Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Research Article

Dermal Delivery of Hypericum perforatum (L.) Loaded Nanogel: Formulation to Preclinical Psoriasis Assessment

Author(s): Neelam Singh, Shubh Deep Yadav, Puneet Gupta*, Faraat Ali and Sandeep Arora

Volume 18, Issue 2, 2024

Published on: 17 May, 2024

Page: [138 - 154] Pages: 17

DOI: 10.2174/0126673878288239240415041832

Price: $65

Abstract

Background: Nanophytosomes represent an effective choice for topical drug delivery systems thanks to their small size, general non-toxicity, ease of functionalization and high surface to volume ratio. The goal of the current study was to investigate the potential benefits of using Hypericum perforatum extract nanogel as a means of improving skin penetration and prolonging skin deposition in dermatitis similar to psoriasis.

Methods: Nanophytosomes (NPs) were developed, optimised and thoroughly characterised. The optimised NPs were then placed in a Carbopol gel base matrix and tested ex-vivo (skin penetration and dermatokinetic) and in-vivo (antipsoriatic activity in an Imiquimod-induced psoriatic rat model).

Results: The optimised NPs had a spherical form and entrapment efficiency of 69.68% with a nanosized and zeta potential of 168 nm and -10.37mV, respectively. XRD spectra and transmission electron microscopy tests confirmed the plant botanical encapsulation in the NPs. Following 60 days of storage at 40 ± 2°C/75 ± 5% RH, the optimised formula remained relatively stable. As compared to extract gel, nano-gel showed a much-improved ex vivo permeability profile and considerable drug deposition in the viable epidermal-dermal layers. When developed nano-gel was applied topically to a rat model of psoriasis, it demonstrated distinct in vivo anti-psoriatic efficacy in terms of drug activity and reduction of epidermal thickness in comparison to other formulations and the control. ELISA and histopathologic studies also demonstrated that nano-organogel had improved skin integrity and downregulated inflammatory markers (IL-17, IL-6, IFN-γ and MCP-1).

Conclusion: Findings suggest that a developed plant botanicals-based nanogel has a potential for the treatment of psoriasis-like dermatitis with better skin retention and effectiveness.

Graphical Abstract

[1]
Vestita M, Tedeschi P, Bonamonte D. Anatomy and physiology of the skin. In: Maruccia M, Giudice G, Eds. Textb Plast Reconstr Surg Basic Princ New Perspect. Cham: Springer International Publishing 2022; pp. 3-13. [Internet]
[http://dx.doi.org/10.1007/978-3-030-82335-1_1]
[2]
Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci 2019; 20(6): 1475.
[http://dx.doi.org/10.3390/ijms20061475] [PMID: 30909615]
[3]
Ortiz-Lopez LI, Choudhary V, Bollag WB. Updated perspectives on keratinocytes and psoriasis: Keratinocytes are more than innocent bystanders. Psoriasis 2022; 12: 73-87.
[http://dx.doi.org/10.2147/PTT.S327310] [PMID: 35529056]
[4]
Korman NJ. Management of psoriasis as a systemic disease: What is the evidence? Br J Dermatol 2020; 182(4): 840-8.
[http://dx.doi.org/10.1111/bjd.18245] [PMID: 31225638]
[5]
Deng Y, Chang C, Lu Q. The inflammatory response in psoriasis: A comprehensive review. Clin Rev Allergy Immunol 2016; 50(3): 377-89.
[http://dx.doi.org/10.1007/s12016-016-8535-x] [PMID: 27025861]
[6]
Petit RG, Cano A, Ortiz A, et al. Psoriasis: From pathogenesis to pharmacological and nano-technological-based therapeutics. Int J Mol Sci 2021; 22(9): 4983.
[http://dx.doi.org/10.3390/ijms22094983] [PMID: 34067151]
[7]
Desmet E, Ramadhas A, Lambert J, Van Gele M. In vitro psoriasis models with focus on reconstructed skin models as promising tools in psoriasis research. Exp Biol Med 2017; 242(11): 1158-69.
[http://dx.doi.org/10.1177/1535370217710637] [PMID: 28585891]
[8]
Dand N, Mahil S, Capon F, Smith C, Simpson M, Barker J. Psoriasis and genetics. Acta Derm Venereol 2020; 100(3): 55-65.
[http://dx.doi.org/10.2340/00015555-3384] [PMID: 31971603]
[9]
Nast A, Smith C, Spuls PI, et al. EuroGuiDerm Guideline on the systemic treatment of Psoriasis vulgaris Part 2: Specific clinical and comorbid situations. J Eur Acad Dermatol Venereol 2021; 35(2): 281-317.
[http://dx.doi.org/10.1111/jdv.16926] [PMID: 33547728]
[10]
Thappa D, Munisamy M. Research on psoriasis in India: Where do we stand? Indian J Med Res 2017; 146(2): 147-9.
[http://dx.doi.org/10.4103/ijmr.IJMR_1296_17] [PMID: 29265013]
[11]
Jiang Y, Tsoi LC, Billi AC, et al. Cytokinocytes: The diverse contribution of keratinocytes to immune responses in skin. JCI Insight 2020; 5(20): e142067.
[http://dx.doi.org/10.1172/jci.insight.142067] [PMID: 33055429]
[12]
de Alcantara CC, Reiche EMV, Simão ANC. Cytokines in psoriasis. Adv Clin Chem 2021; 100: 171-204.
[http://dx.doi.org/10.1016/bs.acc.2020.04.004] [PMID: 33453865]
[13]
Sharma RK, Sharma MR, Mahendra A, Kumar S. Role of inflammatory cytokines in pathophysiology of psoriasis. Curr Pharmacol Rep 2022; 8(2): 99-105.
[http://dx.doi.org/10.1007/s40495-021-00277-2]
[14]
Seyedmirzaei H, Rezaei N. Cytokine alterations in psoriasis: An updated review. Expert Rev Clin Immunol 2021; 17(12): 1323-35.
[http://dx.doi.org/10.1080/1744666X.2022.2011720] [PMID: 34845948]
[15]
Pradhan M, Alexander A, Singh MR, et al. Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed Pharmacother 2018; 107: 447-63.
[http://dx.doi.org/10.1016/j.biopha.2018.07.156] [PMID: 30103117]
[16]
Pradhan M, Singh D, Singh MR. Novel colloidal carriers for psoriasis: Current issues, mechanistic insight and novel delivery approaches. J Control Release 2013; 170(3): 380-95.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.020] [PMID: 23770117]
[17]
Heydendael VMR, Spuls PI, Opmeer BC, et al. Methotrexate versus cyclosporine in moderate-to-severe chronic plaque psoriasis. N Engl J Med 2003; 349(7): 658-65.
[http://dx.doi.org/10.1056/NEJMoa021359] [PMID: 12917302]
[18]
Micha R, Imamura F, Wyler von Ballmoos M, et al. Systematic review and meta-analysis of methotrexate use and risk of cardiovascular disease. Am J Cardiol 2011; 108(9): 1362-70.
[http://dx.doi.org/10.1016/j.amjcard.2011.06.054] [PMID: 21855836]
[19]
Abu Hashim I, Abo El-Magd N, El-Sheakh A, Hamed M, Abd El-Gawad AEG. Pivotal role of Acitretin nanovesicular gel for effective treatment of psoriasis: Ex vivoin vivo evaluation study. Int J Nanomedicine 2018; 13: 1059-79.
[http://dx.doi.org/10.2147/IJN.S156412] [PMID: 29503541]
[20]
Richard EG, Hönigsmann H. Phototherapy, psoriasis, and the age of biologics. Photodermatol Photoimmunol Photomed 2014; 30(1): 3-7.
[http://dx.doi.org/10.1111/phpp.12088] [PMID: 24313462]
[21]
Nowak-Perlak M, Szpadel K, Jabłońska I, Pizon M, Woźniak M. Promising strategies in plant-derived treatments of psoriasis-update of in vitro, in vivo, and clinical trials studies. Molecules 2022; 27(3): 591.
[http://dx.doi.org/10.3390/molecules27030591] [PMID: 35163855]
[22]
Armstrong AW, Read C. Pathophysiology, clinical presentation, and treatment of psoriasis. JAMA 2020; 323(19): 1945-60.
[http://dx.doi.org/10.1001/jama.2020.4006] [PMID: 32427307]
[23]
Dawoud MHS, Abdel-Daim A, Nour MS, Sweed NM. A quality by design paradigm for albumin-based nanoparticles: formulation optimization and enhancement of the antitumor activity. J Pharm Innov 2023; 18(3): 1395-414.
[http://dx.doi.org/10.1007/s12247-022-09698-y]
[24]
Mohd Nordin UU, Ahmad N, Salim N, Mohd Yusof NS. Lipid-based nanoparticles for psoriasis treatment: A review on conventional treatments, recent works, and future prospects. RSC Advances 2021; 11(46): 29080-101.
[http://dx.doi.org/10.1039/D1RA06087B] [PMID: 35478537]
[25]
Ramanunny AK, Wadhwa S, Thakur D, Singh SK, Kumar R. Treatment modalities of psoriasis: A focus on requisite for topical nanocarrier. Endocr Metab Immune Disord Drug Targets 2021; 21(3): 418-33.
[http://dx.doi.org/10.2174/1871530320666200604162258] [PMID: 32496998]
[26]
Khan A, Qadir A, Ali F, Aqil M. Phytoconstituents based nanomedicines for the management of psoriasis. J Drug Deliv Sci Technol 2021; 64: 102663.
[http://dx.doi.org/10.1016/j.jddst.2021.102663]
[27]
Thappa DM, Malathi M. Topical therapy of psoriasis. J Postgrad Med 2017; 63(4): 210-2.
[http://dx.doi.org/10.4103/jpgm.JPGM_155_17] [PMID: 29022560]
[28]
Klemow KM, Bartlow A, Crawford J, Kocher N, Shah J, Ritsick M. Medical Attributes of St. John’s Wort (Hypericum perforatum). In: Benzie IFF, Wachtel-Galor S, Eds. Herb Med Biomol Clin Asp. (2nd ed.), Boca Raton, FL: CRC Press/Taylor & Francis 2011. http://www.ncbi.nlm.nih.gov/books/NBK92750/
[http://dx.doi.org/10.1201/b10787-12]
[29]
Gendrisch F, Haarhaus B, Krieger N, Quirin KW, Schempp CM, Wölfle U. The effect of herbal medicinal products on psoriasis-like keratinocytes. Biomolecules 2021; 11(3): 371.
[http://dx.doi.org/10.3390/biom11030371] [PMID: 33801280]
[30]
Nobakht SZ, Akaberi M, Mohammadpour AH, Tafazoli Moghadam A, Emami SA. Hypericum perforatum: Traditional uses, clinical trials, and drug interactions. Iran J Basic Med Sci 2022; 25(9): 1045-58.
[PMID: 36246064]
[31]
Novelli M, Masiello P, Beffy P, Menegazzi M. Protective role of st. john’s wort and its components hyperforin and hypericin against diabetes through inhibition of inflammatory signaling: evidence from in vitro and in vivo studies. Int J Mol Sci 2020; 21(21): 8108.
[http://dx.doi.org/10.3390/ijms21218108] [PMID: 33143088]
[32]
Wölfle U, Seelinger G, Schempp CM. Topical application of St. John’s wort (Hypericum perforatum). Planta Med 2014; 80(2-3): 109-20.
[PMID: 24214835]
[33]
Mouro C, Gomes AP, Gouveia IC. Emulsion electrospinning of PLLA/PVA/Chitosan with Hypericum perforatum L. as an antibacterial nanofibrous wound dressing. Gels 2023; 9(5): 353.
[http://dx.doi.org/10.3390/gels9050353] [PMID: 37232945]
[34]
Pourhojat F, Sohrabi M, Shariati S, Mahdavi H, Asadpour L. Evaluation of poly ε-caprolactone electrospun nanofibers loaded with Hypericum perforatum extract as a wound dressing. Res Chem Intermed 2017; 43(1): 297-320.
[http://dx.doi.org/10.1007/s11164-016-2623-7]
[35]
Moghddam SMM, Ahad A, Aqil M, Imam SS, Sultana Y. Optimization of nanostructured lipid carriers for topical delivery of nimesulide using Box–Behnken design approach. Artif Cells Nanomed Biotechnol 2017; 45(3): 617-24.
[http://dx.doi.org/10.3109/21691401.2016.1167699] [PMID: 27050533]
[36]
Qadir A, Aqil M, Ali A, et al. Nanostructured lipidic carriers for dual drug delivery in the management of psoriasis: Systematic optimization, dermatokinetic and preclinical evaluation. J Drug Deliv Sci Technol 2020; 57: 101775.
[http://dx.doi.org/10.1016/j.jddst.2020.101775]
[37]
Hald Albertsen C, Kulkarni JA, Witzigmann D, Lind M, Petersson K, Simonsen JB. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev 2022; 188: 114416.
[http://dx.doi.org/10.1016/j.addr.2022.114416] [PMID: 35787388]
[38]
Salem HF, Nafady MM, Ewees MGELD, Hassan H, Khallaf RA. Rosuvastatin calcium-based novel nanocubic vesicles capped with silver nanoparticles-loaded hydrogel for wound healing management: Optimization employing Box–Behnken design: in vitro and in vivo assessment. J Liposome Res 2022; 32(1): 45-61.
[http://dx.doi.org/10.1080/08982104.2020.1867166] [PMID: 33353435]
[39]
Danaei M, Kalantari M, Raji M, et al. Probing nanoliposomes using single particle analytical techniques: Effect of excipients, solvents, phase transition and zeta potential. Heliyon 2018; 4(12): e01088.
[http://dx.doi.org/10.1016/j.heliyon.2018.e01088] [PMID: 30603716]
[40]
Tamilarasan N, Yasmin BM, Anitha P, et al. Box–behnken design: Optimization of proanthocyanidin-loaded transferosomes as an effective therapeutic approach for osteoarthritis. Nanomaterials 2022; 12(17): 2954.
[http://dx.doi.org/10.3390/nano12172954] [PMID: 36079990]
[41]
Akram W, Garud N. Design expert as a statistical tool for optimization of 5-ASA-loaded biopolymer-based nanoparticles using Box Behnken factorial design. Fut J Pharma Sci 2021; 7(1): 146.
[http://dx.doi.org/10.1186/s43094-021-00299-z]
[42]
Sharaf NS, Shetta A, Elhalawani JE, Mamdouh W. Applying box–behnken design for formulation and optimization of plga-coffee nanoparticles and detecting enhanced antioxidant and anticancer activities. Polymers 2021; 14(1): 144.
[http://dx.doi.org/10.3390/polym14010144] [PMID: 35012166]
[43]
Dong R, Zhao Y, Song Y, Fu N, Omee SS, Dey S, et al. DeepXRD, a deep learning model for predicting XRD spectrum from material composition. ACS Appl Mater Interfaces 2022; 14: 40102-15.
[http://dx.doi.org/10.1021/acsami.2c05812]
[44]
Luo X, Saleem A, Shafique U, et al. Rivaroxaban-loaded SLNs with treatment potential of deep vein thrombosis: In-vitro, in-vivo, and toxicity evaluation. Pharm Dev Technol 2023; 28(7): 625-37.
[http://dx.doi.org/10.1080/10837450.2023.2231069] [PMID: 37366661]
[45]
Padhye SG, Nagarsenker MS. Simvastatin solid lipid nanoparticles for oral delivery: Formulation development and in vivo evaluation. Indian J Pharm Sci 2013; 75(5): 591-8.
[PMID: 24403661]
[46]
Kumar S, Singh KK, Rao R. Enhanced anti-psoriatic efficacy and regulation of oxidative stress of a novel topical babchi oil (Psoralea corylifolia) cyclodextrin-based nanogel in a mouse tail model. J Microencapsul 2019; 36(2): 140-55.
[http://dx.doi.org/10.1080/02652048.2019.1612475] [PMID: 31030587]
[47]
Rezk AI, Obiweluozor FO, Choukrani G, Park CH, Kim CS. Drug release and kinetic models of anticancer drug (BTZ) from a pH-responsive alginate polydopamine hydrogel: Towards cancer chemotherapy. Int J Biol Macromol 2019; 141: 388-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.013] [PMID: 31493453]
[48]
Chimkode R, Patil MB, Jalalpure S, Pasha TY, Sarkar S. A study of hepatoprotective activity of hedyotis corymbosa. linn, in albino rats. Anc Sci Life 2009; 28(4): 32-5.
[PMID: 22557330]
[49]
Das K, Deb S, Karanth T. Phytochemical screening and metallic ion content and its impact on the antipsoriasis activity of aqueous leaf extracts of calendula officinalis and phlebodium decumanum in an animal experiment model. Turkish J Pharma Sci 2019; 16(3): 292-302.
[http://dx.doi.org/10.4274/tjps.galenos.2018.44265] [PMID: 32454727]
[50]
Alhakamy NA, Aldawsari HM, Ali J, Gupta DK, Warsi MH, Bilgrami AL, et al. Brucine-loaded transliposomes nanogel for topical delivery in skin cancer: Statistical optimization, in vitro and dermatokinetic evaluation. 3 Biotech 2021; 11: 1-288.
[51]
Guth K, Schäfer-Korting M, Fabian E, Landsiedel R, van Ravenzwaay B. Suitability of skin integrity tests for dermal absorption studies in vitro. Toxicol In Vitro 2015; 29(1): 113-23.
[http://dx.doi.org/10.1016/j.tiv.2014.09.007] [PMID: 25280455]
[52]
Ahmad N, Ahmad R, Mohammed Buheazaha T, Salman AlHomoud H, Al-Nasif HA, Sarafroz M. A comparative ex vivo permeation evaluation of a novel 5-Fluorocuracil nanoemulsion-gel by topically applied in the different excised rat, goat, and cow skin. Saudi J Biol Sci 2020; 27(4): 1024-40.
[http://dx.doi.org/10.1016/j.sjbs.2020.02.014] [PMID: 32256163]
[53]
Thotakura N, Kumar P, Wadhwa S, Raza K, Katare P. Dermatokinetics as an important tool to assess the bioavailability of drugs by topical nanocarriers. Curr Drug Metab 2017; 18(5): 404-11.
[http://dx.doi.org/10.2174/1389200218666170306104042] [PMID: 28266274]
[54]
Kumar P, Kumar R, Singh B, et al. Biocompatible phospholipid-based mixed micelles for tamoxifen delivery: Promising evidences from in vitro anticancer activity and dermatokinetic studies. AAPS PharmSciTech 2017; 18(6): 2037-44.
[http://dx.doi.org/10.1208/s12249-016-0681-1] [PMID: 27966177]
[55]
Schön MP, Manzke V, Erpenbeck L. Animal models of psoriasis—highlights and drawbacks. J Allergy Clin Immunol 2021; 147(2): 439-55.
[http://dx.doi.org/10.1016/j.jaci.2020.04.034] [PMID: 32560971]
[56]
Pourhoseingholi MA, Baghestani AR, Vahedi M. How to control confounding effects by statistical analysis. Gastroenterol Hepatol Bed Bench 2012; 5(2): 79-83.
[PMID: 24834204]
[57]
Howard B. Book review: Guide for the care and use of laboratory animals. Altern Lab Anim 1998; 26(3): 363-4.
[http://dx.doi.org/10.1177/026119299802600313]
[58]
Dev SK, Choudhury PK, Srivastava R, Sharma M. Antimicrobial, anti-inflammatory and wound healing activity of polyherbal formulation. Biomed Pharmacother 2019; 111: 555-67.
[http://dx.doi.org/10.1016/j.biopha.2018.12.075] [PMID: 30597309]
[59]
Milan AS, Calpena Campmany AC, Naveros BC. Antioxidant nanoplatforms for dermal delivery: Melatonin. Curr Drug Metab 2017; 18(5): 437-53.
[http://dx.doi.org/10.2174/1389200218666170222145908] [PMID: 28228077]
[60]
Reduan FH, Shaari RM, Sayuti NSA, et al. Acute and subacute dermal toxicity of ethanolic extract of Melastoma malabathricum leaves in Sprague-Dawley rats. Toxicol Res 2020; 36(3): 203-10.
[http://dx.doi.org/10.1007/s43188-019-00013-5] [PMID: 32685424]
[61]
Prasad SK, Parmar KM, Jagtap CS, Katare NT, Dhobi M. Development of a psoriatic-like skin inflammation rat model using imiquimod as an inducing agent. Indian J Pharmacol 2021; 53(2): 125-31.
[http://dx.doi.org/10.4103/ijp.IJP_506_19] [PMID: 34100396]
[62]
Yang BY, Cheng YG, Liu Y, et al. Datura metel l. ameliorates imiquimod-induced psoriasis-like dermatitis and inhibits inflammatory cytokines production through TLR7/8–MyD88–NF-κB–NLRP3 inflammasome pathway. Molecules 2019; 24(11): 2157.
[http://dx.doi.org/10.3390/molecules24112157] [PMID: 31181689]
[63]
Chen H, Lu C, Liu H, et al. Quercetin ameliorates imiquimod-induced psoriasis-like skin inflammation in mice via the NF-κB pathway. Int Immunopharmacol 2017; 48: 110-7.
[http://dx.doi.org/10.1016/j.intimp.2017.04.022] [PMID: 28499194]
[64]
Ezzell JL. Pressurized fluid extraction: Non-environmental applications. Encycl Sep Sci. Elsevier 2000; pp. 3993-9.
[65]
Mir MY, Hamid S, Kamili AN, Hassan QP. Sneak peek of Hypericum perforatum L.: Phytochemistry, phytochemical efficacy and biotechnological interventions. J Plant Biochem Biotechnol 2019; 28(4): 357-73.
[http://dx.doi.org/10.1007/s13562-019-00490-7]
[66]
Maji R, Omolo CA, Jaglal Y, et al. A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride. Int J Pharm 2021; 607: 120990.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120990] [PMID: 34389419]
[67]
Yu M, Yuan W, Li D, Schwendeman A, Schwendeman SP. Predicting drug release kinetics from nanocarriers inside dialysis bags. J Control Release 2019; 315: 23-30.
[http://dx.doi.org/10.1016/j.jconrel.2019.09.016] [PMID: 31629038]
[68]
Zhou X, Chen Y, Cui L, Shi Y, Guo C. Advances in the pathogenesis of psoriasis: From keratinocyte perspective. Cell Death Dis 2022; 13(1): 81.
[http://dx.doi.org/10.1038/s41419-022-04523-3] [PMID: 35075118]
[69]
Berg JM, Romoser A, Banerjee N, Zebda R, Sayes CM. The relationship between pH and zeta potential of ~ 30 nm metal oxide nanoparticle suspensions relevant to in vitro toxicological evaluations. Nanotoxicology 2009; 3(4): 276-83.
[http://dx.doi.org/10.3109/17435390903276941]
[70]
Zaichik S, Steinbring C, Friedl JD, Bernkop-Schnürch A. Development and in vitro characterization of transferrin-decorated nanoemulsion utilizing hydrophobic ion pairing for targeted cellular uptake. J Pharm Innov 2022; 17(3): 690-700.
[http://dx.doi.org/10.1007/s12247-021-09549-2]
[71]
Skóra B, Piechowiak T, Szychowski KA, Gmiński J. Entrapment of silver nanoparticles in L-α-phosphatidylcholine/cholesterol-based liposomes mitigates the oxidative stress in human keratinocyte (HaCaT) cells. Eur J Pharm Biopharm 2021; 166: 163-74.
[http://dx.doi.org/10.1016/j.ejpb.2021.06.006] [PMID: 34171495]
[72]
Algahtani MS, Ahmad MZ, Nourein IH, Ahmad J. Co-Delivery of imiquimod and curcumin by nanoemugel for improved topical delivery and reduced psoriasis-like skin lesions. Biomolecules 2020; 10(7): 968.
[http://dx.doi.org/10.3390/biom10070968] [PMID: 32605030]
[73]
Lee WH, Rho JG, Yang Y, et al. Hyaluronic acid nanoparticles as a topical agent for treating psoriasis. ACS Nano 2022; 16(12): 20057-74.
[http://dx.doi.org/10.1021/acsnano.2c07843] [PMID: 36373736]
[74]
Badri T, Kumar P, Oakley AM. Plaque Psoriasis StatPearls. Treasure Island, FL: StatPearls Publishing 2022. http://www.ncbi.nlm.nih.gov/books/NBK430879/
[75]
Rapalli VK, Sharma S, Roy A, Singhvi G. Design and dermatokinetic evaluation of Apremilast loaded nanostructured lipid carriers embedded gel for topical delivery: A potential approach for improved permeation and prolong skin deposition. Colloids Surf B Biointerfaces 2021; 206: 111945.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111945] [PMID: 34216849]
[76]
Shao S, Chen J, Swindell WR, et al. Phospholipase A2 enzymes represent a shared pathogenic pathway in psoriasis and pityriasis rubra pilaris. JCI Insight 2021; 6(20): e151911.
[http://dx.doi.org/10.1172/jci.insight.151911] [PMID: 34491907]
[77]
Tschachler E. Psoriasis: The epidermal component. Clin Dermatol 2007; 25(6): 589-95.
[http://dx.doi.org/10.1016/j.clindermatol.2007.09.021] [PMID: 18021897]
[78]
Purzycka-Bohdan D, Nedoszytko B, Zabłotna M, Gleń J, Szczerkowska-Dobosz A, Nowicki RJ. Chemokine profile in psoriasis patients in correlation with disease severity and pruritus. Int J Mol Sci 2022; 23(21): 13330.
[http://dx.doi.org/10.3390/ijms232113330] [PMID: 36362116]
[79]
Bocheńska K, Smolińska E, Moskot M, Jakóbkiewicz-Banecka J, Gabig-Cimińska M. Models in the research process of psoriasis. Int J Mol Sci 2017; 18(12): 2514.
[http://dx.doi.org/10.3390/ijms18122514] [PMID: 29186769]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy