Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

N-Silylmethyl-2-(1-Naphthyl)Acetamides: Synthesis, Structure and Computational Screening

Author(s): Anastasiya S. Soldatenko, Maxim S. Molokeev and Nataliya F. Lazareva*

Volume 28, Issue 12, 2024

Published on: 13 May, 2024

Page: [959 - 966] Pages: 8

DOI: 10.2174/0113852728296495240409062733

Price: $65

Abstract

Synthesis of new hybrid organosilicon compounds based on the amides 1- naphthylacetic acid was described. N-Organyl-2-(1-naphthyl)-N-[(triethoxysilyl)methyl]- acetamides were obtained by the reaction of 1-naphthylacetyl chloride with α-silylamines RNHCH2Si(OEt)3 (R = Me, i-Pr and Ph). Their subsequent interaction with N(CH2CH2OH)3 led to the formation of N-organyl-2-(1-naphthyl)-N-(silatranylmethyl)acetamides. The structure of these hybrid compounds was characterized by 1H, 13C, and 29Si NMR spectroscopy. The structure of N-methyl- and N-isopropyl-2-(1-naphthyl)-N-(silatranylmethy)acetamides was confirmed by X-ray diffraction analysis. Results of computational screening showed that these silatranes are bioavailable and have drug-likeness.

Graphical Abstract

[1]
Yang, C.; Sheng, X.; Zhang, L.; Yu, J.; Huang, D. Arylacetic acids in organic synthesis. Asian J. Org. Chem., 2020, 9(1), 23-41.
[http://dx.doi.org/10.1002/ajoc.201900583]
[2]
Gröger, H. Enzymatic routes to enantiomerically pure aromatic α-hydroxy carboxylic acids: A further example for the diversity of biocatalysis. Adv. Synth. Catal., 2001, 343(6-7), 547-558.
[http://dx.doi.org/10.1002/1615-4169(200108)343:6/7<547::AID-ADSC547>3.0.CO;2-A]
[3]
Sakakibara, Y.; Ito, E.; Fukushima, T.; Murakami, K.; Itami, K. Late-stage functionalization of arylacetic acids by photoredox-catalyzed decarboxylative carbon–heteroatom bond formation. Chemistry, 2018, 24(37), 9254-9258.
[http://dx.doi.org/10.1002/chem.201802143] [PMID: 29718551]
[4]
Hadjipavlou-Litina, D.; Pontiki, E. Aryl-acetic and cinnamic acids as lipoxygenase inhibitors with antioxidant, anti-inflammatory, and anticancer activity. In: Advanced Protocols in Oxidative Stress III. Methods in Molecular Biology; Armstrong, D., Ed.; Humana Press: New York, NY, 2015; p. 1208.
[http://dx.doi.org/10.1007/978-1-4939-1441-8_26]
[5]
Chan, H.C.; Kuo, S.C.; Huang, L.J.; Liu, C.H.; Hsu, S.L. A phenylacetate derivative, SCK6, inhibits cell proliferation via G1 cell cycle arrest and apoptosis. Eur. J. Pharmacol., 2003, 467(1-3), 31-39.
[http://dx.doi.org/10.1016/S0014-2999(03)01596-6] [PMID: 12706452]
[6]
Hata, A.N.; Lybrand, T.P.; Marnett, L.J.; Breyer, R.M. Structural determinants of arylacetic acid nonsteroidal anti-inflammatory drugs necessary for binding and activation of the prostaglandin D2 receptor CRTH2. Mol. Pharmacol., 2005, 67(3), 640-647.
[http://dx.doi.org/10.1124/mol.104.007971] [PMID: 15563582]
[7]
Javaid, M.; Haq, I.U.; Nadeem, H.; Fatima, H.; Khan, A.U.; Irshad, N. Design, synthesis and screening of indole acetic acid-based tri-azo moieties as antioxidants, anti-microbial and cytotoxic agents. Front. Pharmacol., 2023, 14, 1084181.
[http://dx.doi.org/10.3389/fphar.2023.1084181] [PMID: 36923352]
[8]
Nemhauser, J.L.; Hong, F.; Chory, J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell, 2006, 126(3), 467-475.
[http://dx.doi.org/10.1016/j.cell.2006.05.050] [PMID: 16901781]
[9]
Zhao, Y. Auxin biosynthesis and its role in plant development. Annu. Rev. Plant Biol., 2010, 61(1), 49-64.
[http://dx.doi.org/10.1146/annurev-arplant-042809-112308] [PMID: 20192736]
[10]
Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem., 2010, 48(12), 909-930.
[http://dx.doi.org/10.1016/j.plaphy.2010.08.016] [PMID: 20870416]
[11]
Savitsky, P.A.; Gazaryan, I.G.; Tishkov, V.I.; Lagrimini, L.M.; Ruzgas, T.; Gorton, L. Oxidation of indole-3-acetic acid by dioxygen catalysed by plant peroxidases: Specificity for the enzyme structure. Biochem. J., 1999, 340(3), 579-583.
[http://dx.doi.org/10.1042/bj3400579] [PMID: 10359640]
[12]
Gazarian, I.G.; Lagrimini, L.M.; Mellon, F.A.; Naldrett, M.J.; Ashby, G.A.; Thorneley, R.N.F. Identification of skatolyl hydroperoxide and its role in the peroxidase-catalysed oxidation of indol-3-yl acetic acid. Biochem. J., 1998, 333(1), 223-232.
[http://dx.doi.org/10.1042/bj3330223] [PMID: 9639583]
[13]
Oshchepkov, M.S.; Kalistratova, A.V.; Savelieva, E.M.; Romanov, G.A.; Bystrova, N.A.; Kochetkov, K.A. Natural and synthetic cytokinins and their applications in biotechnology, agrochemistry and medicine. Russ. Chem. Rev., 2020, 89(8), 787-810.
[http://dx.doi.org/10.1070/RCR4921]
[14]
Lin, L.; Tan, R.X. Cross-kingdom actions of phytohormones: A functional scaffold exploration. Chem. Rev., 2011, 111(4), 2734-2760.
[http://dx.doi.org/10.1021/cr100061j] [PMID: 21250668]
[15]
Jha, U.C.; Nayyar, H.; Siddique, K.H.M. Role of phytohormones in regulating heat stress acclimation in agricultural crops. J. Plant Growth Regul., 2022, 41(3), 1041-1064.
[http://dx.doi.org/10.1007/s00344-021-10362-x]
[16]
Fu, J.H.; Sun, X.H.; Wang, J.D.; Chu, J.F.; Yan, C.Y. Progress in quantitative analysis of plant hormones. Chin. Sci. Bull., 2011, 56(4-5), 355-366.
[http://dx.doi.org/10.1007/s11434-010-4243-8]
[17]
Kiseleva, A.A.; Tarachovskaya, E.R.; Shishova, M.F. Biosynthesis of phytohormones in algae. Russ. J. Plant Physiol., 2012, 59(5), 595-610.
[http://dx.doi.org/10.1134/S1021443712050081]
[18]
Ferro, N.; Bredow, T.; Jacobsen, H.J.; Reinard, T. Route to novel auxin: Auxin chemical space toward biological correlation carriers. Chem. Rev., 2010, 110(8), 4690-4708.
[http://dx.doi.org/10.1021/cr800229s] [PMID: 20557094]
[19]
Drenichev, M.S.; Oslovsky, V.E.; Mikhailov, S.N. Cytokinin nucleosides - Natural compounds with a unique spectrum of biological activities. Curr. Top. Med. Chem., 2016, 16(23), 2562-2576.
[http://dx.doi.org/10.2174/1568026616666160414123717] [PMID: 27086793]
[20]
Bains, W.; Tacke, R. Silicon chemistry as a novel source of chemical diversity in drug design. Curr. Opin. Drug Discov. Devel., 2003, 6(4), 526-543.
[PMID: 12951816]
[21]
Fotie, J.; Matherne, C.M.; Wroblewski, J.E. Silicon switch: Carbon–silicon Bioisosteric replacement as a strategy to modulate the selectivity, physicochemical, and DRUG-LIKE properties in anticancer pharmacophores. Chem. Biol. Drug Des., 2023, 102(2), 235-254.
[http://dx.doi.org/10.1111/cbdd.14239] [PMID: 37029092]
[22]
Meanwell, N.A. Synopsis of some recent tactical application of bioisosteres in drug design. J. Med. Chem., 2011, 54(8), 2529-2591.
[http://dx.doi.org/10.1021/jm1013693] [PMID: 21413808]
[23]
Franz, A.K.; Wilson, S.O. Organosilicon molecules with medicinal applications. J. Med. Chem., 2013, 56(2), 388-405.
[http://dx.doi.org/10.1021/jm3010114] [PMID: 23061607]
[24]
Wei, G.; Huang, M.W.; Wang, W.J.; Wu, Y.; Mei, S.F.; Zhou, L.M.; Mei, L.C.; Zhu, X.L.; Yang, G.F. Expanding the chemical space of succinate dehydrogenase inhibitors via the carbon–silicon switch strategy. J. Agric. Food Chem., 2021, 69(13), 3965-3971.
[http://dx.doi.org/10.1021/acs.jafc.0c07322] [PMID: 33779164]
[25]
Zhou, C.; Wang, X.; Quan, X.; Cheng, J.; Li, Z.; Maienfisch, P. Silicon-containing complex ii acaricides-design, synthesis, and pharmacological optimization. J. Agric. Food Chem., 2022, 70(36), 11063-11074.
[http://dx.doi.org/10.1021/acs.jafc.2c00804] [PMID: 35575634]
[26]
Perez, C.C.; Benatti, F.R.; Martins, D.P., Jr; Silva, A.A. A versatilidade de derivados de silício na descoberta de novos fármacos. Rev. Virtual Quim, 2021, 13, 981-992.
[http://dx.doi.org/10.21577/1984-6835.20210023]
[27]
de Mello Prado, R. Eds. Benefits of silicon in the nutrition of plants; Springer Cham, 2023.
[http://dx.doi.org/10.1007/978-3-031-26673-7]
[28]
Irfan, M.; Maqsood, M.A.; Rehman, H.; Mahboob, W.; Sarwar, N.; Hafeez, O.B.A.; Hussain, S.; Ercisli, S.; Akhtar, M.; Aziz, T. Silicon nutrition in plants under water-deficit conditions: Overview and prospects. Water, 2023, 15(4), 739.
[http://dx.doi.org/10.3390/w15040739]
[29]
Mir, R.A.; Bhat, B.A.; Yousuf, H.; Islam, S.T.; Raza, A.; Rizvi, M.A.; Charagh, S.; Albaqami, M.; Sofi, P.A.; Zargar, S.M. Multidimensional role of silicon to activate resilient plant growth and to mitigate abiotic stress. Front. Plant Sci., 2022, 13, 819658.
[http://dx.doi.org/10.3389/fpls.2022.819658] [PMID: 35401625]
[30]
Voronkov, M.G.; Shirchin, B.O.; Semenova, N.V.; Brodskaya, E.I.; Dalmoo, G.; Orgil’yanova, L.V.; D’yakov, V.M. Studies of synthetic phytohormones. III. Trialkylsilylmethyl esters of aroxyacetic acids, their spectroscopic properties and auxin activity. Z. Obsh. Khim., 1980, 50(3), 595-599.
[http://dx.doi.org/10.1002/chin.198032335]
[31]
Voronkov, M.G.; Shirchin, B.; Golovanova, N.I.; Albanov, A.I. Study of synthetic phytohormones. VI. Organosilicon esters of arylthioacetic acids. Z. Obsh. Khim., 1982, 52(11), 2049-2052.
[32]
Voronkov, M.G.; Shirchin, B.; Golovanova, N.I.; Albanov, A.I. Study of synthetic phytohormones. VIII. (Trialkylsilyl)methyl N-aryl, N-ethyl, and N-phenylaminoacetate. Z. Obsh. Khim., 1983, 53(6), 926-929.
[33]
Voronkov, M.G.; Shirchin, B.O.; Semenova, N.V.; D’yakov, V.M. Investigations into synthetic phytohormones. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1977, 26(5), 1038-1040.
[http://dx.doi.org/10.1007/BF01152712]
[34]
Dolci, M.; Navissano, G.; Gay, G.; Eynard, A.; Rangone, M. Comparison among 18 hexyl esters of 1-naphthylacetic acid used on grapevine. J. Agric. Food Chem., 1999, 47(4), 1767-1770.
[http://dx.doi.org/10.1021/jf980316e] [PMID: 10564052]
[35]
An, L.; Ma, J.; Qin, D.; Wang, H.; Yuan, Y.; Li, H.; Na, R.; Wu, X. Novel strategy to decipher the regulatory mechanism of 1-naphthaleneacetic acid in strawberry maturation. J. Agric. Food Chem., 2019, 67(4), 1292-1301.
[http://dx.doi.org/10.1021/acs.jafc.8b05233] [PMID: 30629884]
[36]
Kuzin, A.I.; Nazarov, Yu.B.; Shmakova, A.A.; Karpukhina, S.A.; Flyagin, A.I. Use of α-naphthylacetic acid in ovary thinning and preharvest fruit drop reduction in apple trees. Hortic. Viticulture, 2021, 4(4), 49-56.
[http://dx.doi.org/10.31676/0235-2591-2021-4-49-56]
[37]
Kaewchangwat, N.; Thanayupong, E.; Jarussophon, S.; Niamnont, N.; Yata, T.; Prateepchinda, S.; Unger, O.; Han, B.; Suttisintong, K. Coumarin-caged compounds of 1-naphthaleneacetic acid as light-responsive controlled-release plant root stimulators. J. Agric. Food Chem., 2020, 68(23), 6268-6279.
[http://dx.doi.org/10.1021/acs.jafc.0c00138] [PMID: 32396350]
[38]
Basuchaudhuri, P. 1-Naphthaleneacetic acid in rice cultivation. Curr. Sci., 2016, 110(1), 52-56.
[http://dx.doi.org/10.18520/cs/v110/i1/52-56]
[39]
Pang, J.; Xiong, Y.; Zeng, Y.; Chen, X.; Zhang, X.; Li, Y.; Wu, K.; Zeng, S.; Teixeira da Silva, J.A.; Ma, G. Shoot organogenesis and plant regeneration from leaf and petiole explants of Corydalis saxicola Bunting. In Vitro Cell. Dev. Biol. Plant, 2023, 59(1), 121-128.
[http://dx.doi.org/10.1007/s11627-022-10322-4]
[40]
Li, X.; Wang, D.; Chen, Y.; Ouyang, M.; Liu, J.; Yi, J.; Huang, Y. Synthesis and biological activity of new plant growth regulators containing silicon. Huaxue Shiji, 2001, 23, 28-29.
[41]
Li, X.; Wang, L.; Ouyang, M.; Liu, J. Synthesis and biological activity of a series of plant growth regulators containing silicon. Jingxi Huagong, 2000, 17, 14-16.
[42]
Voronkov, M.G.; Baryshok, V.P. Silatranes in medicine and agriculture; SO RAN Publ: Novosibirsk, 2005.
[43]
Voronkov, M.G.; Baryshok, V.P. Atranes as a new generation of biologically active substances. Herald Russ. Acad. Sci., 2010, 80(6), 514-521.
[http://dx.doi.org/10.1134/S1019331610060079]
[44]
Voronkov, M.G.; Baryshok, V.P. Antitumor activity of silatranes (A review). Pharm. Chem. J., 2004, 38(1), 3-9.
[http://dx.doi.org/10.1023/B:PHAC.0000027635.41154.0d]
[45]
Singh, G.; Sharma, G. Role of alkyl silatranes as plant growth regulators: Comparative substitution effecton root and shoot development of wheat and maize. J. Sci. Food Agric., 2018, 98(13), 5129-5133.
[http://dx.doi.org/10.1002/jsfa.9052] [PMID: 29635793]
[46]
Xie, Z.; Chen, L.; Wang, Y.; Song, X.; Qi, X.; Guo, P.; Ye, F. Synthesis and stimulation of seed germination of γ-aminopropyl silatrane derivatives. Phytochem. Lett., 2014, 8, 202-206.
[http://dx.doi.org/10.1016/j.phytol.2013.12.011]
[47]
Shigarova, A.M.; Korotaeva, N.E.; Borovskii, G.B.; Voronkov, M.G. Effect of triethanolamine and silatranes on thermotolerance and accumulation of stress proteins in pea seedlings. Russ. J. Plant Physiol., 2012, 59(6), 724-731.
[http://dx.doi.org/10.1134/S1021443712050160]
[48]
Loginov, S.V.; Zharikova, S.A.; Simakina, N.E. Silicon-containing compounds as bases of drugs used to regulate plant growth. Polymer Sci., D, 2011, 4(3), 236-241.
[http://dx.doi.org/10.1134/S1995421211030087]
[49]
Lin, Y.; Song, B.; Han, A.; Hu, S.; Ye, F.; Xie, Z. Synthesis of γ-arylmethylene-aminopropyl-3,7,10-trimethyl-silatrane derivatives and their activities of regulating plant growth. Phosphorus Sulfur Silicon Relat. Elem., 2011, 186(2), 298-303.
[http://dx.doi.org/10.1080/10426507.2010.496747]
[50]
Zabicky, J. Ed.; The Chemistry of Amides; Intersience: London, 1970.
[51]
Stewart, W.E.; Siddall, T.H. Nuclear magnetic resonance studies of amides. Chem. Rev., 1970, 70(5), 517-551.
[http://dx.doi.org/10.1021/cr60267a001]
[52]
Voronkov, M.G.; Baryshok, V.P.; Lazareva, N.F.; Kuznetsova, G.A.; Brodskaya, E.I.; Belyaeva, V.V.; Albanov, A.I.; Romanenko, L.S. Si-Substituted N-(silylalkyl)- and N-(silatran-1-ylalkyl)amides of carboxylic acids. Organomet. Chem. USSR, 1992, 5(6), 648-660.
[53]
Pukhalskaya, V.G.; Kramarova, E.P.; Kozaeva, L.P.; Korlyukov, A.A.; Shipov, A.G.; Bylikin, S.Y.; Negrebetsky, V.V.; Poryadin, G.V.; Baukov, Y.I. Synthesis, structure and muscarinic agonist activity of substituted N‐ (silatran‐1‐ylmethyl)acetamides. Appl. Organomet. Chem., 2010, 24(3), 162-168.
[http://dx.doi.org/10.1002/aoc.1539]
[54]
Voronkov, M.G.; Larina, L.I.; Bolgova, Y.I.; Trofimova, O.M.; Chernov, N.F.; Pestunovich, V.A. Structure of N-(1-silatranylmethyl) and N-(trimethoxysilylmethyl) derivatives of nitrogen-containing heterocycles according to data of NMR, IR, and UV spectroscopy. Chem. Heterocycl. Compd., 2006, 42(12), 1585-1591.
[http://dx.doi.org/10.1007/s10593-006-0282-0]
[55]
Tamao, K.; Hayashi, T.; Ito, Y.; Shiro, M. Pentacoordinate anionic bis(siliconates) containing a fluorine bridge between two silicon atoms. Synthesis, solid-state structures, and dynamic behavior in solution. Organometallics, 1992, 11(6), 2099-2114.
[http://dx.doi.org/10.1021/om00042a026]
[56]
Kano, N.; Kikuchi, A.; Kawashima, T. The first isolable pentacoordinate 1,2 lambda 5-azaphosphetine: synthesis, X-ray crystallographic analysis, and dynamic behaviour. Chem. Commun., 2001, (20), 2096-2097.
[http://dx.doi.org/10.1039/b106501g] [PMID: 12240180]
[57]
Ovchinnikov, Y.; Shklover, V.E.; Struchkov, Y.T.; Kopylov, V.M.; Kovyazina, T.G.; Voronkov, M.G. Crystal structure of organosilicon compounds. XXXIX. N-[1-(1-Silatranyl)ethyl] pyrrolidone. J. Struct. Chem., 1986, 27(2), 287-290.
[http://dx.doi.org/10.1007/BF00751740]
[58]
Shklover, V.E.; Ovchinnikov, Yu.E.; Struchkov, Yu.T.; Kopilov, V.M.; Kovyazina, T.G.; Voronkov, M.G. Crystal structure of 1-[1-(2-oxaperhydroazepino)ethyl]silatrane. Proc. Nat. Acad. Sci. USSR, 1985, 284(1), 131-135.
[59]
Voronkov, M.G.; Korlyukov, A.A.; Zel’bst, E.A.; Kashaev, A.A.; Trofimova, O.M.; Bolgova, Y.I.; Antipin, M.Y. Molecular structure of N-1-silatranylmethyl)succinimide and glutarimide. Dokl. Chem., 2008, 420(1), 120-122.
[http://dx.doi.org/10.1134/S0012500808050029]
[60]
Voronkov, G.; Zel’bst, É.A.; Vasiliev, A.D.; Bolgova, Y.I.; Soldatenko, A.S.; Trofimova, O.M. Crystal and molecular structure of N-(1-silatranylmethyl)phthalimide. J. Struct. Chem., 2011, 52(5), 985-988.
[http://dx.doi.org/10.1134/S0022476611050222]
[61]
Chanclud, E.; Lacombe, B. Plant hormones: Key players in gut microbiota and human diseases? Trends Plant Sci., 2017, 22(9), 754-758.
[http://dx.doi.org/10.1016/j.tplants.2017.07.003] [PMID: 28843313]
[62]
Swiss Institute of Bioinformatics. 2023. Avaiable from: [http://www.swissadme.ch]
[63]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[64]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[65]
Hofman, J.; Vagiannis, D.; Chen, S.; Guo, L. Roles of CYP3A4, CYP3A5 and CYP2C8 drug-metabolizing enzymes in cellular cytostatic resistance. Chem. Biol. Interact., 2021, 340, 109448.
[http://dx.doi.org/10.1016/j.cbi.2021.109448] [PMID: 33775687]
[66]
Wang, J.S.; DeVane, C.L. Involvement of CYP3A4, CYP2C8, and CYP2D6 in the metabolism of (R)- and (S)-methadone in vitro. Drug Metab. Dispos., 2003, 31(6), 742-747.
[http://dx.doi.org/10.1124/dmd.31.6.742] [PMID: 12756206]
[67]
Prediction of activity spectra for substances. Available from: http://www.pharmaexpert.ru/PASSOnline/
[68]
Poroikov, V.V.; Filimonov, D.A.; Gloriozova, T.A.; Lagunin, A.A.; Druzhilovskiy, D.S.; Rudik, A.V.; Stolbov, L.A.; Dmitriev, A.V.; Tarasova, O.A.; Ivanov, S.M.; Pogodin, P.V. Computer-aided prediction of biological activity spectra for organic compounds: the possibilities and limitations. Russ. Chem. Bull., 2019, 68(12), 2143-2154.
[http://dx.doi.org/10.1007/s11172-019-2683-0]
[69]
Wang, Z.; Ye, X.; Jin, M.; Tang, Q.; Fan, S.; Song, Z.; Shi, X. 4-Aminobenzotriazole (ABTA) as a removable directing group for palladium-catalyzed aerobic oxidative C-H olefination. Org. Lett., 2022, 24(17), 3107-3112.
[http://dx.doi.org/10.1021/acs.orglett.2c00285] [PMID: 35324203]
[70]
Callens, R.; Collin, A. PCT Int. Appl. 2012. W.O. Patent 2012136617 A.1. 20121011.
[71]
Lazareva, N.F.; Alekseev, M.A.; Sterkhova, I.V. Structure of novel N-fluorosilylmethyl-N-isopropylureas. Mendeleev Commun., 2022, 32(5), 686-687.
[http://dx.doi.org/10.1016/j.mencom.2022.09.040]
[72]
Armarego, W.L.F.; Chai, C.L.L. Purification of laboratory chemicals, 6th ed; Butterworth-Heinemann: Elsevier, 2009.
[73]
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr., 2008, A64, 112-122.
[http://dx.doi.org/10.1107/S0108767307043930]
[74]
PLATON – A Multipurpose Crystallographic Tool; Utrecht University, Utrecht: The Netherlands,, 2008.
[75]
Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; Wood, P.A. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Cryst., 2020, 53(1), 226-235.
[http://dx.doi.org/10.1107/S1600576719014092] [PMID: 32047413]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy