; Petrikaite, V.; Distinto, S.; Arridu, A.; Angius, R.; Serusi, L.; Škarnulytė, L.; Endriulaitytė, U.; Paškevičiu̅tė, M.; Cottiglia, F.; Gaspari, M.; Taverna, D.; Deplano, S.; Fois, B.; Maccioni, E. Investigating the anticancer activity of isatin/dihydro-] pyrazole hybrids. ACS Med. Chem. Lett., 2019, 10(4), 571-576.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00596] [PMID: 30996798]
[117]
Cheke, RS; Patil, VM; Firke, SD; Ambhore, JP; Ansari, IA; Patel, HM; Shinde, SD; Pasupuleti, VR; Hassan, MI; Adnan, M; Kadri, A Therapeutic outcomes of isatin and its derivatives against multiple diseases: Recent developments in drug discovery. Pharmaceuticals, 2022, 22(15)(3), 272.
[118]
Hou, Y.; Shang, C.; Wang, H.; Yun, J. Isatin–azole hybrids and their anticancer activities. Arch. Pharm., 2020, 353(1), 1900272.
[http://dx.doi.org/10.1002/ardp.201900272] [PMID: 31691360]
[119]
Vine, K.L.; Matesic, L.; Locke, J.M.; Skropeta, D. Recent highlights in the development of isatin-based anticancer agents. Adv. Anticancer Agents Med. Chem., 2013, 2, 254-312.
[http://dx.doi.org/10.2174/9781608054961113020008]
[120]
Tangadanchu, V.K.R.; Sui, Y.F.; Zhou, C.H. Isatin-derived azoles as new potential antimicrobial agents: Design, synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2021, 41, 128030.
[http://dx.doi.org/10.1016/j.bmcl.2021.128030] [PMID: 33839249]
[121]
Suryapeta, S.; Papigani, N.; Banothu, V.; Dubey, P.K.; Mukkanti, K.; Pal, S. Synthesis, biological evaluation, and docking study of a series of 1,4‐disubstituted 1,2,3‐triazole derivatives with an indole‐triazole‐peptide conjugate. J. Heterocycl. Chem., 2020, 57(8), 3126-3141.
[http://dx.doi.org/10.1002/jhet.4020]
[122]
Hein, J.E.; Fokin, V.V. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: New reactivity of copper(i) acetylides. Chem. Soc. Rev., 2010, 39(4), 1302-1315.
[http://dx.doi.org/10.1039/b904091a] [PMID: 20309487]
[123]
Deswal, S. Naveen; Tittal, R.K.; Vikas, G.D.; Lal, K.; Kumar, A. 5-Fluoro-1H-indole-2,3-dione-triazoles- synthesis, biological activity, molecular docking, and DFT study. J. Mol. Struct., 2020, 1209, 127982.
[http://dx.doi.org/10.1016/j.molstruc.2020.127982]
[124]
Hartman, P.G.; Sanglard, D. Inhibitors of ergosterol biosynthesis as antifungal agents. Curr. Pharm. Des., 1997, 3(2), 177-208.
[http://dx.doi.org/10.2174/138161280302221006115933]
[125]
Musiol, R.; Kowalczyk, W. Azole antimycotics--A highway to new drugs or a dead end? Curr. Med. Chem., 2012, 19(9), 1378-1388.
[http://dx.doi.org/10.2174/092986712799462621] [PMID: 22257053]
[126]
Mishra, S.; Kaur, M.; Chander, S.; Murugesan, S.; Nim, L.; Arora, D.S.; Singh, P. Rational modification of a lead molecule: Improving the antifungal activity of indole – triazole – amino acid conjugates. Eur. J. Med. Chem., 2018, 155, 658-669.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.039] [PMID: 29936353]
[127]
Sharma, K.; Tanwar, O.; Deora, G.S.; Ali, S.; Alam, M.M.; Zaman, M.S.; Krishna, V.S.; Sriram, D.; Akhter, M. Expansion of a novel lead targeting M. tuberculosis DHFR as antitubercular agents. Bioorg. Med. Chem., 2019, 27(7), 1421-1429.
[http://dx.doi.org/10.1016/j.bmc.2019.02.053] [PMID: 30827867]
[128]
Chawla, P.; Teli, G.; Gill, R.K.; Narang, R.K. An insight into synthetic strategies and recent developments of dihydrofolate reductase inhibitors. ChemistrySelect, 2021, 6(43), 12101-12145.
[http://dx.doi.org/10.1002/slct.202102555]
[129]
Ashok, D.; Gundu, S.; Aamate, V.K.; Devulapally, M.G. Conventional and microwave-assisted synthesis of new indole-tethered benzimidazole-based 1,2,3-triazoles and evaluation of their antimycobacterial, antioxidant and antimicrobial activities. Mol. Divers., 2018, 22(4), 769-778.
[http://dx.doi.org/10.1007/s11030-018-9828-1] [PMID: 29671194]
[130]
Tiberi, S.; Torrico, M.M.; Duarte, R.; Dalcolmo, M.; D’Ambrosio, L.; Migliori, G.B. New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology, 2018, 24(2), 86-98.
[http://dx.doi.org/10.1016/j.rppnen.2017.10.009] [PMID: 29487031]
[131]
Mikusová, K.; Makarov, V.; Neres, J. DprE1--from the discovery to the promising tuberculosis drug target. Curr. Pharm. Des., 2014, 20(27), 4379-4403.
[http://dx.doi.org/10.2174/138161282027140630122724] [PMID: 24245764]
[132]
Neto, L.R.G.; Cavalcante, N.N.M.; Srivastava, R.M.; Junior, M.F.J.B.; Wanderley, A.G.; Neves, R.P.; dos Anjos, J.V. Synthesis of 1,2,3-triazole derivatives and in vitro antifungal evaluation on Candida strains. Molecules, 2012, 17(5), 5882-5892.
[http://dx.doi.org/10.3390/molecules17055882] [PMID: 22592091]
[133]
Sashidhara, K.V.; Rao, K.B.; Sonkar, R.; Modukuri, R.K.; Chhonker, Y.S.; Kushwaha, P.; Chandasana, H.; Khanna, A.K.; Bhatta, R.S.; Bhatia, G.; Suthar, M.K.; Saxena, J.K.; Kumar, V.; Siddiqi, M.I. Hybrids of coumarin–indole: design, synthesis and biological evaluation in Triton WR-1339 and high-fat diet induced hyperlipidemic rat models. MedChemComm, 2016, 7(9), 1858-1869.
[http://dx.doi.org/10.1039/C6MD00283H]
[134]
Danne, A.B.; Choudhari, A.S.; Chakraborty, S.; Sarkar, D.; Khedkar, V.M.; Shingate, B.B. Triazole–diindolylmethane conjugates as new antitubercular agents: Synthesis, bioevaluation, and molecular docking. MedChemComm, 2018, 9(7), 1114-1130.
[http://dx.doi.org/10.1039/C8MD00055G] [PMID: 30108999]
[135]
Gani, RS; Timanagouda, K; Madhushree, S; Joshi, SD; Hiremath, MB; Mujawar, SB; Kudva, AK Synthesis of novel indole, 1, 2, 4-triazole derivatives as potential glucosidase inhibitors. Journal of King Saud University-Science, 2020, 1, 32(8), 3388-99.
[136]
Hinnen, D.A. Therapeutic options for the management of postprandial glucose in patients with type 2 diabetes on basal insulin. Clin. Diabetes, 2015, 33(4), 175-180.
[http://dx.doi.org/10.2337/diaclin.33.4.175] [PMID: 26487791]
[137]
Scott, L.J.; Spencer, C.M. Miglitol. Drugs, 2000, 59(3), 521-549.
[http://dx.doi.org/10.2165/00003495-200059030-00012] [PMID: 10776834]
[138]
Onda, K.; Shiraki, R.; Ogiyama, T.; Yokoyama, K.; Momose, K.; Katayama, N.; Orita, M.; Yamaguchi, T.; Furutani, M.; Hamada, N.; Takeuchi, M.; Okada, M.; Ohta, M.; Tsukamoto, S. Design, synthesis, and pharmacological evaluation of N-bicyclo-5-chloro-1H-indole-2-carboxamide derivatives as potent glycogen phosphorylase inhibitors. Bioorg. Med. Chem., 2008, 16(23), 10001-10012.
[http://dx.doi.org/10.1016/j.bmc.2008.10.021] [PMID: 18952447]
[139]
Noreen, T.; Taha, M.; Imran, S.; Chigurupati, S.; Rahim, F.; Selvaraj, M.; Ismail, N.H.; Mohammad, J.I.; Ullah, H. javid, M.T.; Nawaz, F.; Irshad, M.; Ali, M. Synthesis of alpha amylase inhibitors based on privileged indole scaffold. Bioorg. Chem., 2017, 72, 248-255.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.010] [PMID: 28482265]
[140]
Gong, Z.; Peng, Y.; Qiu, J.; Cao, A.; Wang, G.; Peng, Z. Synthesis, in vitro α-glucosidase inhibitory activity and molecular docking studies of novel benzothiazole-triazole derivatives. Molecules, 2017, 22(9), 1555.
[http://dx.doi.org/10.3390/molecules22091555] [PMID: 28914795]
[141]
Sharma, A.; Dubey, R.; Bhupal, R.; Patel, P.; Verma, S.K.; Kaya, S.; Asati, V. An insight on medicinal attributes of 1,2,3‐ and 1,2,4‐triazole derivatives as alpha-amylase and alpha-glucosidase inhibitors. Mol. Divers., 2023, 21, 1-30.
[http://dx.doi.org/10.1007/s11030-023-10728-1] [PMID: 37733243]
[142]
Saeedi, M.; Khanaposhtani, M.M.; Asgari, M.S.; Eghbalnejad, N.; Imanparast, S.; Faramarzi, M.A.; Larijani, B.; Mahdavi, M.; Akbarzadeh, T. Design, synthesis, in vitro, and in silico studies of novel diarylimidazole-1,2,3-triazole hybrids as potent α-glucosidase inhibitors. Bioorg. Med. Chem., 2019, 27(23), 115148.
[http://dx.doi.org/10.1016/j.bmc.2019.115148] [PMID: 31679980]
[143]
Nazir, M.; Abbasi, M.A. Aziz-ur-Rehman; Siddiqui, S.Z.; Khan, K.M.; Kanwal; Salar, U.; Shahid, M.; Ashraf, M.; Lodhi, A.M.; Khan, A.F. New indole based hybrid oxadiazole scaffolds with N-substituted acetamides: As potent anti-diabetic agents. Bioorg. Chem., 2018, 81, 253-263.
[http://dx.doi.org/10.1016/j.bioorg.2018.08.010] [PMID: 30153590]
[144]
Taha, M.; Rahim, F.; Imran, S.; Ismail, N.H.; Ullah, H.; Selvaraj, M.; Javid, M.T.; Salar, U.; Ali, M.; Khan, K.M. Synthesis, α -glucosidase inhibitory activity and in silico study of tris -indole hybrid scaffold with oxadiazole ring: As potential leads for the management of type-II diabetes mellitus. Bioorg. Chem., 2017, 74, 30-40.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.009] [PMID: 28750203]
[145]
Ebrahimi, S.S.E.; Babania, H.; Khanaposhtani, M.M.; Asgari, M.S.; Mojtabavi, S.; Faramarzi, M.A.; Meymandi, Y.A.; Zareie, S.; Larijani, B.; Biglar, M.; Rastgar, H.; Foroumadi, A.; Mahdavi, M. Design, synthesis, and biological evaluation of new indole-acrylamide-1, 2, 3-triazole derivatives as potential α-glucosidase inhibitors. Polycycl. Aromat. Compd., 2022, 42(6), 3157-3165.
[http://dx.doi.org/10.1080/10406638.2020.1854323]
[146]
Mohsin, N.A.; Aslam, S.; Ahmad, M.; Irfan, M.; Al-Hussain, S.A.; Zaki, M.E.A. Cyclooxygenase-2 (COX-2) as a target of anticancer agents: A review of novel synthesized scaffolds having anticancer and COX-2 inhibitory potentialities. Pharmaceuticals, 2022, 15(12), 1471.
[http://dx.doi.org/10.3390/ph15121471] [PMID: 36558921]
[147]
Boshra, A.N.; Abdu-Allah, H.H.M.; Mohammed, A.F.; Hayallah, A.M. Click chemistry synthesis, biological evaluation and docking study of some novel 2′-hydroxychalcone-triazole hybrids as potent anti-inflammatory agents. Bioorg. Chem., 2020, 95, 103505.
[http://dx.doi.org/10.1016/j.bioorg.2019.103505] [PMID: 31901755]
[148]
Li, J.; Nie, C.; Qiao, Y.; Hu, J.; Li, Q.; Wang, Q.; Pu, X.; Yan, L.; Qian, H. Design, synthesis and biological evaluation of novel 2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole triazole derivatives as potent TRPV1 antagonists. Eur. J. Med. Chem., 2019, 178, 433-445.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.007] [PMID: 31202991]
[149]
Nagy, I; Paule, CC White, JP Molecular mechanisms of TRPV1-mediated pain. Neuroimmune biology, 2009, 8, 75-99.
[http://dx.doi.org/10.1016/S1567-7443(08)10404-5]
[150]
Szychowski, J.; Truchon, J.F.; Bennani, Y.L. Natural products in medicine: Transformational outcome of synthetic chemistry. J. Med. Chem., 2014, 57(22), 9292-9308.
[http://dx.doi.org/10.1021/jm500941m] [PMID: 25144261]
[151]
Wang, S.; Yamamoto, S.; Kogure, Y.; Zhang, W.; Noguchi, K.; Dai, Y. Partial activation and inhibition of TRPV1 channels by evodiamine and rutaecarpine, two major components of the fruits of Evodia rutaecarpa. J. Nat. Prod., 2016, 79(5), 1225-1230.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00599] [PMID: 27159637]
[152]
Terada, Y.; Horie, S.; Takayama, H.; Uchida, K.; Tominaga, M.; Watanabe, T. Activation and inhibition of thermosensitive TRP channels by voacangine, an alkaloid present in Voacanga africana, an African tree. J. Nat. Prod., 2014, 77(2), 285-297.
[http://dx.doi.org/10.1021/np400885u] [PMID: 24484240]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy