Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Chirality Sensing in Coordination-driven Supramolecular Assemblies

Author(s): Abhik Paul* and Subhadip Roy*

Volume 28, Issue 12, 2024

Published on: 27 March, 2024

Page: [941 - 958] Pages: 18

DOI: 10.2174/0113852728292501240301062823

Price: $65

Abstract

Chirality is a widespread structural characteristic found in nature and plays a vital role in the structure and functioning of almost all biological systems. Nevertheless, the translation of chirality into synthetic systems is highly intricate yet captivating, as it not only applies fundamental understanding but also has the potential to tackle significant difficulties in biochemistry and medicine. Structurally, the process of coordination-driven selfassembly involves the organization of basic molecular components into well-defined porous homochiral metal-organic cages (MOCs). This allows for a systematic investigation of the enantioselective processes occurring within the nanocavities, which have limited space and specific chiral microenvironments. This article aims to provide a comprehensive summary of the recent advancements in supramolecular chirality generated in the fascinating class of porous MOCs. It will cover the synthesis and characterization of these materials, as well as the implications of their stereochemical information in terms of chiral recognition and enantio-separation. Subsequently, a subjective viewpoint will be presented regarding the potential, possibilities, and significant challenges in the future advancement of this domain, aiming to expand the progress in creating novel chiral functional materials in the realm of chemistry and beyond.

Graphical Abstract

[1]
Naaman, R.; Paltiel, Y.; Waldeck, D.H. Chiral induced spin selectivity and its implications for biological functions. Annu. Rev. Biophys., 2022, 51(1), 99-114.
[http://dx.doi.org/10.1146/annurev-biophys-083021-070400] [PMID: 34932912]
[2]
Nagib, D.A. Asymmetric catalysis in radical chemistry. Chem. Rev., 2022, 122(21), 15989-15992.
[http://dx.doi.org/10.1021/acs.chemrev.2c00622] [PMID: 36349458]
[3]
Xing, P.; Tham, H.P.; Li, P.; Chen, H.; Xiang, H.; Zhao, Y. Environment-adaptive coassembly/self-sorting and stimulus-responsiveness transfer based on cholesterol building blocks. Adv. Sci., 2018, 5(1), 1700552.
[http://dx.doi.org/10.1002/advs.201700552] [PMID: 29375976]
[4]
Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.; Maeda, K. Supramolecular helical systems: Helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev., 2016, 116(22), 13752-13990.
[http://dx.doi.org/10.1021/acs.chemrev.6b00354] [PMID: 27754649]
[5]
Lehn, J.M. Perspectives in chemistry-aspects of adaptive chemistry and materials. Angew. Chem. Int. Ed., 2015, 54(11), 3276-3289.
[http://dx.doi.org/10.1002/anie.201409399] [PMID: 25582911]
[6]
Liu, M.; Zhang, L.; Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev., 2015, 115(15), 7304-7397.
[http://dx.doi.org/10.1021/cr500671p] [PMID: 26189453]
[7]
Zhang, L.; Qin, L.; Wang, X.; Cao, H.; Liu, M. Supramolecular chirality in self-assembled soft materials: Regulation of chiral nanostructures and chiral functions. Adv. Mater., 2014, 26(40), 6959-6964.
[http://dx.doi.org/10.1002/adma.201305422] [PMID: 24687217]
[8]
Micali, N.; Engelkamp, H.; van Rhee, P.G.; Christianen, P.C.M.; Scolaro, L.M.; Maan, J.C. Selection of supramolecular chirality by application of rotational and magnetic forces. Nat. Chem., 2012, 4(3), 201-207.
[http://dx.doi.org/10.1038/nchem.1264] [PMID: 22354434]
[9]
Huang, S.; Yu, H.; Li, Q. Supramolecular chirality transfer toward chiral aggregation: Asymmetric hierarchical self-assembly. Adv. Sci., 2021, 8(8), 2002132.
[http://dx.doi.org/10.1002/advs.202002132] [PMID: 33898167]
[10]
Xing, P.; Zhao, Z.; Hao, A.; Zhao, Y. Tailoring luminescence color conversion via affinitive co-assembly of glutamates appended with pyrene and naphthalene dicarboximide units. Chem. Commun., 2016, 52(6), 1246-1249.
[http://dx.doi.org/10.1039/C5CC08858E] [PMID: 26612661]
[11]
Xing, P.; Chen, H.; Bai, L.; Hao, A.; Zhao, Y. Superstructure formation and topological evolution achieved by self-organization of a highly adaptive dynamer. ACS Nano, 2016, 10(2), 2716-2727.
[http://dx.doi.org/10.1021/acsnano.5b07800] [PMID: 26757061]
[12]
Lehn, J-M. Supramolecular chemistry; Vch: Weinheim New York, 1995, 1, .
[13]
Atwood, J.L.; Lehn, J.M. Comprehensive supramolecular chemistry, 1st ed; Pergamon New York, 1996.
[14]
Li, P.; Ryder, M.R.; Stoddart, J.F. Hydrogen-bonded organic frameworks: A rising class of porous molecular materials. Acc Mater Res., 2020, 1(1), 77-87.
[http://dx.doi.org/10.1021/accountsmr.0c00019]
[15]
Lin, R.B.; Chen, B. Hydrogen-bonded organic frameworks: Chemistry and functions. Chem, 2022, 8(8), 2114-2135.
[http://dx.doi.org/10.1016/j.chempr.2022.06.015]
[16]
Yoshizawa, M.; Klosterman, J.K.; Fujita, M. Functional molecular flasks: New properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed., 2009, 48(19), 3418-3438.
[http://dx.doi.org/10.1002/anie.200805340] [PMID: 19391140]
[17]
Chen, X.M.; Chen, X.; Hou, X.F.; Zhang, S.; Chen, D.; Li, Q. Self-assembled supramolecular artificial light-harvesting nanosystems: Construction, modulation, and applications. Nanoscale Adv., 2023, 5(7), 1830-1852.
[http://dx.doi.org/10.1039/D2NA00934J] [PMID: 36998669]
[18]
Cougnon, F.B.L.; Stefankiewicz, A.R.; Ulrich, S. Dynamic covalent synthesis. Chem. Sci., 2024, 15(3), 879-895.
[http://dx.doi.org/10.1039/D3SC05343A] [PMID: 38239698]
[19]
Pan, M.; Wu, K.; Zhang, J.H.; Su, C.Y. Chiral metal–organic cages/containers (MOCs): From structural and stereochemical design to applications. Coord. Chem. Rev., 2019, 378, 333-349.
[http://dx.doi.org/10.1016/j.ccr.2017.10.031]
[20]
Koca, M.; Al-Ajmi, M.; Koç, R. Polyhedra obtained from Coxeter groups and quaternions. J. Math. Phys., 2007, 48(11), 113514.
[http://dx.doi.org/10.1063/1.2809467]
[21]
Hamilton, T.D.; MacGillivray, L.R. Enclosed chiral environments from self-assembled metal-organic polyhedra. Cryst. Growth Des., 2004, 4(3), 419-430.
[http://dx.doi.org/10.1021/cg0342011]
[22]
MacGillivray, L.R.; Atwood, J.L. Structural classification and general principles for the design of spherical molecular hosts. Angew. Chem. Int. Ed., 1999, 38(8), 1018-1033.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990419)38:8<1018:AID-ANIE1018>3.0.CO;2-G] [PMID: 25138490]
[23]
McTernan, C.T.; Davies, J.A.; Nitschke, J.R. Beyond platonic: How to build metal–organic polyhedra capable of binding low-symmetry, information-rich molecular cargoes. Chem. Rev., 2022, 122(11), 10393-10437.
[http://dx.doi.org/10.1021/acs.chemrev.1c00763] [PMID: 35436092]
[24]
Lewis, J.E.M. Pseudo-heterolepticity in low-symmetry metal-organic cages. Angew. Chem. Int. Ed., 2022, 61(44), e202212392.
[http://dx.doi.org/10.1002/anie.202212392] [PMID: 36074024]
[25]
He, Z.; Jiang, W.; Schalley, C.A. Integrative self-sorting: A versatile strategy for the construction of complex supramolecular architecture. Chem. Soc. Rev., 2015, 44(3), 779-789.
[http://dx.doi.org/10.1039/C4CS00305E] [PMID: 25374006]
[26]
Zheng, K.; Wang, H.; Chow, H.F. Organogelating and narcissistic self-sorting behaviour of non-preorganized oligoamides. Chem. Sci., 2019, 10(14), 4015-4024.
[http://dx.doi.org/10.1039/C9SC00861F] [PMID: 31015942]
[27]
Acharyya, K.; Mukherjee, S.; Mukherjee, P.S. Molecular marriage through partner preferences in covalent cage formation and cage-to-cage transformation. J. Am. Chem. Soc., 2013, 135(2), 554-557.
[http://dx.doi.org/10.1021/ja310083p] [PMID: 23268653]
[28]
Rizzuto, F.J.; Nitschke, J.R. Narcissistic, integrative, and kinetic self-sorting within a system of coordination cages. J. Am. Chem. Soc., 2020, 142(17), 7749-7753.
[http://dx.doi.org/10.1021/jacs.0c02444] [PMID: 32275828]
[29]
Black, S.P.; Sanders, J.K.M.; Stefankiewicz, A.R. Disulfide exchange: Exposing supramolecular reactivity through dynamic covalent chemistry. Chem. Soc. Rev., 2014, 43(6), 1861-1872.
[http://dx.doi.org/10.1039/C3CS60326A] [PMID: 24132207]
[30]
Chakrabarty, R.; Mukherjee, P.S.; Stang, P.J. Supramolecular coordination: Self-assembly of finite two- and three-dimensional ensembles. Chem. Rev., 2011, 111(11), 6810-6918.
[http://dx.doi.org/10.1021/cr200077m] [PMID: 21863792]
[31]
Caulder, D.L.; Raymond, K.N. Supermolecules by design. Acc. Chem. Res., 1999, 32(11), 975-982.
[http://dx.doi.org/10.1021/ar970224v]
[32]
Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa, T.; Biradha, K. Molecular paneling via coordination. Chem. Commun., 2001, (6), 509-518.
[http://dx.doi.org/10.1039/b008684n]
[33]
McConnell, A.J. Metallosupramolecular cages: From design principles and characterisation techniques to applications. Chem. Soc. Rev., 2022, 51(8), 2957-2971.
[http://dx.doi.org/10.1039/D1CS01143J] [PMID: 35356956]
[34]
Xu, Q.M.; Wang, D.; Wan, L.J.; Wang, C.; Bai, C.L.; Feng, G.Q.; Wang, M.X. Discriminating chiral molecules of (R)-PPA and (S)-PPA in aqueous solution by ECSTM. Angew. Chem. Int. Ed., 2002, 41(18), 3408-3411.
[http://dx.doi.org/10.1002/1521-3773(20020916)41:18<3408::AID-ANIE3408>3.0.CO;2-7] [PMID: 12298047]
[35]
Jiang, J.; Wang, T.; Liu, M. Creating chirality in the inner walls of silica nanotubes through a hydrogel template: Chiral transcription and chiroptical switch. Chem. Commun., 2010, 46(38), 7178-7180.
[http://dx.doi.org/10.1039/c0cc00891e] [PMID: 20717575]
[36]
Duan, P.; Zhu, X.; Liu, M. Isomeric effect in the self-assembly of pyridine-containing L-glutamic lipid: Substituent position controlled morphology and supramolecular chirality. Chem. Commun., 2011, 47(19), 5569-5571.
[http://dx.doi.org/10.1039/C1CC10813A] [PMID: 21483913]
[37]
Quan, M.; Pang, X.Y.; Jiang, W. Circular dichroism based chirality sensing with supramolecular host–guest chemistry. Angew. Chem. Int. Ed., 2022, 61(23), e202201258.
[http://dx.doi.org/10.1002/anie.202201258] [PMID: 35315199]
[38]
Pescitelli, G.; Di Bari, L.; Berova, N. Conformational aspects in the studies of organic compounds by electronic circular dichroism. Chem. Soc. Rev., 2011, 40(9), 4603-4625.
[http://dx.doi.org/10.1039/c1cs15036g] [PMID: 21677932]
[39]
Yang, L.P.; Zhang, L.; Quan, M.; Ward, J.S.; Ma, Y.L.; Zhou, H.; Rissanen, K.; Jiang, W. A supramolecular system that strictly follows the binding mechanism of conformational selection. Nat. Commun., 2020, 11(1), 2740.
[http://dx.doi.org/10.1038/s41467-020-16534-9] [PMID: 32488094]
[40]
Koshland, D.E., Jr The key–lock theory and the induced fit theory. Angew. Chem. Int. Ed. Engl., 1995, 33(23-24), 2375-2378.
[http://dx.doi.org/10.1002/anie.199423751]
[41]
Furusho, Y.; Kimura, T.; Mizuno, Y.; Aida, T. Chirality-memory molecule: A D2-symmetric fully substituted porphyrin as a conceptually new chirality sensor. J. Am. Chem. Soc., 1997, 119(22), 5267-5268.
[http://dx.doi.org/10.1021/ja970431q]
[42]
Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Helical polymers: Synthesis, structures, and functions. Chem. Rev., 2009, 109(11), 6102-6211.
[http://dx.doi.org/10.1021/cr900162q] [PMID: 19905011]
[43]
Ousaka, N.; Clegg, J.K.; Nitschke, J.R. Nonlinear enhancement of chiroptical response through subcomponent substitution in M4L6 cages. Angew. Chem. Int. Ed., 2012, 51(6), 1464-1468.
[http://dx.doi.org/10.1002/anie.201107532] [PMID: 22213279]
[44]
Castilla, A.M.; Ousaka, N.; Bilbeisi, R.A.; Valeri, E.; Ronson, T.K.; Nitschke, J.R. High-fidelity stereochemical memory in a FeII4L4 tetrahedral capsule. J. Am. Chem. Soc., 2013, 135(47), 17999-18006.
[http://dx.doi.org/10.1021/ja410117q] [PMID: 24182351]
[45]
Green, M.M.; Peterson, N.C.; Sato, T.; Teramoto, A.; Cook, R.; Lifson, S. A helical polymer with a cooperative response to chiral information. Science, 1995, 268(5219), 1860-1866.
[http://dx.doi.org/10.1126/science.268.5219.1860] [PMID: 17797527]
[46]
De Greef, T.F.A.; Smulders, M.M.J.; Wolffs, M.; Schenning, A.P.H.J.; Sijbesma, R.P.; Meijer, E.W. Supramolecular polymerization. Chem. Rev., 2009, 109(11), 5687-5754.
[http://dx.doi.org/10.1021/cr900181u] [PMID: 19769364]
[47]
Pijper, D.; Feringa, B.L. Control of dynamic helicity at the macro- and supramolecular level. Soft Matter, 2008, 4(7), 1349-1372.
[http://dx.doi.org/10.1039/b801886c] [PMID: 32907099]
[48]
Chen, L.J.; Yang, H.B.; Shionoya, M. Chiral metallosupramolecular architectures. Chem. Soc. Rev., 2017, 46(9), 2555-2576.
[http://dx.doi.org/10.1039/C7CS00173H] [PMID: 28452389]
[49]
McConnell, A.J.; Wood, C.S.; Neelakandan, P.P.; Nitschke, J.R. Stimuli-responsive metal–ligand assemblies. Chem. Rev., 2015, 115(15), 7729-7793.
[http://dx.doi.org/10.1021/cr500632f] [PMID: 25880789]
[50]
Xu, L.; Wang, Y.X.; Chen, L.J.; Yang, H.B. Construction of multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly: From structure to functions. Chem. Soc. Rev., 2015, 44(8), 2148-2167.
[http://dx.doi.org/10.1039/C5CS00022J] [PMID: 25723131]
[51]
Zhang, L.; Wang, H.X.; Li, S.; Liu, M. Supramolecular chiroptical switches. Chem. Soc. Rev., 2020, 49(24), 9095-9120.
[http://dx.doi.org/10.1039/D0CS00191K] [PMID: 33118560]
[52]
Castilla, A.M.; Ramsay, W.J.; Nitschke, J.R. Stereochemistry in subcomponent self-assembly. Acc. Chem. Res., 2014, 47(7), 2063-2073.
[http://dx.doi.org/10.1021/ar5000924] [PMID: 24793652]
[53]
Morris, R.E.; Bu, X. Induction of chiral porous solids containing only achiral building blocks. Nat. Chem., 2010, 2(5), 353-361.
[http://dx.doi.org/10.1038/nchem.628] [PMID: 20414234]
[54]
Dong, J.; Liu, Y.; Cui, Y. Supramolecular chirality in metal–organic complexes. Acc. Chem. Res., 2021, 54(1), 194-206.
[http://dx.doi.org/10.1021/acs.accounts.0c00604] [PMID: 33337867]
[55]
Schulte, T.R.; Holstein, J.J.; Clever, G.H. Chiral self-discrimination and guest recognition in helicene-based coordination cages. Angew. Chem. Int. Ed., 2019, 58(17), 5562-5566.
[http://dx.doi.org/10.1002/anie.201812926] [PMID: 30761694]
[56]
Plajer, A.J.; Percástegui, E.G.; Santella, M.; Rizzuto, F.J.; Gan, Q.; Laursen, B.W.; Nitschke, J.R. Fluorometric recognition of nucleotides within a water-soluble tetrahedral capsule. Angew. Chem. Int. Ed., 2019, 58(13), 4200-4204.
[http://dx.doi.org/10.1002/anie.201814149] [PMID: 30666756]
[57]
Fuertes-Espinosa, C.; Gómez-Torres, A.; Morales-Martínez, R.; Rodríguez-Fortea, A.; García-Simón, C.; Gándara, F.; Imaz, I.; Juanhuix, J.; Maspoch, D.; Poblet, J.M.; Echegoyen, L.; Ribas, X. Purification of uranium-based endohedral metallofullerenes (EMFs) by selective supramolecular encapsulation and release. Angew. Chem. Int. Ed., 2018, 57(35), 11294-11299.
[http://dx.doi.org/10.1002/anie.201806140] [PMID: 29917307]
[58]
Fuertes-Espinosa, C.; Pujals, M.; Ribas, X. Supramolecular purification and regioselective functionalization of fullerenes and endohedral metallofullerenes. Chem, 2020, 6(12), 3219-3262.
[http://dx.doi.org/10.1016/j.chempr.2020.11.003]
[59]
Zhang, D.; Ronson, T.K.; Zou, Y.Q.; Nitschke, J.R. Metal–organic cages for molecular separations. Nat. Rev. Chem., 2021, 5(3), 168-182.
[http://dx.doi.org/10.1038/s41570-020-00246-1] [PMID: 37117530]
[60]
Sainaba, A.B.; Venkateswarulu, M.; Bhandari, P.; Arachchige, K.S.A.; Clegg, J.K.; Mukherjee, P.S. An adaptable water-soluble molecular boat for selective separation of phenanthrene from isomeric anthracene. J. Am. Chem. Soc., 2022, 144(16), 7504-7513.
[http://dx.doi.org/10.1021/jacs.2c02540] [PMID: 35436087]
[61]
Dong, V.M.; Fiedler, D.; Carl, B.; Bergman, R.G.; Raymond, K.N. Molecular recognition and stabilization of iminium ions in water. J. Am. Chem. Soc., 2006, 128(45), 14464-14465.
[http://dx.doi.org/10.1021/ja0657915] [PMID: 17090022]
[62]
Sawada, T.; Yoshizawa, M.; Sato, S.; Fujita, M. Minimal nucleotide duplex formation in water through enclathration in self-assembled hosts. Nat. Chem., 2009, 1(1), 53-56.
[http://dx.doi.org/10.1038/nchem.100] [PMID: 21378801]
[63]
Saha, R.; Mondal, B.; Mukherjee, P.S. Molecular cavity for catalysis and formation of metal nanoparticles for use in catalysis. Chem. Rev., 2022, 122(14), 12244-12307.
[http://dx.doi.org/10.1021/acs.chemrev.1c00811] [PMID: 35438968]
[64]
Stang, P.J.; Olenyuk, B.; Muddiman, D.C.; Smith, R.D. Transition-metal-mediated rational design and self-assembly of chiral, nanoscale supramolecular polyhedra with unique T symmetry. Organometallics, 1997, 16(14), 3094-3096.
[http://dx.doi.org/10.1021/om9702993]
[65]
Nishioka, Y.; Yamaguchi, T.; Kawano, M.; Fujita, M. Asymmetric [2 + 2] olefin cross photoaddition in a self-assembled host with remote chiral auxiliaries. J. Am. Chem. Soc., 2008, 130(26), 8160-8161.
[http://dx.doi.org/10.1021/ja802818t] [PMID: 18540605]
[66]
Yang, Y.; Jia, J.H.; Pei, X.L.; Zheng, H.; Nan, Z.A.; Wang, Q.M. Diastereoselective synthesis of O symmetric heterometallic cubic cages. Chem. Commun., 2015, 51(18), 3804-3807.
[http://dx.doi.org/10.1039/C5CC00087D] [PMID: 25649958]
[67]
Howlader, P.; Mukherjee, P.S. Face and edge directed self-assembly of Pd12 tetrahedral nano-cages and their self-sorting. Chem. Sci., 2016, 7(9), 5893-5899.
[http://dx.doi.org/10.1039/C6SC02012G] [PMID: 30034731]
[68]
Howlader, P.; Zangrando, E.; Mukherjee, P.S. Self-assembly of enantiopure Pd12 tetrahedral homochiral nanocages with tetrazole linkers and chiral recognition. J. Am. Chem. Soc., 2020, 142(19), 9070-9078.
[http://dx.doi.org/10.1021/jacs.0c03551] [PMID: 32315163]
[69]
Bolliger, J.L.; Belenguer, A.M.; Nitschke, J.R. Enantiopure water-soluble [Fe4L6] cages: Host-guest chemistry and catalytic activity. Angew. Chem. Int. Ed., 2013, 52(31), 7958-7962.
[http://dx.doi.org/10.1002/anie.201302136] [PMID: 23788518]
[70]
Ren, D.H.; Qiu, D.; Pang, C.Y.; Li, Z.; Gu, Z.G. Chiral tetrahedral iron(II) cages: Diastereoselective subcomponent self-assembly, structure interconversion and spin-crossover properties. Chem. Commun., 2015, 51(4), 788-791.
[http://dx.doi.org/10.1039/C4CC08041F] [PMID: 25426503]
[71]
Gütz, C.; Hovorka, R.; Klein, C.; Jiang, Q.Q.; Bannwarth, C.; Engeser, M.; Schmuck, C.; Assenmacher, W.; Mader, W. Topić, F.; Rissanen, K.; Grimme, S.; Lützen, A. Enantiomerically pure [M6L12] or [M12L24] polyhedra from flexible bis(pyridine) ligands. Angew. Chem. Int. Ed., 2014, 53(6), 1693-1698.
[http://dx.doi.org/10.1002/anie.201308651] [PMID: 24453210]
[72]
Klein, C.; Gütz, C.; Bogner, M. Topić, F.; Rissanen, K.; Lützen, A. A new structural motif for an enantiomerically pure metallosupramolecular Pd4L8 aggregate by anion templating. Angew. Chem. Int. Ed., 2014, 53(14), 3739-3742.
[http://dx.doi.org/10.1002/anie.201400626] [PMID: 24590898]
[73]
Hong, T.; Zhang, Z.; Sun, Y.; Tao, J.J.; Tang, J.D.; Xie, C.; Wang, M.; Chen, F.; Xie, S.S.; Li, S.; Stang, P.J. Chiral metallacycles as catalysts for asymmetric conjugate addition of styrylboronic acids to α,β-enones. J. Am. Chem. Soc., 2020, 142(23), 10244-10249.
[http://dx.doi.org/10.1021/jacs.0c01563] [PMID: 32433874]
[74]
Lu, Z.; Ronson, T.K.; Heard, A.W.; Feldmann, S.; Vanthuyne, N.; Martinez, A.; Nitschke, J.R. Enantioselective fullerene functionalization through stereochemical information transfer from a self-assembled cage. Nat. Chem., 2023, 15(3), 405-412.
[http://dx.doi.org/10.1038/s41557-022-01103-y] [PMID: 36550231]
[75]
Xue, W.; Pesce, L.; Bellamkonda, A.; Ronson, T.K.; Wu, K.; Zhang, D.; Vanthuyne, N.; Brotin, T.; Martinez, A.; Pavan, G.M.; Nitschke, J.R. Subtle stereochemical effects influence binding and purification abilities of an FeII4L4 cage. J. Am. Chem. Soc., 2023, 145(9), 5570-5577.
[http://dx.doi.org/10.1021/jacs.3c00294] [PMID: 36848676]
[76]
Rizzuto, F.J.; Pröhm, P.; Plajer, A.J.; Greenfield, J.L.; Nitschke, J.R. Hydrogen-bond-assisted symmetry breaking in a network of chiral metal–organic assemblies. J. Am. Chem. Soc., 2019, 141(4), 1707-1715.
[http://dx.doi.org/10.1021/jacs.8b12323] [PMID: 30612431]
[77]
Tsutsui, T.; Catti, L.; Yoza, K.; Yoshizawa, M. An atropisomeric M2L4 cage mixture displaying guest-induced convergence and strong guest emission in water. Chem. Sci., 2020, 11(31), 8145-8150.
[http://dx.doi.org/10.1039/D0SC03223A] [PMID: 34123086]
[78]
Markwell-Heys, A.W.; Schneider, M.L.; Madridejos, J.M.L.; Metha, G.F.; Bloch, W.M. Self-sorting of porous Cu4L2L′2 metal-organic cages composed of isomerisable ligands. Chem. Commun., 2021, 57(23), 2915-2918.
[http://dx.doi.org/10.1039/D0CC08076D] [PMID: 33616581]
[79]
Beissel, T.; Powers, R.E.; Parac, T.N.; Raymond, K.N. Dynamic isomerization of a supramolecular tetrahedral M4L6 cluster. J. Am. Chem. Soc., 1999, 121(17), 4200-4206.
[http://dx.doi.org/10.1021/ja984046s]
[80]
Meng, W.; Clegg, J.K.; Thoburn, J.D.; Nitschke, J.R. Controlling the transmission of stereochemical information through space in terphenyl-edged Fe4L6 cages. J. Am. Chem. Soc., 2011, 133(34), 13652-13660.
[http://dx.doi.org/10.1021/ja205254s] [PMID: 21790184]
[81]
Argent, S.P.; Jackson, F.C.; Chan, H.M.; Meyrick, S.; Taylor, C.G.P.; Ronson, T.K.; Rourke, J.P.; Ward, M.D. A family of diastereomeric dodecanuclear coordination cages based on inversion of chirality of individual triangular cyclic helicate faces. Chem. Sci., 2020, 11(37), 10167-10174.
[http://dx.doi.org/10.1039/D0SC04347H] [PMID: 34094280]
[82]
Yang, Y.; Ronson, T.K.; Lu, Z.; Zheng, J.; Vanthuyne, N.; Martinez, A.; Nitschke, J.R. A curved host and second guest cooperatively inhibit the dynamic motion of corannulene. Nat. Commun., 2021, 12(1), 4079.
[http://dx.doi.org/10.1038/s41467-021-24344-w] [PMID: 34215736]
[83]
Bisht, K.K.; Suresh, E. Spontaneous resolution to absolute chiral induction: pseudo-Kagomé type homochiral Zn(II)/Co(II) coordination polymers with achiral precursors. J. Am. Chem. Soc., 2013, 135(42), 15690-15693.
[http://dx.doi.org/10.1021/ja4075369] [PMID: 24107095]
[84]
Glasson, C.R.K.; Meehan, G.V.; Clegg, J.K.; Lindoy, L.F.; Turner, P.; Duriska, M.B.; Willis, R. A new FeII quaterpyridyl M4L6 tetrahedron exhibiting selective anion binding. Chem. Commun., 2008, (10), 1190-1192.
[http://dx.doi.org/10.1039/b717740b] [PMID: 18309413]
[85]
Hristova, Y.R.; Smulders, M.M.J.; Clegg, J.K.; Breiner, B.; Nitschke, J.R. Selective anion binding by a “Chameleon” capsule with a dynamically reconfigurable exterior. Chem. Sci., 2011, 2(4), 638-641.
[http://dx.doi.org/10.1039/C0SC00495B]
[86]
Mal, P.; Schultz, D.; Beyeh, K.; Rissanen, K.; Nitschke, J.R. An unlockable-relockable iron cage by subcomponent self-assembly. Angew. Chem. Int. Ed., 2008, 47(43), 8297-8301.
[http://dx.doi.org/10.1002/anie.200803066] [PMID: 18729112]
[87]
Glasson, C.R.K.; Clegg, J.K.; McMurtrie, J.C.; Meehan, G.V.; Lindoy, L.F.; Motti, C.A.; Moubaraki, B.; Murray, K.S.; Cashion, J.D. Unprecedented encapsulation of a [FeIIICl4]- anion in a cationic [FeII4L6]8+ tetrahedral cage derived from 5,5′′′-dimethyl-2,2′:5′,5′′:2′′,2′′′-quaterpyridine.. Chem. Sci., 2011, 2(3), 540-543.
[http://dx.doi.org/10.1039/C0SC00523A]
[88]
Zhu, J.L.; Zhang, D.; Ronson, T.K.; Wang, W.; Xu, L.; Yang, H.B.; Nitschke, J.R. A cavity-tailored metal-organic cage entraps gases selectively in solution and the amorphous solid state. Angew. Chem. Int. Ed., 2021, 60(21), 11789-11792.
[http://dx.doi.org/10.1002/anie.202102095] [PMID: 33768657]
[89]
Ronson, T.K.; League, A.B.; Gagliardi, L.; Cramer, C.J.; Nitschke, J.R. Pyrene-edged FeII4L6 cages adaptively reconfigure during guest binding. J. Am. Chem. Soc., 2014, 136(44), 15615-15624.
[http://dx.doi.org/10.1021/ja507617h] [PMID: 25350568]
[90]
Xu, C.; Lin, Q.; Shan, C.; Han, X.; Wang, H.; Wang, H.; Zhang, W.; Chen, Z.; Guo, C.; Xie, Y.; Yu, X.; Song, B.; Song, H.; Wojtas, L.; Li, X. Metallo-supramolecular octahedral cages with three types of chirality towards spontaneous resolution. Angew. Chem. Int. Ed., 2022, 61(27), e202203099.
[http://dx.doi.org/10.1002/anie.202203099] [PMID: 35474631]
[91]
Xue, W.; Wu, K.; Ouyang, N.; Brotin, T.; Nitschke, J.R. Allosterically regulated guest binding determines framework symmetry for an FeII4L4 cage. Angew. Chem. Int. Ed., 2023, 62(18), e202301319.
[http://dx.doi.org/10.1002/anie.202301319] [PMID: 36866857]
[92]
McConnell, A.J.; Aitchison, C.M.; Grommet, A.B.; Nitschke, J.R. Subcomponent exchange transforms an FeII4L4 cage from high- to low-spin, switching guest release in a two-cage system. J. Am. Chem. Soc., 2017, 139(18), 6294-6297.
[http://dx.doi.org/10.1021/jacs.7b01478] [PMID: 28426930]
[93]
Zhang, D.; Ronson, T.K.; Güryel, S.; Thoburn, J.D.; Wales, D.J.; Nitschke, J.R. Temperature controls guest uptake and release from Zn4L4 tetrahedra. J. Am. Chem. Soc., 2019, 141(37), 14534-14538.
[http://dx.doi.org/10.1021/jacs.9b07307] [PMID: 31478658]
[94]
Ronson, T.K.; Carpenter, J.P.; Nitschke, J.R. Dynamic optimization of guest binding in a library of diastereomeric heteroleptic coordination cages. Chem, 2022, 8(2), 557-568.
[http://dx.doi.org/10.1016/j.chempr.2021.12.017]
[95]
Xue, W.; Ronson, T.K.; Lu, Z.; Nitschke, J.R. Solvent drives switching between λ and δ metal center stereochemistry of M8L6 cubic cages. J. Am. Chem. Soc., 2022, 144(14), 6136-6142.
[http://dx.doi.org/10.1021/jacs.2c00245] [PMID: 35364808]
[96]
Wu, K.; Ronson, T.K.; Goh, L.; Xue, W.; Heard, A.W.; Su, P.; Li, X. Vinković, M.; Nitschke, J.R. A diverse array of large capsules transform in response to stimuli. J. Am. Chem. Soc., 2023, 145(20), 11356-11363.
[http://dx.doi.org/10.1021/jacs.3c02491] [PMID: 37191451]
[97]
Zhang, D.; Gan, Q.; Plajer, A.J.; Lavendomme, R.; Ronson, T.K.; Lu, Z.; Jensen, J.D.; Laursen, B.W.; Nitschke, J.R. Templation and concentration drive conversion between a FeII12L12 pseudoicosahedron, a FeII4L4 tetrahedron, and a FeII2L3 helicate. J. Am. Chem. Soc., 2022, 144(3), 1106-1112.
[http://dx.doi.org/10.1021/jacs.1c11536] [PMID: 35014803]
[98]
Zhang, D.; Ronson, T.K.; Mosquera, J.; Martinez, A.; Guy, L.; Nitschke, J.R. Anion binding in water drives structural adaptation in an azaphosphatrane-functionalized FeII4L4 tetrahedron. J. Am. Chem. Soc., 2017, 139(19), 6574-6577.
[http://dx.doi.org/10.1021/jacs.7b02950] [PMID: 28463507]
[99]
Clarke, D.E.; Wu, G.; Wu, C.; Scherman, O.A. Host–guest induced peptide folding with sequence-specific structural chirality. J. Am. Chem. Soc., 2021, 143(17), 6323-6327.
[http://dx.doi.org/10.1021/jacs.1c00342] [PMID: 33860670]
[100]
Wu, K.; Li, K.; Hou, Y.J.; Pan, M.; Zhang, L.Y.; Chen, L.; Su, C.Y. Homochiral D4-symmetric metal–organic cages from stereogenic Ru(II) metalloligands for effective enantioseparation of atropisomeric molecules. Nat. Commun., 2016, 7(1), 10487.
[http://dx.doi.org/10.1038/ncomms10487] [PMID: 26839048]
[101]
Hou, Y.J.; Wu, K.; Wei, Z.W.; Li, K.; Lu, Y.L.; Zhu, C.Y.; Wang, J.S.; Pan, M.; Jiang, J.J.; Li, G.Q.; Su, C.Y. Design and enantioresolution of homochiral Fe(II)–Pd(II) coordination cages from stereolabile metalloligands: Stereochemical stability and enantioselective separation. J. Am. Chem. Soc., 2018, 140(51), 18183-18191.
[http://dx.doi.org/10.1021/jacs.8b11152] [PMID: 30512934]
[102]
Wan, S.; Lin, L.R.; Zeng, L.; Lin, Y.; Zhang, H. Efficient optical resolution of water-soluble self-assembled tetrahedral M4L6 cages with 1,1′-bi-2-naphthol. Chem. Commun., 2014, 50(97), 15301-15304.
[http://dx.doi.org/10.1039/C4CC04145C] [PMID: 25076461]
[103]
Sekiya, R.; Kuroda, R. Pd2+O3SR− interaction encourages anion encapsulation of a quadruply-stranded Pd complex to achieve chirality or high solubility. Chem. Commun., 2011, 47(45), 12346-12348.
[http://dx.doi.org/10.1039/c1cc14982b] [PMID: 22005828]
[104]
Howlader, P.; Mondal, S.; Ahmed, S.; Mukherjee, P.S. Guest-induced enantioselective self-assembly of a Pd6 homochiral octahedral cage with a C3-symmetric pyridyl donor. J. Am. Chem. Soc., 2020, 142(50), 20968-20972.
[http://dx.doi.org/10.1021/jacs.0c11011] [PMID: 33284597]
[105]
Zou, Y.Q.; Zhang, D.; Ronson, T.K.; Tarzia, A.; Lu, Z.; Jelfs, K.E.; Nitschke, J.R. Sterics and hydrogen bonding control stereochemistry and self-sorting in BINOL-based assemblies. J. Am. Chem. Soc., 2021, 143(24), 9009-9015.
[http://dx.doi.org/10.1021/jacs.1c05172] [PMID: 34124891]
[106]
Wei, P.; Yan, X.; Huang, F. Supramolecular polymers constructed by orthogonal self-assembly based on host–guest and metal–ligand interactions. Chem. Soc. Rev., 2015, 44(3), 815-832.
[http://dx.doi.org/10.1039/C4CS00327F] [PMID: 25423355]
[107]
Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Supramolecular polymers: Historical development, preparation, characterization, and functions. Chem. Rev., 2015, 115(15), 7196-7239.
[http://dx.doi.org/10.1021/cr500633b] [PMID: 25768045]
[108]
Ozores, H.L.; Amorín, M.; Granja, J.R. Self-assembling molecular capsules based on α,γ-cyclic peptides. J. Am. Chem. Soc., 2017, 139(2), 776-784.
[http://dx.doi.org/10.1021/jacs.6b10456] [PMID: 27996247]
[109]
Brotin, T.; Dutasta, J.P. Cryptophanes and their complexes-present and future. Chem. Rev., 2009, 109(1), 88-130.
[http://dx.doi.org/10.1021/cr0680437] [PMID: 19086781]
[110]
Zhang, D.; Ronson, T.K.; Greenfield, J.L.; Brotin, T.; Berthault, P.; Léonce, E.; Zhu, J.L.; Xu, L.; Nitschke, J.R. Enantiopure [Cs+/Xe⊂Cryptophane] ⊂FeII4L4 hierarchical superstructures. J. Am. Chem. Soc., 2019, 141(20), 8339-8345.
[http://dx.doi.org/10.1021/jacs.9b02866] [PMID: 31034215]
[111]
Zhang, D.; Ronson, T.K.; Lavendomme, R.; Nitschke, J.R. Selective separation of polyaromatic hydrocarbons by phase transfer of coordination cages. J. Am. Chem. Soc., 2019, 141(48), 18949-18953.
[http://dx.doi.org/10.1021/jacs.9b10741] [PMID: 31729877]
[112]
Li, G.; Ronson, T.K.; Lavendomme, R.; Huang, Z.; Fuertes-Espinosa, C.; Zhang, D.; Nitschke, J.R. Enantiopure FeII4L4 cages bind steroids stereoselectively. Chem, 2023, 9(6), 1549-1561.
[http://dx.doi.org/10.1016/j.chempr.2023.03.011]
[113]
Castilla, A.M.; Miller, M.A.; Nitschke, J.R.; Smulders, M.M.J. Quantification of stereochemical communication in metal–organic assemblies. Angew. Chem. Int. Ed., 2016, 55(36), 10616-10620.
[http://dx.doi.org/10.1002/anie.201602968] [PMID: 27253388]
[114]
Mori, T. Chiroptical properties of symmetric double, triple, and multiple helicenes. Chem. Rev., 2021, 121(4), 2373-2412.
[http://dx.doi.org/10.1021/acs.chemrev.0c01017] [PMID: 33411513]
[115]
Malik, A.U.; Gan, F.; Shen, C.; Yu, N.; Wang, R.; Crassous, J.; Shu, M.; Qiu, H. Chiral organic cages with a triple-stranded helical structure derived from helicene. J. Am. Chem. Soc., 2018, 140(8), 2769-2772.
[http://dx.doi.org/10.1021/jacs.7b13512] [PMID: 29421870]
[116]
Brandt, J.R.; Wang, X.; Yang, Y.; Campbell, A.J.; Fuchter, M.J. Circularly polarized phosphorescent electroluminescence with a high dissymmetry factor from pholeds based on a platinahelicene. J. Am. Chem. Soc., 2016, 138(31), 9743-9746.
[http://dx.doi.org/10.1021/jacs.6b02463] [PMID: 27434383]
[117]
Wu, K.; Tessarolo, J.; Baksi, A.; Clever, G.H. Guest-modulated circularly polarized luminescence by ligand-to-ligand chirality transfer in heteroleptic PdII coordination cages. Angew. Chem. Int. Ed., 2022, 61(35), e202205725.
[http://dx.doi.org/10.1002/anie.202205725] [PMID: 35616285]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy