Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

Navigating the Solution to Drug Formulation Problems at Research and Development Stages by Amorphous Solid Dispersion Technology

Author(s): Devika Tripathi*, Manjunatha Prabhu B.H, Jagannath Sahoo and Jyoti Kumari

Volume 18, Issue 2, 2024

Published on: 07 December, 2023

Page: [79 - 99] Pages: 21

DOI: 10.2174/0126673878271641231201065151

Price: $65

Abstract

Amorphous Solid Dispersions (ASDs) have indeed revolutionized the pharmaceutical industry, particularly in drug solubility enhancement. The amorphous state of a drug, which is a highenergy metastable state, can lead to an increase in the apparent solubility of the drug. This is due to the absence of a long-range molecular order, which results in higher molecular mobility and free volume, and consequently, higher solubility. The success of ASD preparation depends on the selection of appropriate excipients, particularly polymers that play a crucial role in drug solubility and physical stability. However, ASDs face challenges due to their thermodynamic instability or tendency to recrystallize. Measuring the crystallinity of the active pharmaceutical ingredient (API) and drug solubility is a complex process that requires a thorough understanding of drug-polymer miscibility and molecular interactions. Therefore, it is important to monitor drug solids closely during preparation, storage, and application. Techniques such as solid-state nuclear magnetic resonance (ssNMR), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, and dielectric spectroscopy have been successful in understanding the mechanism of drug crystallization. In addition, the continuous downstream processing of drug-loaded ASDs has introduced new automated methods for consistent ASD production. Advanced techniques such as hot melt extrusion, KinetiSol, electro spraying, and electrospinning have gained popularity. This review provides a comprehensive overview of Amorphous Solid Dispersions (ASDs) for oral drug delivery. It highlights the critical challenges faced during formulation, the impact of manufacturing variables, theoretical aspects of drug-polymer interaction, and factors related to drug-polymer miscibility. ASDs have been recognized as a promising strategy to improve the oral bioavailability of poorly water-soluble drugs. However, the successful development of an ASD-based drug product is not straightforward due to the complexity of the ASD systems. The formulation and process parameters can significantly influence the performance of the final product. Understanding the interactions between the drug and polymer in ASDs is crucial for predicting their stability and performance.

« Previous
Graphical Abstract

[1]
Becelaere J, Van Den Broeck E, Schoolaert E, et al. Stable amorphous solid dispersion of flubendazole with high loading via electrospinning. J Control Release 2022; 351: 123-36.
[http://dx.doi.org/10.1016/j.jconrel.2022.09.028] [PMID: 36122898]
[2]
Tripathi D, Raman SK, Sahoo J, Sharma DK, Rai AK. Technical applications of hydrotropes: Sustainable and green carriers. Biointerface Res Appl Chem 2023; 13(1): 91.
[3]
Tripathi D, Sharma DK, Sahoo J, Raman SK. Enhanced solubility of meloxicam with sodium benzoate hydrotrope: Ecofriendly approach for improved topical drug delivery. Indian J Pharmaceut Educ Res 2022; 56(4): 1052-62.
[http://dx.doi.org/10.5530/ijper.56.4.186]
[4]
Nambiar AG, Singh M, Mali AR, et al. Continuous manufacturing and molecular modeling of pharmaceutical amorphous solid dispersions. AAPS PharmSciTech 2022; 23(7): 249.
[http://dx.doi.org/10.1208/s12249-022-02408-4] [PMID: 36056225]
[5]
Alzahrani A, Nyavanandi D, Mandati P, et al. A systematic and robust assessment of hot-melt extrusion-based amorphous solid dispersions: Theoretical prediction to practical implementation. Int J Pharm 2022; 624.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121951] [PMID: 35753536]
[6]
Huang S, Williams RO III. Effects of the preparation process on the properties of amorphous solid dispersions. AAPS PharmSciTech 2018; 19(5): 1971-84.
[http://dx.doi.org/10.1208/s12249-017-0861-7] [PMID: 28924730]
[7]
Moseson DE, Corum ID, Lust A, et al. Amorphous solid dispersions containing residual crystallinity: competition between dissolution and matrix crystallization. AAPS J 2021; 23(4): 69.
[http://dx.doi.org/10.1208/s12248-021-00598-6] [PMID: 34002256]
[8]
Haser A, Zhang F. New strategies for improving the development and performance of amorphous solid dispersions. AAPS PharmSciTech 2018; 19(3): 978-90.
[http://dx.doi.org/10.1208/s12249-018-0953-z] [PMID: 29340977]
[9]
Chasse T, Conway SL, Danzer GD, et al. Industry white paper: Contemporary opportunities and challenges in characterizing crystallinity in amorphous solid dispersions. J Pharm Sci 2022; 111(6): 1543-55.
[http://dx.doi.org/10.1016/j.xphs.2022.01.007]
[10]
Davis MT, Potter CB, Walker GM. Downstream processing of a ternary amorphous solid dispersion: The impacts of spray drying and hot melt extrusion on powder flow, compression and dissolution. Int J Pharm 2018; 544(1): 242-53.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.038] [PMID: 29689366]
[11]
Tripathi D, Chaudhary N, Wal P, Rai AK, Sahoo J. Green hydrotropes-assisted route: An alternative approach for extracting phytoconstituents and associated drug delivery systems. Drug Deliv Lett 2021; 11(3): 220-32.
[http://dx.doi.org/10.2174/2210303111666210712100722]
[12]
Tripathi D, Chaudhary N, Sharma DK, Sahoo J. Insightful investigative account on hydrotropic solubilization practice utilized for solubility management of poorly dissolvable drugs. Curr Drug Ther 2021; 16(5): 393-408.
[http://dx.doi.org/10.2174/1574885516666210914105024]
[13]
Priemel PA, Grohganz H, Rades T. Unintended and in situ amorphisation of pharmaceuticals. Adv Drug Deliv Rev 2016; 100: 126-32.
[http://dx.doi.org/10.1016/j.addr.2015.12.014] [PMID: 26724250]
[14]
Liu S, Li M, Jia L, Chen M, Du S, Gong J. Investigation of drug–polymer miscibility, molecular interaction, and their effects on the physical stabilities and dissolution behaviors of norfloxacin amorphous solid dispersions. Cryst Growth Des 2020; 20(5): 2952-64.
[http://dx.doi.org/10.1021/acs.cgd.9b01571]
[15]
Rams-Baron M, Jachowicz R, Boldyreva E, et al. Amorphous drug solubility and absorption enhancement. Amorphous Drugs: Benefits and Challenges 2018; 41-68.
[http://dx.doi.org/10.1007/978-3-319-72002-9_3]
[16]
Szabó E, Démuth B, Galata DL, et al. Continuous formulation approaches of amorphous solid dispersions: Significance of powder flow properties and feeding performance. Pharmaceutics 2019; 11(12): 654.
[http://dx.doi.org/10.3390/pharmaceutics11120654] [PMID: 31817454]
[17]
Wang B, Wang D, Zhao S, et al. Evaluate the ability of PVP to inhibit crystallization of amorphous solid dispersions by density functional theory and experimental verify. Eur J Pharm Sci 2017; 96(6): 45-52.
[http://dx.doi.org/10.1016/j.ejps.2016.08.046] [PMID: 27568852]
[18]
Xie T, Taylor LS. Effect of temperature and moisture on the physical stability of binary and ternary amorphous solid dispersions of celecoxib. J Pharm Sci 2017; 106(1): 100-10.
[http://dx.doi.org/10.1016/j.xphs.2016.06.017] [PMID: 27476771]
[19]
Deac A, Qi Q, Indulkar AS, et al. Dissolution mechanisms of amorphous solid dispersions: Role of drug load and molecular interactions. Mol Pharm 2022.
[PMID: 36545917]
[20]
Lin X, Hu Y, Liu L, et al. Physical stability of amorphous solid dispersions: A physicochemical perspective with thermodynamic, kinetic and environmental aspects. Pharm Res 2018; 35(6): 125.
[http://dx.doi.org/10.1007/s11095-018-2408-3] [PMID: 29687226]
[21]
Browne E, Worku ZA, Healy AM. Physicochemical properties of poly-vinyl polymers and their influence on ketoprofen amorphous solid dispersion performance: A polymer selection case study. Pharmaceutics 2020; 12(5): 433.
[http://dx.doi.org/10.3390/pharmaceutics12050433] [PMID: 32397201]
[22]
Chavan RB, Rathi S, Jyothi VG, Shastri NR. Cellulose based polymers in development of amorphous solid dispersions. Asian J Pharm 2019; 14(3): 248-64.
[http://dx.doi.org/10.1016/j.ajps.2018.09.003]
[23]
Kwon J, Giri BR, Song ES, Bae J, Lee J, Kim DW. Spray-dried amorphous solid dispersions of atorvastatin calcium for improved supersaturation and oral bioavailability. Pharmaceutics 2019; 11(9): 461.
[http://dx.doi.org/10.3390/pharmaceutics11090461] [PMID: 31500147]
[24]
Frank DS, Matzger AJ. Effect of polymer hydrophobicity on the stability of amorphous solid dispersions and supersaturated solutions of a hydrophobic pharmaceutical. Mol Pharm 2019; 16(2): 682-8.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00972] [PMID: 30645134]
[25]
Monschke M, Wagner KG. Impact of HPMCAS on the dissolution performance of polyvinyl alcohol celecoxib amorphous solid dispersions. Pharmaceutics 2020; 12(6): 541.
[http://dx.doi.org/10.3390/pharmaceutics12060541] [PMID: 32545270]
[26]
Tran PHL, Lee BJ, Tran TTD. Recent studies on the processes and formulation impacts in the development of solid dispersions by hot-melt extrusion. Eur J Pharm Biopharm 2021; 164: 13-9.
[http://dx.doi.org/10.1016/j.ejpb.2021.04.009] [PMID: 33887388]
[27]
Kallakunta VR, Sarabu S, Bandari S, et al. Stable amorphous solid dispersions of fenofibrate using hot melt extrusion technology: Effect of formulation and process parameters for a low glass transition temperature drug. J Drug Deliv Sci Technol 2020; 58: 101395.
[http://dx.doi.org/10.1016/j.jddst.2019.101395] [PMID: 32905375]
[28]
Zhang Z, Dong L, Guo J, et al. Prediction of the physical stability of amorphous solid dispersions: Relationship of aging and phase separation with the thermodynamic and kinetic models along with characterization techniques. Expert Opin Drug Deliv 2021; 18(2): 249-64.
[http://dx.doi.org/10.1080/17425247.2021.1844181] [PMID: 33112679]
[29]
Sahoo A, Suryanarayanan R, Siegel RA. Stabilization of amorphous drugs by polymers: The role of overlap concentration (C*). Mol Pharm 2020; 17(11): 4401-6.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00576] [PMID: 32975418]
[30]
Song S, Wang C, Zhang B, Sun CC, Lodge TP, Siegel RA. A rheological approach for predicting physical stability of amorphous solid dispersions. J Pharm Sci 2023; 112(1): 204-12.
[http://dx.doi.org/10.1016/j.xphs.2022.08.028] [PMID: 36030843]
[31]
Ricarte RG, Van Zee NJ, Li Z, Johnson LM, Lodge TP, Hillmyer MA. Recent advances in understanding the micro-and nanoscale phenomena of amorphous solid dispersions. Mol Pharm 2019; 16(10): 4089-103.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00601] [PMID: 31487183]
[32]
Anderson BD. Predicting solubility/miscibility in amorphous dispersions: It is time to move beyond regular solution theories. J Pharm Sci 2018; 107(1): 24-33.
[http://dx.doi.org/10.1016/j.xphs.2017.09.030] [PMID: 29031973]
[33]
Medarević D, Djuriš J, Barmpalexis P, Kachrimanis K, Ibrić S. Analytical and computational methods for the estimation of drug-polymer solubility and miscibility in solid dispersions development. Pharmaceutics 2019; 11(8): 372.
[http://dx.doi.org/10.3390/pharmaceutics11080372] [PMID: 31374926]
[34]
Jha DK, Shah DS, Amin PD. Effect of hypromellose acetate succinate substituents on miscibility behavior of spray-dried amorphous solid dispersions: Flory–Huggins parameter prediction and validation. Carbohyd Polymer Technol Appl 2021; 2: 100137.
[http://dx.doi.org/10.1016/j.carpta.2021.100137]
[35]
Jankovic S, Tsakiridou G, Ditzinger F, et al. Application of the solubility parameter concept to assist with oral delivery of poorly water-soluble drugs-a PEARRL review. J Pharm Pharmacol 2019; 71(4): 441-63.
[http://dx.doi.org/10.1111/jphp.12948] [PMID: 29978475]
[36]
Thakore SD, Akhtar J, Jain R, Paudel A, Bansal AK. Analytical and computational methods for the determination of drug-polymer solubility and miscibility. Mol Pharm 2021; 18(8): 2835-66.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00141] [PMID: 34041914]
[37]
Pugliese A, Tobyn M, Hawarden LE, Abraham A, Blanc F. New development in understanding drug-polymer interactions in pharmaceutical amorphous solid dispersions from solid-state nuclear magnetic resonance. Mol Pharm 2022; 19(11): 3685-99.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00479] [PMID: 36037249]
[38]
Jarrells TW, Munson EJ. Comparison of differential scanning calorimetry, powder x-ray diffraction, and solid-state nuclear magnetic resonance spectroscopy for measuring crystallinity in amorphous solid dispersions - application to drug-in-polymer solubility. J Pharm Sci 2022; 111(10): 2765-78.
[http://dx.doi.org/10.1016/j.xphs.2022.04.004] [PMID: 35421430]
[39]
Li M, Xu W, Su Y. Solid-state NMR spectroscopy in pharmaceutical sciences. Trends Analyt Chem 2021; 135.
[http://dx.doi.org/10.1016/j.trac.2020.116152]
[40]
Lehmkemper K, Kyeremateng SO, Degenhardt M, Sadowski G. Influence of low-molecular-weight excipients on the phase behavior of PVPVA64 amorphous solid dispersions. Pharm Res 2018; 35(1): 25.
[http://dx.doi.org/10.1007/s11095-017-2316-y] [PMID: 29305717]
[41]
Luebbert C, Wessner M, Sadowski G. Mutual impact of phase separation/crystallization and water sorption in amorphous solid dispersions. Mol Pharm 2018; 15(2): 669-78.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01076] [PMID: 29309155]
[42]
Auch C, Harms M, Golitsyn Y, Reichert D, Mäder K. Miniaturized measurement of drug–polymer interactions via viscosity increase for polymer selection in amorphous solid dispersions. Mol Pharm 2019; 16(5): 2214-25.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00186] [PMID: 30920843]
[43]
Li J, Duggirala NK, Kumar NSK, Su Y, Suryanarayanan R. Design of ternary amorphous solid dispersions for enhanced dissolution of drug combinations. Mol Pharm 2022; 19(8): 2950-61.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00307] [PMID: 35797094]
[44]
Ma X, Williams RO III. Characterization of amorphous solid dispersions: An update. J Drug Deliv Sci Technol 2019; 50: 113-24.
[http://dx.doi.org/10.1016/j.jddst.2019.01.017]
[45]
Sarpal K, Munson EJ. Amorphous solid dispersions of Felodipine and Nifedipine with Soluplus®: Drug-Polymer miscibility and intermolecular interactions. J Pharm Sci 2021; 110(4): 1457-69.
[http://dx.doi.org/10.1016/j.xphs.2020.12.022] [PMID: 33359813]
[46]
Luebbert C, Klanke C, Sadowski G. Investigating phase separation in amorphous solid dispersions via Raman mapping. Int J Pharm 2018; 535(1-2): 245-52.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.014] [PMID: 29133204]
[47]
Wang B, Nethercott MJ, Narula A, et al. pH-Dependent supersaturation from amorphous solid dispersions of weakly basic drugs. Pharm Res 2022; 39(11): 2919-36.
[http://dx.doi.org/10.1007/s11095-021-03147-0] [PMID: 34890018]
[48]
Phyo P, Xu W, Frank D, Li T, Su Y. Probing molecular packing of drug substances in nanometer domains in pharmaceutical formulations using 19 F magic angle spinning NMR. J Phys Chem C 2022; 126(29): 12025-37.
[http://dx.doi.org/10.1021/acs.jpcc.2c01871]
[49]
Zhang J, Shi Q, Tao J, Peng Y, Cai T. Impact of Polymer enrichment at the crystal–liquid interface on crystallization kinetics of amorphous solid dispersions. Mol Pharm 2019; 16(3): 1385-96.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01331] [PMID: 30716277]
[50]
Danda LJA, Batista LM, Melo VCS, Soares Sobrinho JL, Soares MFLR. Combining amorphous solid dispersions for improved kinetic solubility of posaconazole simultaneously released from soluble PVP/VA64 and an insoluble ammonio methacrylate copolymer. Eur J Pharm Sci 2019; 133: 79-85.
[http://dx.doi.org/10.1016/j.ejps.2019.03.012] [PMID: 30890364]
[51]
Kapourani A, Eleftheriadou K, Kontogiannopoulos KN, Barmpalexis P. Evaluation of rivaroxaban amorphous solid dispersions physical stability via molecular mobility studies and molecular simulations. Eur J Pharm Sci 2021; 157.
[http://dx.doi.org/10.1016/j.ejps.2020.105642] [PMID: 33189903]
[52]
Koromili M, Kapourani A, Koletti A, et al. Preparation and evaluation of siderol amorphous solid dispersions: Selection of suitable matrix/carrier. AAPS PharmSciTech 2022; 23(6): 214.
[http://dx.doi.org/10.1208/s12249-022-02368-9] [PMID: 35918468]
[53]
Santitewagun S, Thakkar R, Zeitler JA, Maniruzzaman M. Detecting crystallinity using terahertz spectroscopy in 3D printed amorphous solid dispersions. Mol Pharm 2022; 19(7): 2380-9.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00163] [PMID: 35670498]
[54]
Cao Z, Harmon DM, Yang R, et al. Periodic photobleaching with structured illumination for diffusion imaging. Anal Chem 2023; 95(4): 2192-202.
[http://dx.doi.org/10.1021/acs.analchem.2c02950] [PMID: 36656303]
[55]
Tanaka R, Ishihara S, Sasaki T, Hattori Y, Otsuka M. Injection-molded co-amorphous tablets: Analysis of intermolecular interaction and crystallization propensity. J Pharm Sci 2021; 110(9): 3289-97.
[http://dx.doi.org/10.1016/j.xphs.2021.05.020] [PMID: 34147517]
[56]
S’ari M, Blade H, Cosgrove S, et al. Characterization of amorphous solid dispersions and identification of low levels of crystallinity by transmission electron microscopy. Mol Pharm 2021; 18(5): 1905-19.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00918] [PMID: 33797925]
[57]
Moseson DE, Mugheirbi NA, Stewart AA, Taylor LS. Nanometer-scale residual crystals in a hot melt extruded amorphous solid dispersion: characterization by transmission electron microscopy. Cryst Growth Des 2018; 18(12): 7633-40.
[http://dx.doi.org/10.1021/acs.cgd.8b01435]
[58]
Moseson DE, Hiew TN, Su Y, Taylor LS. Formulation and processing strategies which underpin susceptibility to matrix crystallization in amorphous solid dispersions. J Pharm Sci 2023; 112(1): 108-22.
[http://dx.doi.org/10.1016/j.xphs.2022.03.020] [PMID: 35367246]
[59]
Dharani S, Mohamed EM, Khuroo T, Rahman Z, Khan MA. Formulation characterization and pharmacokinetic evaluation of amorphous solid dispersions of dasatinib. Pharmaceutics 2022; 14(11): 2450.
[http://dx.doi.org/10.3390/pharmaceutics14112450] [PMID: 36432641]
[60]
Newman A, Zografi G. What are the important factors that influence API crystallization in miscible amorphous API–Excipient mixtures during long-term storage in the glassy state? Mol Pharm 2022; 19(2): 378-91.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00519] [PMID: 34378939]
[61]
Chew SL, Modica de Mohac L, Tolulope Raimi-Abraham B. 3D-printed solid dispersion drug products. Pharmaceutics 2019; 11(12): 672.
[http://dx.doi.org/10.3390/pharmaceutics11120672] [PMID: 31835682]
[62]
Qin Y, Xiao C, Li X, Huang J, Si L, Sun M. Enteric polymer–based amorphous solid dispersions enhance oral absorption of the weakly basic drug nintedanib via stabilization of supersaturation. Pharmaceutics 2022; 14(9): 1830.
[http://dx.doi.org/10.3390/pharmaceutics14091830] [PMID: 36145578]
[63]
Pang Y, Buanz A, Gaisford S, Magdysyuk OV, Williams GR. Monitoring polymorphic phase transitions in flufenamic acid amorphous solid dispersions using hyphenated X-ray diffraction–differential scanning calorimetry. Mol Pharm 2022; 19(5): 1477-87.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00016] [PMID: 35347993]
[64]
Li M, Meng F, Tsutsumi Y, et al. Understanding molecular interactions in rafoxanide–povidone amorphous solid dispersions from ultrafast magic angle spinning NMR. Mol Pharm 2020; 17(6): 2196-207.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00317] [PMID: 32392076]
[65]
Lu X, Li M, Huang C, et al. Atomic-level drug substance and polymer interaction in Posaconazole amorphous solid dispersion from solid-state NMR. Mol Pharm 2020; 17(7): 2585-98.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00268] [PMID: 32401529]
[66]
Veith H, Wiechert F, Luebbert C, Sadowski G. Combining crystalline and polymeric excipients in API solid dispersions-Opportunity or risk? Eur J Pharm Biopharm 2021; 158: 323-35.
[http://dx.doi.org/10.1016/j.ejpb.2020.11.025] [PMID: 33296719]
[67]
Shi Q, Chen H, Wang Y, Wang R, Xu J, Zhang C. Amorphous solid dispersions: Role of the polymer and its importance in physical stability and in vitro performance. Pharmaceutics 2022; 14(8): 1747.
[http://dx.doi.org/10.3390/pharmaceutics14081747] [PMID: 36015373]
[68]
Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas SD, Suryanarayanan R. Mechanism of amorphous itraconazole stabilization in polymer solid dispersions: role of molecular mobility. Mol Pharm 2014; 11(11): 4228-37.
[http://dx.doi.org/10.1021/mp5004515] [PMID: 25325389]
[69]
Edueng K, Kabedev A, Ekdahl A, et al. Pharmaceutical profiling and molecular dynamics simulations reveal crystallization effects in amorphous formulations. Int J Pharm 2022; 613: 121360.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121360] [PMID: 34896563]
[70]
Gala U, Miller D, Williams RO III. Improved dissolution and pharmacokinetics of abiraterone through KinetiSol® enabled amorphous solid dispersions. Pharmaceutics 2020; 12(4): 357.
[http://dx.doi.org/10.3390/pharmaceutics12040357] [PMID: 32295245]
[71]
Ajjarapu S, Banda S, Basim P, Dudhipala N. Melt fusion techniques for solubility enhancement: A comparison of hot melt extrusion and KinetiSol® Technologies. Sci Pharm 2022; 90(3): 51.
[http://dx.doi.org/10.3390/scipharm90030051]
[72]
Davis DA Jr, Thakkar R, Su Y, Williams RO III, Maniruzzaman M. Selective laser sintering 3-dimensional printing as a single step process to prepare amorphous solid dispersion dosage forms for improved solubility and dissolution rate. J Pharm Sci 2021; 110(4): 1432-43.
[http://dx.doi.org/10.1016/j.xphs.2020.11.012] [PMID: 33227241]
[73]
Melnyk LA, Oyewumi MO. Integration of 3D printing technology in pharmaceutical compounding: Progress, prospects, and challenges. Annals of 3D Printed Medicine 2021; 4: 100035.
[74]
Goyanes A, Allahham N, Trenfield SJ, Stoyanov E, Gaisford S, Basit AW. Direct powder extrusion 3D printing: Fabrication of drug products using a novel single-step process. Int J Pharm 2019; 567.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118471] [PMID: 31252147]
[75]
Boniatti J, Januskaite P, Fonseca LB, et al. Direct powder extrusion 3D printing of praziquantel to overcome neglected disease formulation challenges in paediatric populations. Pharmaceutics 2021; 13(8): 1114.
[http://dx.doi.org/10.3390/pharmaceutics13081114] [PMID: 34452075]
[76]
Parulski C, Gresse E, Jennotte O, et al. Fused deposition modeling 3D printing of solid oral dosage forms containing amorphous solid dispersions: How to elucidate drug dissolution mechanisms through surface spectral analysis techniques? Int J Pharm 2022; 626.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122157] [PMID: 36055443]
[77]
Szabó E, Záhonyi P, Brecska D, et al. Comparison of amorphous solid dispersions of spironolactone prepared by spray drying and electrospinning: The influence of the preparation method on the dissolution properties. Mol Pharm 2021; 18(1): 317-27.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00965] [PMID: 33301326]
[78]
Bhujbal SV, Mitra B, Jain U, et al. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B 2021; 11(8): 2505-36.
[http://dx.doi.org/10.1016/j.apsb.2021.05.014] [PMID: 34522596]
[79]
Gomaa E, Attia MS, Ghazy FES, Hassan AEA, Hasan AA. Pump-free electrospraying: A novel approach for fabricating Soluplus®-based solid dispersion nanoparticles. J Drug Deliv Sci Technol 2022; 67.
[http://dx.doi.org/10.1016/j.jddst.2021.103027]
[80]
Wang H, Li R, Rao Y, et al. Enhancement of the bioavailability and anti-inflammatory activity of glycyrrhetinic acid via novel Soluplus®-a glycyrrhetinic acid solid dispersion. Pharmaceutics 2022; 14(9): 1797.
[http://dx.doi.org/10.3390/pharmaceutics14091797] [PMID: 36145545]
[81]
Luo C, Wu W, Lou S, Zhao S, Yang K. Improving the in vivo bioavailability and in vitro anti-inflammatory activity of tanshinone IIA by alginate solid dispersion. J Drug Deliv Sci Technol 2020; 60: 101966.
[http://dx.doi.org/10.1016/j.jddst.2020.101966]
[82]
Zhu D, Zhang Q, Chen Y, et al. Mechanochemical preparation of triptolide-loaded self-micelle solid dispersion with enhanced oral bioavailability and improved anti-tumor activity. Drug Deliv 2022; 29(1): 1398-408.
[http://dx.doi.org/10.1080/10717544.2022.2069879] [PMID: 35532137]
[83]
Yani F, Arianto A, Noersal R. Formulation of ketoprofen transdermal solid dispersion patch as an analgesic and anti-inflammatory. Asian J Pharmaceut Res Develop 2020; 8(3): 51-8.
[http://dx.doi.org/10.22270/ajprd.v8i3.760]
[84]
Taha NF, Mahmoud KM, Soliman AAF, Emara LH. Anti-inflammatory and cytoprotective potentials of Meloxicam solid dispersions prepared by different techniques on lipopolysaccharide-stimulated RAW 264.7 macrophages. J Drug Deliv Sci Technol 2021; 63.
[http://dx.doi.org/10.1016/j.jddst.2021.102507]
[85]
Negi P, Gautam S, Sharma A, et al. Gastric ulcer healing by chebulinic acid solid dispersion-loaded gastroretentive raft systems: preclinical evidence. Ther Deliv 2022; 13(2): 81-93.
[http://dx.doi.org/10.4155/tde-2021-0062] [PMID: 35075915]
[86]
Umar S, Usman H, Salsabila H, Zaini E. Solid dispersion of tenoxicam–hpmc by freeze-drying: Solid state properties, dissolution study, and analgesic activity in mice. Open Access Maced J Med Sci 2022; 10(A): 800-6.
[87]
Hernández-Vázquez E, Estrada-Soto S, Lumbreras-Zavala N, et al. Enhancing the antidiabetic and antidyslipidemic activity of a 1,5-diarylpyrazole by solid dispersion pre-formulation. Chem Zvesti 2022; 76(9): 5551-60.
[http://dx.doi.org/10.1007/s11696-022-02260-7]
[88]
Nasr M, Almawash S, Al Saqr A, Bazeed AY, Saber S, Elagamy HI. Bioavailability and antidiabetic activity of gliclazide-loaded cubosomal nanoparticles. Pharmaceuticals 2021; 14(8): 786.
[http://dx.doi.org/10.3390/ph14080786] [PMID: 34451883]
[89]
Zhou Z, Chen J, Zhang Z, et al. Solubilization of luteolin in PVP40 solid dispersion improves inflammation-induced insulin resistance in mice. Eur J Pharm Sci 2022; 174: 106188.
[http://dx.doi.org/10.1016/j.ejps.2022.106188] [PMID: 35427741]
[90]
Surti N, Mahajan AN, Patel D, Patel A, Surti Z. Spray dried solid dispersion of repaglinide using hypromellose acetate succinate: in vitro and in vivo characterization. Drug Dev Ind Pharm 2020; 46(10): 1622-31.
[http://dx.doi.org/10.1080/03639045.2020.1812631] [PMID: 32816575]
[91]
Madhavikutty AS, Ohta S, Chandel AKS, Qi P, Ito T. Analysis of endoscopic injectability and post-ejection dripping of yield stress fluids: Laponite, Carbopol and Xanthan Gum. J Chem Eng of Jpn 2021; 54(9): 500-11.
[http://dx.doi.org/10.1252/jcej.21we018]
[92]
Tripathi D, Sonar PK, Parashar P, Chaudhary SK, Upadhyay S, Saraf SK. Augmented brain delivery of cinnarizine through nanostructured lipid carriers loaded in situ gel: In vitro and pharmacokinetic evaluation. Bionanoscience 2021; 11(1): 159-71.
[http://dx.doi.org/10.1007/s12668-020-00821-2]
[93]
Wang H, Fan Y, Qin L, et al. Preparation of Decoquinate Solid Dispersion by Hot-Melt Extrusion as an Oral Dosage Form Targeting Liver-Stage Plasmodium Infection. Antimicrob Agents Chemother 2022; 66(6): e0221821.
[http://dx.doi.org/10.1128/aac.02218-21] [PMID: 35658489]
[94]
Takale NR, Aji A, Jane K, et al. Lumefantrine solid dispersions with piperine for the enhancement of solubility, bioavailability and anti-parasite activity. Int J Pharm 2022; 628: 122354.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122354] [PMID: 36341917]
[95]
Shah R, Soni T, Shah U, et al. Formulation development and characterization of lumefantrine nanosuspension for enhanced antimalarial activity. J Biomater Sci Polym Ed 2021; 32(7): 833-57.
[http://dx.doi.org/10.1080/09205063.2020.1870378] [PMID: 33380264]
[96]
Ghirro LC, Rezende S, Ribeiro AS, et al. Pickering emulsions stabilized with curcumin-based solid dispersion particles as mayonnaise-like food sauce alternatives. Molecules 2022; 27(4): 1250.
[http://dx.doi.org/10.3390/molecules27041250] [PMID: 35209037]
[97]
Shi Y, Ye F, Chen Y, Hui Q, Miao M. Dendrimer-like glucan nanoparticulate system improves the solubility and cellular antioxidant activity of coenzyme Q10. Food Chem 2020; 333: 127510.
[http://dx.doi.org/10.1016/j.foodchem.2020.127510] [PMID: 32673958]
[98]
Bhandari L, Patil AS, Bolmal U, Masareddy R, Dandagi P. Formulation and evaluation of Natamycin solid dispersion incorporated ophthalmic films. Indian J Pharmaceut Educ Res 2022; 56(1): 103-11.
[http://dx.doi.org/10.5530/ijper.56.1.13]
[99]
Benavent C, Torrado-Salmerón C, Torrado-Santiago S. Development of a solid dispersion of nystatin with maltodextrin as a carrier agent: Improvements in antifungal efficacy against Candida spp. biofilm infections. Pharmaceuticals 2021; 14(5): 397.
[http://dx.doi.org/10.3390/ph14050397] [PMID: 33922089]
[100]
Chen B, Wang X, Zhang Y, et al. Improved solubility, dissolution rate, and oral bioavailability of main biflavonoids from Selaginella doederleinii extract by amorphous solid dispersion. Drug Deliv 2020; 27(1): 309-22.
[http://dx.doi.org/10.1080/10717544.2020.1716876] [PMID: 32037895]
[101]
Zhang Q, Feng Z, Wang H, et al. Preparation of camptothecin micelles self-assembled from disodium glycyrrhizin and tannic acid with enhanced antitumor activity. Eur J Pharm Biopharm 2021; 164: 75-85.
[http://dx.doi.org/10.1016/j.ejpb.2021.04.012] [PMID: 33878433]
[102]
Deng Y, Chen C, Xiao Z, Huang X, Xu J. Enhanced anti-hepatoma effect of a novel curcumin analog C086 via solid dispersion technology. Drug Deliv 2020; 27(1): 927-37.
[http://dx.doi.org/10.1080/10717544.2020.1785051] [PMID: 32597247]
[103]
Halder S, Afrose S, Shill MC, et al. Self-micellizing solid dispersion of thymoquinone with enhanced biopharmaceutical and nephroprotective effects. Drug Deliv 2024; 31(1): 2337423.
[104]
Silva LM, Marconato DG, Nascimento da Silva MP, et al. Licochalcone A-loaded solid lipid nanoparticles improve antischistosomal activity in vitro and in vivo. Nanomedicine 2021; 16(19): 1641-55.
[http://dx.doi.org/10.2217/nnm-2021-0146] [PMID: 34256609]
[105]
Hiew TN, Taylor LS. Combining drug salt formation with amorphous solid dispersions-a double edged sword. J Control Release 2022; 352: 47-60.
[http://dx.doi.org/10.1016/j.jconrel.2022.09.056] [PMID: 36206947]
[106]
Szabó E, Haraszti A, Záhonyi P, et al. Evaluation of different thermoanalytical methods for the analysis of the stability of naproxen-loaded amorphous solid dispersions. Pharmaceutics 2022; 14(11): 2508.
[http://dx.doi.org/10.3390/pharmaceutics14112508] [PMID: 36432698]
[107]
Li J, Li C, Zhang H, et al. Preparation of Azithromycin amorphous solid dispersion by hot-melt extrusion: An advantageous technology with taste masking and solubilization effects. Polymers 2022; 14(3): 495.
[http://dx.doi.org/10.3390/polym14030495] [PMID: 35160485]
[108]
Van Duong T, Nguyen HT, Wang F, Wang M, Narwankar PK, Taylor LS. Surface nanocoating of high drug-loading spray-dried amorphous solid dispersions by atomic layer coating: Excellent physical stability under accelerated storage conditions for two years. Int J Pharm 2022; 620.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121747] [PMID: 35427750]
[109]
Lucio D, Zornoza A, Martínez-Ohárriz MC. Role of microstructure in drug release from chitosan amorphous solid dispersions. Int J Mol Sci 2022; 23(23): 15367.
[http://dx.doi.org/10.3390/ijms232315367] [PMID: 36499692]
[110]
Bezerra GS, Colbert DM, O’Donnell C, Cao Z, Geever J, Geever L. Compatibility study between fenbendazole and Poly (Ethylene Oxide) with application in solid dispersion formulations using hot-melt extrusion. J Pharm Innov 2022; 1-3.
[111]
Tong M, Wu X, Zhang S, et al. Application of TPGS as an efflux inhibitor and a plasticizer in baicalein solid dispersion. Eur J Pharm Sci 2022; 168.
[http://dx.doi.org/10.1016/j.ejps.2021.106071] [PMID: 34774716]
[112]
Volkova TV, Simonova OR, Perlovich GL. Another move towards bicalutamide dissolution and permeability improvement with acetylated β-cyclodextrin solid dispersion. Pharmaceutics 2022; 14(7): 1472.
[http://dx.doi.org/10.3390/pharmaceutics14071472] [PMID: 35890367]
[113]
Mishra SM, Richter M, Mejia L, Sauer A. Downstream processing of Itraconazole:HPMCAS amorphous solid dispersion: From hot-melt extrudate to tablet using a quality by design approach. Pharmaceutics 2022; 14(7): 1429.
[http://dx.doi.org/10.3390/pharmaceutics14071429] [PMID: 35890324]
[114]
Zhao J, Gao P, Mu C, et al. Preparation and evaluation of novel supersaturated solid dispersion of magnolol. AAPS PharmSciTech 2022; 23(4): 97.
[http://dx.doi.org/10.1208/s12249-022-02251-7] [PMID: 35332440]
[115]
Keßler L, Mirzaei Z, Kade JC, Luxenhofer R. Highly porous and drug-loaded amorphous solid dispersion microfiber scaffolds of indomethacin prepared by melt electro-writing. ACS Appl Polym Mater 2022.
[116]
Bhanushali JS, Dhiman S, Nandi U, Bharate SS. Molecular interactions of niclosamide with hydroxyethyl cellulose in binary and ternary amorphous solid dispersions for synergistic enhancement of water solubility and oral pharmacokinetics in rats. Int J Pharm 2022; 626: 122144.
[http://dx.doi.org/10.1016/j.ijpharm.2022.122144] [PMID: 36029996]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy