Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Obesity and Depression: Common Link and Possible Targets

Author(s): Srikanth Jitte, Saritha Keluth, Priya Bisht, Pranay Wal, Sanjiv Singh, Krishna Murti and Nitesh Kumar*

Volume 23, Issue 12, 2024

Published on: 13 May, 2024

Page: [1425 - 1449] Pages: 25

DOI: 10.2174/0118715273291985240430074053

Price: $65

Abstract

Depression is among the main causes of disability, and its protracted manifestations could make it even harder to treat metabolic diseases. Obesity is linked to episodes of depression, which is closely correlated to abdominal adiposity and impaired food quality. The present review is aimed at studying possible links between obesity and depression along with targets to disrupt it. Research output in Pubmed and Scopus were referred for writing this manuscript. Obesity and depression are related, with the greater propensity of depressed people to gain weight, resulting in poor dietary decisions and a sedentary lifestyle. Adipokines, which include adiponectin, resistin, and leptin are secretory products of the adipose tissue. These adipokines are now being studied to learn more about the connection underlying obesity and depression. Ghrelin, a gut hormone, controls both obesity and depression. Additionally, elevated ghrelin levels result in anxiolytic and antidepressant-like effects. The gut microbiota influences the metabolic functionalities of a person, like caloric processing from indigestible nutritional compounds and storage in fatty tissue, that exposes an individual to obesity, and gut microorganisms might connect to the CNS through interconnecting pathways, including neurological, endocrine, and immunological signalling systems. The alteration of brain activity caused by gut bacteria has been related to depressive episodes. Monoamines, including dopamine, serotonin, and norepinephrine, have been widely believed to have a function in emotions and appetite control. Emotional signals stimulate arcuate neurons in the hypothalamus that are directly implicated in mood regulation and eating. The peptide hormone GLP-1(glucagon-like peptide- 1) seems to have a beneficial role as a medical regulator of defective neuroinflammation, neurogenesis, synaptic dysfunction, and neurotransmitter secretion discrepancy in the depressive brain. The gut microbiota might have its action in mood and cognition regulation, in addition to its traditional involvement in GI function regulation. This review addressed the concept that obesity-related low-grade mild inflammation in the brain contributes to chronic depression and cognitive impairments.

[1]
Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005; 115(5): 1111-9.
[http://dx.doi.org/10.1172/JCI25102] [PMID: 15864338]
[2]
Calle EE, Kaaks R. Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat Rev Cancer 2004; 4(8): 579-91.
[http://dx.doi.org/10.1038/nrc1408] [PMID: 15286738]
[3]
Mannino DM, Mott J, Ferdinands JM, et al. Boys with high body masses have an increased risk of developing asthma: findings from the National Longitudinal Survey of Youth (NLSY). Int J Obes 2006; 30(1): 6-13.
[http://dx.doi.org/10.1038/sj.ijo.0803145] [PMID: 16344843]
[4]
Beal T, Massiot E, Arsenault JE, Smith MR, Hijmans RJ. Global trends in dietary micronutrient supplies and estimated prevalence of inadequate intakes. PLoS One 2017; 12(4): e0175554.
[http://dx.doi.org/10.1371/journal.pone.0175554] [PMID: 28399168]
[5]
Williams EP, Mesidor M, Winters K, Dubbert PM, Wyatt SB. Overweight and obesity: Prevalence, consequences, and causes of a growing public health problem. Curr Obes Rep 2015; 4(3): 363-70.
[http://dx.doi.org/10.1007/s13679-015-0169-4] [PMID: 26627494]
[6]
Shaharir SS, Gafor AHA, Said MSM, Kong NCT. Steroid‐induced diabetes mellitus in systemic lupus erythematosus patients: Analysis from a M alaysian multi‐ethnic lupus cohort. Int J Rheum Dis 2015; 18(5): 541-7.
[http://dx.doi.org/10.1111/1756-185X.12474] [PMID: 25294584]
[7]
Camacho S, Ruppel A. Is the calorie concept a real solution to the obesity epidemic? Glob Health Action 2017; 10(1): 1289650.
[http://dx.doi.org/10.1080/16549716.2017.1289650] [PMID: 28485680]
[8]
Ibrahim S, Akram Z, Noreen A, et al. Overweight and obesity prevalence and predictors in people living in Karachi. J Pharm Res Int 2021; 33: 194-202.
[http://dx.doi.org/10.9734/jpri/2021/v33i31B31708]
[9]
Csige I, Ujvárosy D, Szabó Z, et al. The impact of obesity on the cardiovascular system. J Diabetes Res 2018; 2018: 1-12.
[http://dx.doi.org/10.1155/2018/3407306] [PMID: 30525052]
[10]
Poti JM, Braga B, Qin B. Ultra-processed food intake and obesity: what really matters for health-processing or nutrient content? Curr Obes Rep 2017; 6(4): 420-31.
[http://dx.doi.org/10.1007/s13679-017-0285-4] [PMID: 29071481]
[11]
Çakmur H. Introductory chapter: unbearable burden of the diseases-obesity. IntechOpen 2020; pp. 1-9.
[12]
Luppino FS, de Wit LM, Bouvy PF, et al. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry 2010; 67(3): 220-9.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.2] [PMID: 20194822]
[13]
de Wit LM, van Straten A, van Herten M, Penninx BWJH, Cuijpers P. Depression and body mass index, a u-shaped association. BMC Public Health 2009; 9(1): 14.
[http://dx.doi.org/10.1186/1471-2458-9-14] [PMID: 19144098]
[14]
McCrea RL, Berger YG, King MB. Body mass index and common mental disorders: Exploring the shape of the association and its moderation by age, gender and education. Int J Obes 2012; 36(3): 414-21.
[http://dx.doi.org/10.1038/ijo.2011.65] [PMID: 21427699]
[15]
Bomben VC, Turner KL, Barclay TTC, Sontheimer H. Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas. J Cell Physiol 2011; 226(7): 1879-88.
[http://dx.doi.org/10.1002/jcp.22518] [PMID: 21506118]
[16]
van Rossum EFC. Obesity and cortisol: New perspectives on an old theme. Obesity 2017; 25(3): 500-1.
[http://dx.doi.org/10.1002/oby.21774] [PMID: 28229549]
[17]
Pervanidou P, Chrousos GP. Stress and obesity/metabolic syndrome in childhood and adolescence. Int J Pediatr Obes 2011; 6(S1) (Suppl. 1): 21-8.
[http://dx.doi.org/10.3109/17477166.2011.615996] [PMID: 21905812]
[18]
Anstey KJ, Cherbuin N, Budge M, Young J. Body mass index in midlife and late‐life as a risk factor for dementia: A meta‐analysis of prospective studies. Obes Rev 2011; 12(5): e426-37.
[http://dx.doi.org/10.1111/j.1467-789X.2010.00825.x] [PMID: 21348917]
[19]
Pedditizi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late life for the development of dementia: A systematic review and meta-analysis of longitudinal studies. Age Ageing 2016; 45(1): 14-21.
[http://dx.doi.org/10.1093/ageing/afv151] [PMID: 26764391]
[20]
Elias MF, Elias PK, Sullivan LM, Wolf PA, D’Agostino RB. Obesity, diabetes and cognitive deficit: The framingham heart study. Neurobiol Aging 2005; 26(1): 11-6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.019] [PMID: 16223549]
[21]
Cournot M, Marquié JC, Ansiau D, et al. Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology 2006; 67(7): 1208-14.
[http://dx.doi.org/10.1212/01.wnl.0000238082.13860.50] [PMID: 17030754]
[22]
Sabia S, Kivimaki M, Shipley MJ, Marmot MG, Singh-Manoux A. Body mass index over the adult life course and cognition in late midlife: the Whitehall II Cohort Study. Am J Clin Nutr 2009; 89(2): 601-7.
[http://dx.doi.org/10.3945/ajcn.2008.26482] [PMID: 19073790]
[23]
Hassing LB, Dahl AK, Pedersen NL, Johansson B. Overweight in midlife is related to lower cognitive function 30 years later: A prospective study with longitudinal assessments. Dement Geriatr Cogn Disord 2010; 29(6): 543-52.
[http://dx.doi.org/10.1159/000314874] [PMID: 20606436]
[24]
Dahl AK, Hassing LB, Fransson EI, Gatz M, Reynolds CA, Pedersen NL. Body mass index across midlife and cognitive change in late life. Int J Obes 2013; 37(2): 296-302.
[http://dx.doi.org/10.1038/ijo.2012.37] [PMID: 22450854]
[25]
Minkwitz J, Scheipl F, Cartwright L, et al. Why some obese people become depressed whilst others do not: Exploring links between cognitive reactivity, depression and obesity. Psychol Health Med 2019; 24(3): 362-73.
[http://dx.doi.org/10.1080/13548506.2018.1524153] [PMID: 30252503]
[26]
Thormann J, Chittka T, Minkwitz J, Kluge M, Himmerich H. [Obesity and depression: An overview on the complex interactions of two diseases]. Fortschr Neurol Psychiatr 2013; 81(3): 145-53.
[PMID: 23516104]
[27]
Schmidt FM, Lichtblau N, Minkwitz J, et al. Cytokine levels in depressed and non-depressed subjects, and masking effects of obesity. J Psychiatr Res 2014; 55: 29-34.
[http://dx.doi.org/10.1016/j.jpsychires.2014.04.021] [PMID: 24838047]
[28]
Schmidt FM, Weschenfelder J, Sander C, et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS One 2015; 10(3): e0121971.
[http://dx.doi.org/10.1371/journal.pone.0121971] [PMID: 25781614]
[29]
Schmidt FM, Mergl R, Minkwitz J, et al. Is there an association or not?—investigating the association of depressiveness, physical activity, body composition and sleep with mediators of inflammation. Front Psychiatry 2020; 11: 563.
[http://dx.doi.org/10.3389/fpsyt.2020.00563] [PMID: 32670105]
[30]
Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C. Definition of metabolic syndrome: Report of the national heart, lung, and blood institute/american heart association conference on scientific issues related to definition. Circulation 2004; 109(3): 433-8.
[http://dx.doi.org/10.1161/01.CIR.0000111245.75752.C6] [PMID: 14744958]
[31]
Sarma S, Sockalingam S, Dash S. Obesity as a multisystem disease: Trends in obesity rates and obesity‐related complications. Diabetes Obes Metab 2021; 23(S1) (Suppl. 1): 3-16.
[http://dx.doi.org/10.1111/dom.14290] [PMID: 33621415]
[32]
Leow MKS, Addy CL, Mantzoros CS. Clinical review 159: Human immunodeficiency virus/highly active antiretroviral therapy-associated metabolic syndrome: clinical presentation, pathophysiology, and therapeutic strategies. J Clin Endocrinol Metab 2003; 88(5): 1961-76.
[http://dx.doi.org/10.1210/jc.2002-021704] [PMID: 12727939]
[33]
Hryhorczuk C, Sharma S, Fulton SE. Metabolic disturbances connecting obesity and depression. Front Neurosci 2013; 7: 177.
[http://dx.doi.org/10.3389/fnins.2013.00177] [PMID: 24109426]
[34]
Algoblan A, Alalfi M, Khan M. Mechanism linking diabetes mellitus and obesity. Diabetes Metab Syndr Obes 2014; 7: 587-91.
[http://dx.doi.org/10.2147/DMSO.S67400] [PMID: 25506234]
[35]
Anderson RJ, Freedland KE, Clouse RE, Lustman PJ. The prevalence of comorbid depression in adults with diabetes: A meta-analysis. Diabetes Care 2001; 24(6): 1069-78.
[http://dx.doi.org/10.2337/diacare.24.6.1069] [PMID: 11375373]
[36]
Roberts RE, Deleger S, Strawbridge WJ, Kaplan GA. Prospective association between obesity and depression: Evidence from the alameda county study. Int J Obes 2003; 27(4): 514-21.
[http://dx.doi.org/10.1038/sj.ijo.0802204] [PMID: 12664085]
[37]
Dong Y, Furuta T, Sabit H, et al. Identification of antipsychotic drug fluspirilene as a potential anti-glioma stem cell drug. Oncotarget 2017; 8(67): 111728-41.
[http://dx.doi.org/10.18632/oncotarget.22904] [PMID: 29340087]
[38]
Simon OJ, Müntefering T, Grauer OM, Meuth SG. The role of ion channels in malignant brain tumors. J Neurooncol 2015; 125(2): 225-35.
[http://dx.doi.org/10.1007/s11060-015-1896-9] [PMID: 26334315]
[39]
Hamer M, Batty GD, Kivimaki M. Risk of future depression in people who are obese but metabolically healthy: the English longitudinal study of ageing. Mol Psychiatry 2012; 17(9): 940-5.
[http://dx.doi.org/10.1038/mp.2012.30] [PMID: 22525487]
[40]
Blasco BV, García-Jiménez J, Bodoano I, Gutiérrez-Rojas L. Obesity and depression: its prevalence and influence as a prognostic factor: A systematic review. Psychiatry Investig 2020; 17(8): 715-24.
[http://dx.doi.org/10.30773/pi.2020.0099] [PMID: 32777922]
[41]
Milano W, Ambrosio P, Carizzone F, et al. Depression and obesity: Analysis of common biomarkers. Diseases 2020; 8(2): 23.
[http://dx.doi.org/10.3390/diseases8020023] [PMID: 32545890]
[42]
Afridi R, Suk K. Neuroinflammatory basis of depression: learning from experimental models. Front Cell Neurosci 2021; 15: 691067.
[http://dx.doi.org/10.3389/fncel.2021.691067]
[43]
Miller AA, Spencer SJ. Obesity and neuroinflammation: A pathway to cognitive impairment. Brain Behav Immun 2014; 42: 10-21.
[http://dx.doi.org/10.1016/j.bbi.2014.04.001] [PMID: 24727365]
[44]
Cai D. Neuroinflammation and neurodegeneration in overnutrition-induced diseases. Trends Endocrinol Metab 2013; 24(1): 40-7.
[http://dx.doi.org/10.1016/j.tem.2012.11.003] [PMID: 23265946]
[45]
Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol 2011; 29(1): 415-45.
[http://dx.doi.org/10.1146/annurev-immunol-031210-101322] [PMID: 21219177]
[46]
Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444(7121): 860-7.
[http://dx.doi.org/10.1038/nature05485] [PMID: 17167474]
[47]
Makki K, Froguel P, Wolowczuk I. Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm 2013; 2013: 1-12.
[http://dx.doi.org/10.1155/2013/139239] [PMID: 24455420]
[48]
Maury E, Brichard SM. Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 2010; 314(1): 1-16.
[http://dx.doi.org/10.1016/j.mce.2009.07.031] [PMID: 19682539]
[49]
Khan UI, Rastogi D, Isasi CR, Coupey SM. Independent and synergistic associations of asthma and obesity with systemic inflammation in adolescents. J Asthma 2012; 49(10): 1044-50.
[http://dx.doi.org/10.3109/02770903.2012.728271] [PMID: 23050876]
[50]
Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YDI. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 1988; 37(8): 1020-4.
[http://dx.doi.org/10.2337/diab.37.8.1020] [PMID: 3292322]
[51]
Moreira MC, Piazzon FB, Carvalho MDF, et al. A dominant ABCC8-related hyperinsulinism: familial case report. Moreira et al ABCC8-related hyperinsulinism Fetal Pediatr Pathol 2013; 32(5): 384-6.
[http://dx.doi.org/10.3109/15513815.2012.754531] [PMID: 23301914]
[52]
Smith E, Hay P, Campbell L, Trollor JN. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev 2011; 12(9): 740-55.
[http://dx.doi.org/10.1111/j.1467-789X.2011.00920.x] [PMID: 21991597]
[53]
Pereira-Miranda E, Costa PRF, Queiroz VAO, Pereira-Santos M, Santana MLP. Overweight and obesity associated with higher depression prevalence in adults: A systematic review and meta-analysis. J Am Coll Nutr 2017; 36(3): 223-33.
[http://dx.doi.org/10.1080/07315724.2016.1261053] [PMID: 28394727]
[54]
Vaghef-Mehrabany E, Ranjbar F, Asghari-Jafarabadi M, Hosseinpour-Arjmand S, Ebrahimi-Mameghani M. Calorie restriction in combination with prebiotic supplementation in obese women with depression: Effects on metabolic and clinical response. Nutr Neurosci 2021; 24(5): 339-53.
[http://dx.doi.org/10.1080/1028415X.2019.1630985] [PMID: 31241002]
[55]
Galletly C, Moran L, Noakes M, Clifton P, Tomlinson L, Norman R. Psychological benefits of a high-protein, low-carbohydrate diet in obese women with polycystic ovary syndrome—A pilot study. Appetite 2007; 49(3): 590-3.
[http://dx.doi.org/10.1016/j.appet.2007.03.222] [PMID: 17509728]
[56]
Halyburton AK, Brinkworth GD, Wilson CJ, et al. Low- and high-carbohydrate weight-loss diets have similar effects on mood but not cognitive performance. Am J Clin Nutr 2007; 86(3): 580-7.
[http://dx.doi.org/10.1093/ajcn/86.3.580] [PMID: 17823420]
[57]
Beutler BA. The role of tumor necrosis factor in health and disease. J Rheumatol Suppl 1999; 57: 16-21.
[PMID: 10328138]
[58]
Cavaliere G, Trinchese G, Penna E, et al. High-fat diet induces neuroinflammation and mitochondrial impairment in mice cerebral cortex and synaptic fraction. Front Cell Neurosci 2019; 13: 509.
[http://dx.doi.org/10.3389/fncel.2019.00509] [PMID: 31798417]
[59]
Dutheil S, Ota KT, Wohleb ES, Rasmussen K, Duman RS. High-fat diet induced anxiety and anhedonia: impact on brain homeostasis and inflammation. Neuropsychopharmacology 2016; 41(7): 1874-87.
[http://dx.doi.org/10.1038/npp.2015.357] [PMID: 26658303]
[60]
de Mello AH, Schraiber RB, Goldim MPS, et al. Omega-3 fatty acids attenuate brain alterations in high-fat diet-induced obesity model. Mol Neurobiol 2019; 56(1): 513-24.
[http://dx.doi.org/10.1007/s12035-018-1097-6] [PMID: 29728888]
[61]
Dinel AL, André C, Aubert A, Ferreira G, Layé S, Castanon N. Cognitive and emotional alterations are related to hippocampal inflammation in a mouse model of metabolic syndrome. PLoS One 2011; 6(9): e24325.
[http://dx.doi.org/10.1371/journal.pone.0024325] [PMID: 21949705]
[62]
Klaus F, Paterna JC, Marzorati E, et al. Differential effects of peripheral and brain tumor necrosis factor on inflammation, sickness, emotional behavior and memory in mice. Brain Behav Immun 2016; 58: 310-26.
[http://dx.doi.org/10.1016/j.bbi.2016.08.001] [PMID: 27515532]
[63]
Setoyama D, Kato TA, Hashimoto R, et al. Plasma metabolites predict severity of depression and suicidal ideation in psychiatric patients a multicenter pilot analysis. PLoS One 2016; 11(12): e0165267.
[http://dx.doi.org/10.1371/journal.pone.0165267] [PMID: 27984586]
[64]
Akimoto H, Tezuka K, Nishida Y, Nakayama T, Takahashi Y, Asai S. Association between use of oral hypoglycemic agents in Japanese patients with type 2 diabetes mellitus and risk of depression: A retrospective cohort study. Pharmacol Res Perspect 2019; 7(6): e00536.
[http://dx.doi.org/10.1002/prp2.536] [PMID: 31768258]
[65]
Richard JE, Anderberg RH, Göteson A, Gribble FM, Reimann F, Skibicka KP. Activation of the GLP-1 receptors in the nucleus of the solitary tract reduces food reward behavior and targets the mesolimbic system. PLoS One 2015; 10(3): e0119034.
[http://dx.doi.org/10.1371/journal.pone.0119034] [PMID: 25793511]
[66]
Petra AI, Panagiotidou S, Hatziagelaki E, Stewart JM, Conti P, Theoharides TC. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation. Clin Ther 2015; 37(5): 984-95.
[http://dx.doi.org/10.1016/j.clinthera.2015.04.002] [PMID: 26046241]
[67]
Bhattarai Y. Microbiota‐gut‐brain axis: Interaction of gut microbes and their metabolites with host epithelial barriers. Neurogastroenterol Motil 2018; 30(6): e13366.
[http://dx.doi.org/10.1111/nmo.13366] [PMID: 29878576]
[68]
Farzi A, Hassan AM, Zenz G, Holzer P. Diabesity and mood disorders: Multiple links through the microbiota-gut-brain axis. Mol Aspects Med 2019; 66: 80-93.
[http://dx.doi.org/10.1016/j.mam.2018.11.003] [PMID: 30513310]
[69]
Evrensel A, Ceylan ME. The Gut-Brain Axis: The Missing Link in Depression. Clin Psychopharmacol Neurosci 2015; 13(3): 239-44.
[http://dx.doi.org/10.9758/cpn.2015.13.3.239] [PMID: 26598580]
[70]
Kundu P, Blacher E, Elinav E, Pettersson S. Our gut microbiome: The evolving inner self. Cell 2017; 171(7): 1481-93.
[http://dx.doi.org/10.1016/j.cell.2017.11.024] [PMID: 29245010]
[71]
Trayhurn P. Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiol Scand 2005; 184(4): 285-93.
[http://dx.doi.org/10.1111/j.1365-201X.2005.01468.x] [PMID: 16026420]
[72]
Siiteri PK. Adipose tissue as a source of hormones. Am J Clin Nutr 1987; 45(1) (Suppl.): 277-82.
[http://dx.doi.org/10.1093/ajcn/45.1.277] [PMID: 3541569]
[73]
Flier JS, Cook KS, Usher P, Spiegelman BM. Severely impaired adipsin expression in genetic and acquired obesity. Science 1987; 237(4813): 405-8.
[http://dx.doi.org/10.1126/science.3299706] [PMID: 3299706]
[74]
Izquierdo AG, Crujeiras AB, Casanueva FF, Carreira MC. Leptin, obesity, and leptin resistance: Where are we 25 years later? Nutrients 2019; 11(11): 2704.
[http://dx.doi.org/10.3390/nu11112704] [PMID: 31717265]
[75]
Milaneschi Y, Lamers F, Bot M, Drent ML, Penninx BWJH. Leptin dysregulation is specifically associated with major depression with atypical features: Evidence for a mechanism connecting obesity and depression. Biol Psychiatry 2017; 81(9): 807-14.
[http://dx.doi.org/10.1016/j.biopsych.2015.10.023] [PMID: 26742925]
[76]
Dong C, Sanchez LE, Price RA. Relationship of obesity to depression: A family-based study. Int J Obes 2004; 28(6): 790-5.
[http://dx.doi.org/10.1038/sj.ijo.0802626] [PMID: 15024401]
[77]
Simon GE, Von Korff M, Saunders K, et al. Association between obesity and psychiatric disorders in the US adult population. Arch Gen Psychiatry 2006; 63(7): 824-30.
[http://dx.doi.org/10.1001/archpsyc.63.7.824] [PMID: 16818872]
[78]
Zhao G, Ford ES, Li C, Tsai J, Dhingra S, Balluz LS. Waist circumference, abdominal obesity, and depression among overweight and obese U.S. adults: national health and nutrition examination survey 2005-2006. BMC Psychiatry 2011; 11(1): 130.
[http://dx.doi.org/10.1186/1471-244X-11-130] [PMID: 21834955]
[79]
Leo R, Di Lorenzo G, Tesauro M, et al. Decreased plasma adiponectin concentration in major depression. Neurosci Lett 2006; 407(3): 211-3.
[http://dx.doi.org/10.1016/j.neulet.2006.08.043] [PMID: 16973279]
[80]
Chen Y, Lin YC, Kuo TW, Knight ZA. Sensory detection of food rapidly modulates arcuate feeding circuits. Cell 2015; 160(5): 829-41.
[http://dx.doi.org/10.1016/j.cell.2015.01.033] [PMID: 25703096]
[81]
Cimmino MA, Andraghetti G, Briatore L, et al. Changes in adiponectin and leptin concentrations during glucocorticoid treatment: A pilot study in patients with polymyalgia rheumatica. Ann N Y Acad Sci 2010; 1193(1): 160-3.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05364.x] [PMID: 20398023]
[82]
Sandoval DA, Davis SN. Leptin. J Diabetes Complications 2003; 17(2): 108-13.
[http://dx.doi.org/10.1016/S1056-8727(02)00167-8] [PMID: 12614978]
[83]
Wozniak SE, Gee LL, Wachtel MS, Frezza EE. Adipose tissue: the new endocrine organ? A review article. Dig Dis Sci 2009; 54(9): 1847-56.
[http://dx.doi.org/10.1007/s10620-008-0585-3] [PMID: 19052866]
[84]
Bornstein SR, Schuppenies A, Wong M-L, Licinio J. Approaching the shared biology of obesity and depression: the stress axis as the locus of gene–environment interactions. Mol Psychiatry 2006; 11(10): 892-902.
[http://dx.doi.org/10.1038/sj.mp.4001873] [PMID: 16880826]
[85]
Lu XY. The leptin hypothesis of depression: A potential link between mood disorders and obesity? Curr Opin Pharmacol 2007; 7(6): 648-52.
[http://dx.doi.org/10.1016/j.coph.2007.10.010] [PMID: 18032111]
[86]
Lu XY, Kim CS, Frazer A, Zhang W. Leptin: A potential novel antidepressant. Proc Natl Acad Sci 2006; 103(5): 1593-8.
[http://dx.doi.org/10.1073/pnas.0508901103] [PMID: 16423896]
[87]
Antonijevic I, Murck H, Frieboes RM, Horn R, Brabant G, Steiger A. Elevated nocturnal profiles of serum leptin in patients with depression. J Psychiatr Res 1998; 32(6): 403-10.
[http://dx.doi.org/10.1016/S0022-3956(98)00032-6] [PMID: 9844957]
[88]
Rubin RT, Rhodes ME, Czambel RK. Sexual diergism of baseline plasma leptin and leptin suppression by arginine vasopressin in major depressives and matched controls. Psychiatry Res 2002; 113(3): 255-68.
[http://dx.doi.org/10.1016/S0165-1781(02)00263-9] [PMID: 12559482]
[89]
Jow GM, Yang TT, Chen CL. Leptin and cholesterol levels are low in major depressive disorder, but high in schizophrenia. J Affect Disord 2006; 90(1): 21-7.
[http://dx.doi.org/10.1016/j.jad.2005.09.015] [PMID: 16324751]
[90]
Kraus T, Haack M, Schuld A, Hinze-Selch D, Pollmächer T. Low leptin levels but normal body mass indices in patients with depression or schizophrenia. Neuroendocrinology 2001; 73(4): 243-7.
[http://dx.doi.org/10.1159/000054641] [PMID: 11340338]
[91]
Deuschle M, Blum W, Englaro P, et al. Plasma leptin in depressed patients and healthy controls. Horm Metab Res 1996; 28(12): 714-7.
[http://dx.doi.org/10.1055/s-2007-979885] [PMID: 9013749]
[92]
Müller TD, Nogueiras R, Andermann ML, et al. Ghrelin. Mol Metab 2015; 4(6): 437-60.
[http://dx.doi.org/10.1016/j.molmet.2015.03.005] [PMID: 26042199]
[93]
Arvat E, Di Vito L, Broglio F, et al. Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)-receptor ligand, strongly stimulates GH secretion in humans. J Endocrinol Invest 2000; 23(8): 493-5.
[http://dx.doi.org/10.1007/BF03343763] [PMID: 11021763]
[94]
Yilmaz Y. Psychopathology in the context of obesity: The adiponectin hypothesis. Med Hypotheses 2008; 70(4): 902-3.
[http://dx.doi.org/10.1016/j.mehy.2007.08.019] [PMID: 17920209]
[95]
Narita K, Murata T, Takahashi T, Kosaka H, Omata N, Wada Y. Plasma levels of adiponectin and tumor necrosis factor-alpha in patients with remitted major depression receiving long-term maintenance antidepressant therapy. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30(6): 1159-62.
[http://dx.doi.org/10.1016/j.pnpbp.2006.03.030] [PMID: 16678955]
[96]
Mamalakis G, Kiriakakis M, Tsibinos G, et al. Depression and serum adiponectin and adipose omega-3 and omega-6 fatty acids in adolescents. Pharmacol Biochem Behav 2006; 85(2): 474-9.
[http://dx.doi.org/10.1016/j.pbb.2006.10.008] [PMID: 17126386]
[97]
Pan A, Ye X, Franco OH, et al. The association of depressive symptoms with inflammatory factors and adipokines in middle-aged and older Chinese. PLoS One 2008; 3(1): e1392.
[http://dx.doi.org/10.1371/journal.pone.0001392] [PMID: 18167551]
[98]
Chen YC, Lin WW, Chen YJ, Mao WC, Hung YJ. Antidepressant effects on insulin sensitivity and proinflammatory cytokines in the depressed males. Mediators Inflamm 2010; 2010: 1-7.
[http://dx.doi.org/10.1155/2010/573594] [PMID: 20490354]
[99]
You T, Nicklas BJ, Ding J, et al. The metabolic syndrome is associated with circulating adipokines in older adults across a wide range of adiposity. J Gerontol A Biol Sci Med Sci 2008; 63(4): 414-9.
[http://dx.doi.org/10.1093/gerona/63.4.414] [PMID: 18426966]
[100]
Zeugmann S, Quante A, Heuser I, Schwarzer R, Anghelescu I. Inflammatory biomarkers in 70 depressed inpatients with and without the metabolic syndrome. J Clin Psychiatry 2010; 71(8): 1007-16.
[http://dx.doi.org/10.4088/JCP.08m04767blu] [PMID: 20156411]
[101]
Fernández-Real JM, López-Bermejo A, Casamitjana R, Ricart W. Novel interactions of adiponectin with the endocrine system and inflammatory parameters. J Clin Endocrinol Metab 2003; 88(6): 2714-8.
[http://dx.doi.org/10.1210/jc.2002-021583] [PMID: 12788878]
[102]
Aldhahi W, Hamdy O. Adipokines, inflammation, and the endothelium in diabetes. Curr Diab Rep 2003; 3(4): 293-8.
[http://dx.doi.org/10.1007/s11892-003-0020-2] [PMID: 12866991]
[103]
Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, Walsh K. Obesity, adiponectin and vascular inflammatory disease. Curr Opin Lipidol 2003; 14(6): 561-6.
[http://dx.doi.org/10.1097/00041433-200312000-00003] [PMID: 14624132]
[104]
Tilg H, Wolf AM. Adiponectin: A key fat-derived molecule regulating inflammation. Expert Opin Ther Targets 2005; 9(2): 245-51.
[http://dx.doi.org/10.1517/14728222.9.2.245] [PMID: 15934913]
[105]
Fasshauer M, Kralisch S, Klier M, et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2003; 301(4): 1045-50.
[http://dx.doi.org/10.1016/S0006-291X(03)00090-1] [PMID: 12589818]
[106]
Bruun JM, Lihn AS, Verdich C, et al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab 2003; 285(3): E527-33.
[http://dx.doi.org/10.1152/ajpendo.00110.2003] [PMID: 12736161]
[107]
Fasshauer M, Klein J, Neumann S, Eszlinger M, Paschke R. Hormonal regulation of adiponectin gene expression in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2002; 290(3): 1084-9.
[http://dx.doi.org/10.1006/bbrc.2001.6307] [PMID: 11798186]
[108]
Fallo F, Scarda A, Sonino N, et al. Effect of glucocorticoids on adiponectin: A study in healthy subjects and in Cushing’s syndrome. Eur J Endocrinol 2004; 150(3): 339-44.
[http://dx.doi.org/10.1530/eje.0.1500339] [PMID: 15012619]
[109]
Kushiro T, Kobayashi F, Osada H, et al. Role of sympathetic activity in blood pressure reduction with low calorie regimen. Hypertension 1991; 17(6_pt_2): 965-8.
[http://dx.doi.org/10.1161/01.HYP.17.6.965] [PMID: 2045177]
[110]
Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000; 404(6778): 661-71.
[http://dx.doi.org/10.1038/35007534] [PMID: 10766253]
[111]
Balcioglu A, Wurtman RJ. Effects of phentermine on striatal dopamine and serotonin release in conscious rats:In vivo microdialysis study. Int J Obes 1998; 22(4): 325-8.
[http://dx.doi.org/10.1038/sj.ijo.0800589] [PMID: 9578237]
[112]
Martel P, Fantino M. Mesolimbic dopaminergic system activity as a function of food reward: A microdialysis study. Pharmacol Biochem Behav 1996; 53(1): 221-6.
[http://dx.doi.org/10.1016/0091-3057(95)00187-5] [PMID: 8848454]
[113]
Baptista T. Body weight gain induced by antipsychotic drugs: mechanisms and management. Acta Psychiatr Scand 1999; 100(1): 3-16.
[http://dx.doi.org/10.1111/j.1600-0447.1999.tb10908.x] [PMID: 10442434]
[114]
Towell A, Muscat R, Willner P. Behavioural microanalysis of the role of dopamine in amphetamine anorexia. Pharmacol Biochem Behav 1988; 30(3): 641-8.
[http://dx.doi.org/10.1016/0091-3057(88)90077-9] [PMID: 3211973]
[115]
Wang GJ, Volkow ND, Hitzemann RJ, et al. Behavioral and cardiovascular effects of intravenous methylphenidate in normal subjects and cocaine abusers. Eur Addict Res 1997; 3(1): 49-54.
[http://dx.doi.org/10.1159/000259147]
[116]
Lanni C, Govoni S, Lucchelli A, Boselli C. Depression and antidepressants: molecular and cellular aspects. Cell Mol Life Sci 2009; 66(18): 2985-3008.
[http://dx.doi.org/10.1007/s00018-009-0055-x] [PMID: 19521663]
[117]
Kimbrough TD, Weekley LB. The effect of a high-fat diet on brainstem and duodenal serotonin (5-HT) metabolism in Sprague-Dawley and Osborne-Mendel rats. Int J Obes 1984; 8(4): 305-10.
[PMID: 6210259]
[118]
Madsen D, Mcguire MT. Rapid communication whole blood serotonin and the type A behavior pattern. Psychosom Med 1984; 46(6): 546-8.
[http://dx.doi.org/10.1097/00006842-198411000-00007] [PMID: 6514952]
[119]
Moffitt TE, Brammer GL, Caspi A, et al. Whole blood serotonin relates to violence in an epidemiological study. Biol Psychiatry 1998; 43(6): 446-57.
[http://dx.doi.org/10.1016/S0006-3223(97)00340-5] [PMID: 9532350]
[120]
Klimek V, Schenck JE, Han H, Stockmeier CA, Ordway GA. Dopaminergic abnormalities in amygdaloid nuclei in major depression: A postmortem study. Biol Psychiatry 2002; 52(7): 740-8.
[http://dx.doi.org/10.1016/S0006-3223(02)01383-5] [PMID: 12372665]
[121]
Wang GJ, Volkow ND, Fowler JS. The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin Ther Targets 2002; 6(5): 601-9.
[http://dx.doi.org/10.1517/14728222.6.5.601] [PMID: 12387683]
[122]
Johnson PM, Kenny PJ. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Nat Neurosci 2010; 13(5): 635-41.
[http://dx.doi.org/10.1038/nn.2519] [PMID: 20348917]
[123]
Corwin RL, Avena NM, Boggiano MM. Feeding and reward: Perspectives from three rat models of binge eating. Physiol Behav 2011; 104(1): 87-97.
[http://dx.doi.org/10.1016/j.physbeh.2011.04.041] [PMID: 21549136]
[124]
Sakaguchi T, Bray GA. Effect of norepinephrine, serotonin and tryptophan on the firing rate of sympathetic nerves. Brain Res 1989; 492(1-2): 271-80.
[http://dx.doi.org/10.1016/0006-8993(89)90910-4] [PMID: 2752301]
[125]
Pederson KJ, Roerig JL, Mitchell JE. Towards the pharmacotherapy of eating disorders. Expert Opin Pharmacother 2003; 4(10): 1659-78.
[http://dx.doi.org/10.1517/14656566.4.10.1659] [PMID: 14521477]
[126]
Curzon G, Gibson EL, Oluyomi AO. Appetite suppression by commonly used drugs depends on 5-HT receptors but not on 5-HT availability. Trends Pharmacol Sci 1997; 18(1): 21-5.
[http://dx.doi.org/10.1016/S0165-6147(96)01003-6] [PMID: 9114726]
[127]
Pazos A, Palacios JM. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 1985; 346(2): 205-30.
[http://dx.doi.org/10.1016/0006-8993(85)90856-X] [PMID: 4052776]
[128]
Speakman J, Hambly C, Mitchell S, Król E. Animal models of obesity. Obes Rev 2007; 8(s1) (Suppl. 1): 55-61.
[http://dx.doi.org/10.1111/j.1467-789X.2007.00319.x] [PMID: 17316303]
[129]
Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 2015; 28(2): 203-9.
[PMID: 25830558]
[130]
Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain–gut axis in psychiatric and inflammatory disorders. Front Psychiatry 2018; 9: 44.
[http://dx.doi.org/10.3389/fpsyt.2018.00044] [PMID: 29593576]
[131]
Schlaepfer TE, Frick C, Zobel A, et al. Vagus nerve stimulation for depression: Efficacy and safety in a European study. Psychol Med 2008; 38(5): 651-61.
[http://dx.doi.org/10.1017/S0033291707001924] [PMID: 18177525]
[132]
Berry SM, Broglio K, Bunker M, Jayewardene A, Olin B, Rush AJ. A patient-level meta-analysis of studies evaluating vagus nerve stimulation therapy for treatment-resistant depression. Med Devices 2013; 6: 17-35.
[PMID: 23482508]
[133]
Rush AJ, Marangell LB, Sackeim HA, et al. Vagus nerve stimulation for treatment-resistant depression: A randomized, controlled acute phase trial. Biol Psychiatry 2005; 58(5): 347-54.
[http://dx.doi.org/10.1016/j.biopsych.2005.05.025] [PMID: 16139580]
[134]
George MS, Rush AJ, Marangell LB, et al. A one-year comparison of vagus nerve stimulation with treatment as usual for treatment-resistant depression. Biol Psychiatry 2005; 58(5): 364-73.
[http://dx.doi.org/10.1016/j.biopsych.2005.07.028] [PMID: 16139582]
[135]
Nahas Z, Marangell LB, Husain MM, et al. Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J Clin Psychiatry 2005; 66(9): 1097-104.
[http://dx.doi.org/10.4088/JCP.v66n0902] [PMID: 16187765]
[136]
Aaronson ST, Sears P, Ruvuna F, et al. A 5-year observational study of patients with treatment-resistant depression treated with vagus nerve stimulation or treatment as usual: comparison of response, remission, and suicidality. Am J Psychiatry 2017; 174(7): 640-8.
[http://dx.doi.org/10.1176/appi.ajp.2017.16010034] [PMID: 28359201]
[137]
Suarez EC, Krishnan RR, Lewis JG. The relation of severity of depressive symptoms to monocyte-associated proinflammatory cytokines and chemokines in apparently healthy men. Psychosom Med 2003; 65(3): 362-8.
[http://dx.doi.org/10.1097/01.PSY.0000035719.79068.2B] [PMID: 12764208]
[138]
Corcoran C, Connor TJ, O’Keane V, Garland MR. The effects of vagus nerve stimulation on pro and anti-inflammatory cytokines in humans: A preliminary report. Neuroimmunomodulation 2005; 12(5): 307-9.
[http://dx.doi.org/10.1159/000087109] [PMID: 16166810]
[139]
O’Keane V, Dinan TG, Scott L, Corcoran C. Changes in hypothalamic-pituitary-adrenal axis measures after vagus nerve stimulation therapy in chronic depression. Biol Psychiatry 2005; 58(12): 963-8.
[http://dx.doi.org/10.1016/j.biopsych.2005.04.049] [PMID: 16005439]
[140]
Koopman FA, Chavan SS, Miljko S, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc Natl Acad Sci 2016; 113(29): 8284-9.
[http://dx.doi.org/10.1073/pnas.1605635113] [PMID: 27382171]
[141]
de Lartigue G. Role of the vagus nerve in the development and treatment of diet‐induced obesity. J Physiol 2016; 594(20): 5791-815.
[http://dx.doi.org/10.1113/JP271538] [PMID: 26959077]
[142]
Tomova A, Bukovsky I, Rembert E, et al. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front Nutr 2019; 6: 47.
[http://dx.doi.org/10.3389/fnut.2019.00047] [PMID: 31058160]
[143]
Christensen J, Yamakawa GR, Shultz SR, Mychasiuk R. Is the glymphatic system the missing link between sleep impairments and neurological disorders? Examining the implications and uncertainties. Prog Neurobiol 2021; 198: 101917.
[http://dx.doi.org/10.1016/j.pneurobio.2020.101917] [PMID: 32991958]
[144]
Rajab IM, Hart PC, Potempa LA. How C-reactive protein structural isoforms with distinctive bioactivities affect disease progression. Front Immunol 2020; 11: 2126.
[http://dx.doi.org/10.3389/fimmu.2020.02126] [PMID: 33013897]
[145]
Santos S, Oliveira A, Casal S, Lopes C. Saturated fatty acids intake in relation to C-reactive protein, adiponectin, and leptin: A population-based study. Nutrition 2013; 29(6): 892-7.
[http://dx.doi.org/10.1016/j.nut.2013.01.009] [PMID: 23594583]
[146]
Pasupuleti P, Suchitra MM, Bitla AR, Sachan A. Attenuation of oxidative stress, interleukin-6, high-sensitivity c-reactive protein, plasminogen activator inhibitor-1, and fibrinogen with oral vitamin D supplementation in patients with T2DM having vitamin D deficiency. J Lab Physicians 2021; 14(2): 190-6.
[PMID: 35982882]
[147]
Braun M, Iliff JJ. The impact of neurovascular, blood-brain barrier, and glymphatic dysfunction in neurodegenerative and metabolic diseases. Int Rev Neurobiol 2020; 154: 413-36.
[http://dx.doi.org/10.1016/bs.irn.2020.02.006] [PMID: 32739013]
[148]
Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 2006; 124(4): 837-48.
[http://dx.doi.org/10.1016/j.cell.2006.02.017] [PMID: 16497592]
[149]
Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev 2010; 90(3): 859-904.
[http://dx.doi.org/10.1152/physrev.00045.2009] [PMID: 20664075]
[150]
Foster JA, McVey Neufeld KA. Gut–brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013; 36(5): 305-12.
[http://dx.doi.org/10.1016/j.tins.2013.01.005] [PMID: 23384445]
[151]
Karlsson FH, Ussery DW, Nielsen J, Nookaew I. A closer look at bacteroides: phylogenetic relationship and genomic implications of a life in the human gut. Microb Ecol 2011; 61(3): 473-85.
[http://dx.doi.org/10.1007/s00248-010-9796-1] [PMID: 21222211]
[152]
Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 2010; 107(26): 11971-5.
[http://dx.doi.org/10.1073/pnas.1002601107] [PMID: 20566857]
[153]
Fallani M, Young D, Scott J, et al. Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 2010; 51(1): 77-84.
[http://dx.doi.org/10.1097/MPG.0b013e3181d1b11e] [PMID: 20479681]
[154]
Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature 2012; 486(7402): 222-7.
[http://dx.doi.org/10.1038/nature11053] [PMID: 22699611]
[155]
Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 2012; 488(7410): 178-84.
[http://dx.doi.org/10.1038/nature11319] [PMID: 22797518]
[156]
Winter G, Hart RA, Charlesworth RPG, Sharpley CF. Gut microbiome and depression: what we know and what we need to know. Rev Neurosci 2018; 29(6): 629-43.
[http://dx.doi.org/10.1515/revneuro-2017-0072] [PMID: 29397391]
[157]
Wallace CJK, Milev R. The effects of probiotics on depressive symptoms in humans: A systematic review. Ann Gen Psychiatry 2017; 16(1): 14.
[http://dx.doi.org/10.1186/s12991-017-0138-2]
[158]
Clapp M, Aurora N, Herrera L, Bhatia M, Wilen E, Wakefield S. Gut microbiota’s effect on mental health: The gut-brain axis. Clin Pract 2017; 7(4): 987.
[http://dx.doi.org/10.4081/cp.2017.987] [PMID: 29071061]
[159]
Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res 2017; 179: 223-44.
[http://dx.doi.org/10.1016/j.trsl.2016.10.002] [PMID: 27832936]
[160]
Kohler O, Krogh J, Mors O, Eriksen Benros M. Inflammation in depression and the potential for anti-inflammatory treatment. Curr Neuropharmacol 2016; 14(7): 732-42.
[http://dx.doi.org/10.2174/1570159X14666151208113700] [PMID: 27640518]
[161]
Berk M, Williams LJ, Jacka FN, et al. So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 2013; 11(1): 200.
[http://dx.doi.org/10.1186/1741-7015-11-200] [PMID: 24228900]
[162]
Lerner A, Neidhöfer S, Matthias T. The gut microbiome feelings of the brain: A perspective for non-microbiologists. Microorganisms 2017; 5(4): 66.
[http://dx.doi.org/10.3390/microorganisms5040066] [PMID: 29023380]
[163]
Koopman M, El Aidy S. Depressed gut? The microbiota-diet-inflammation trialogue in depression. Curr Opin Psychiatry 2017; 30(5): 369-77.
[http://dx.doi.org/10.1097/YCO.0000000000000350] [PMID: 28654462]
[164]
Slyepchenko A, Maes M, Jacka FN, et al. Gut microbiota, bacterial translocation, and interactions with diet: pathophysiological links between major depressive disorder and non-communicable medical comorbidities. Psychother Psychosom 2017; 86(1): 31-46.
[http://dx.doi.org/10.1159/000448957] [PMID: 27884012]
[165]
Peirce JM, Alviña K. The role of inflammation and the gut microbiome in depression and anxiety. J Neurosci Res 2019; 97(10): 1223-41.
[http://dx.doi.org/10.1002/jnr.24476] [PMID: 31144383]
[166]
Leonard BE. Inflammation and depression: A causal or coincidental link to the pathophysiology? Acta Neuropsychiatr 2018; 30(1): 1-16.
[http://dx.doi.org/10.1017/neu.2016.69] [PMID: 28112061]
[167]
Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009; 65(9): 732-41.
[http://dx.doi.org/10.1016/j.biopsych.2008.11.029] [PMID: 19150053]
[168]
Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem Int 2016; 99: 110-32.
[http://dx.doi.org/10.1016/j.neuint.2016.06.011] [PMID: 27346602]
[169]
Gibson GR, Hutkins R, Sanders ME, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 2017; 14(8): 491-502.
[http://dx.doi.org/10.1038/nrgastro.2017.75] [PMID: 28611480]
[170]
Carmody RN, Gerber GK, Luevano JM Jr, et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host Microbe 2015; 17(1): 72-84.
[http://dx.doi.org/10.1016/j.chom.2014.11.010] [PMID: 25532804]
[171]
Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology 2017; 112(Pt B): 399-412.
[http://dx.doi.org/10.1016/j.neuropharm.2016.07.002] [PMID: 27392632]
[172]
Mika A, Day HEW, Martinez A, et al. Early life diets with prebiotics and bioactive milk fractions attenuate the impact of stress on learned helplessness behaviours and alter gene expression within neural circuits important for stress resistance. Eur J Neurosci 2017; 45(3): 342-57.
[http://dx.doi.org/10.1111/ejn.13444] [PMID: 27763700]
[173]
Gilbert K, Arseneault-Bréard J, Flores Monaco F, et al. Attenuation of post-myocardial infarction depression in rats by n -3 fatty acids or probiotics starting after the onset of reperfusion. Br J Nutr 2013; 109(1): 50-6.
[http://dx.doi.org/10.1017/S0007114512003807] [PMID: 23068715]
[174]
Robertson RC, Seira Oriach C, Murphy K, et al. Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain Behav Immun 2017; 59: 21-37.
[http://dx.doi.org/10.1016/j.bbi.2016.07.145] [PMID: 27423492]
[175]
Liang S, Wang T, Hu X, et al. Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience 2015; 310: 561-77.
[http://dx.doi.org/10.1016/j.neuroscience.2015.09.033] [PMID: 26408987]
[176]
Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13(10): 701-12.
[http://dx.doi.org/10.1038/nrn3346] [PMID: 22968153]
[177]
Park AJ, Collins J, Blennerhassett PA, et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil 2013; 25(9): 733-e575.
[http://dx.doi.org/10.1111/nmo.12153] [PMID: 23773726]
[178]
Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 2017; 357(6349): eaaf9794.
[http://dx.doi.org/10.1126/science.aaf9794] [PMID: 28751584]
[179]
Ait-Belgnaoui A, Colom A, Braniste V, et al. Probiotic gut effect prevents the chronic psychological stress‐induced brain activity abnormality in mice. Neurogastroenterol Motil 2014; 26(4): 510-20.
[http://dx.doi.org/10.1111/nmo.12295] [PMID: 24372793]
[180]
Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011; 141(2): 599-609.
[http://dx.doi.org/10.1053/j.gastro.2011.04.052]
[181]
Duman RS, Li N, Liu RJ, Duric V, Aghajanian G. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology 2012; 62(1): 35-41.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.044] [PMID: 21907221]
[182]
Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol 2011; 2: 94.
[http://dx.doi.org/10.3389/fphys.2011.00094] [PMID: 22162969]
[183]
Rahul Mittal RM, Debs L, Patel A, et al. Neurotransmitters: the critical modulators regulating gut-brain axis. J Cell Physiol 2017; 232(9): 2359-72.
[184]
Desbonnet L, Clarke G, Traplin A, et al. Gut microbiota depletion from early adolescence in mice: Implications for brain and behaviour. Brain Behav Immun 2015; 48: 165-73.
[http://dx.doi.org/10.1016/j.bbi.2015.04.004] [PMID: 25866195]
[185]
Walker JKL, Gainetdinov RR, Mangel AW, Caron MG, Shetzline MA. Mice lacking the dopamine transporter display altered regulation of distal colonic motility. Am J Physiol Gastrointest Liver Physiol 2000; 279(2): G311-8.
[http://dx.doi.org/10.1152/ajpgi.2000.279.2.G311] [PMID: 10915639]
[186]
Villageliú D, Lyte M. Dopamine production in Enterococcus faecium: A microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential. PLoS One 2018; 13(11): e0207038.
[http://dx.doi.org/10.1371/journal.pone.0207038] [PMID: 30485295]
[187]
Essner RA, Smith AG, Jamnik AA, Ryba AR, Trutner ZD, Carter ME. AgRP neurons can increase food intake during conditions of appetite suppression and inhibit anorexigenic parabrachial neurons. J Neurosci 2017; 37(36): 8678-87.
[http://dx.doi.org/10.1523/JNEUROSCI.0798-17.2017] [PMID: 28821663]
[188]
Dinan TG, Cryan JF. Melancholic microbes: A link between gut microbiota and depression? Neurogastroenterol Motil 2013; 25(9): 713-9.
[http://dx.doi.org/10.1111/nmo.12198] [PMID: 23910373]
[189]
Hughes DT, Sperandio V. Inter-kingdom signalling: Communication between bacteria and their hosts. Nat Rev Microbiol 2008; 6(2): 111-20.
[http://dx.doi.org/10.1038/nrmicro1836] [PMID: 18197168]
[190]
Habib AM, Richards P, Rogers GJ, Reimann F, Gribble FM. Co-localisation and secretion of glucagon-like peptide 1 and peptide YY from primary cultured human L cells. Diabetologia 2013; 56(6): 1413-6.
[http://dx.doi.org/10.1007/s00125-013-2887-z] [PMID: 23519462]
[191]
Athauda D, Foltynie T. The glucagon-like peptide 1 (GLP) receptor as a therapeutic target in Parkinson’s disease: Mechanisms of action. Drug Discov Today 2016; 21(5): 802-18.
[http://dx.doi.org/10.1016/j.drudis.2016.01.013] [PMID: 26851597]
[192]
Hansen HH, Fabricius K, Barkholt P, et al. The GLP-1 receptor agonist liraglutide improves memory function and increases hippocampal CA1 neuronal numbers in a senescence-accelerated mouse model of alzheimer’s disease. J Alzheimers Dis 2015; 46(4): 877-88.
[http://dx.doi.org/10.3233/JAD-143090] [PMID: 25869785]
[193]
Candeias EM, Sebastião IC, Cardoso SM, et al. Gut-brain connection: The neuroprotective effects of the anti-diabetic drug liraglutide. World J Diabetes 2015; 6(6): 807-27.
[http://dx.doi.org/10.4239/wjd.v6.i6.807] [PMID: 26131323]
[194]
Manigault K, Thurston MM. Liraglutide: A glucagon-like peptide-1 agonist for chronic weight management. Consult Pharm 2016; 31(12): 685-97.
[http://dx.doi.org/10.4140/TCP.n.2016.685] [PMID: 28074747]
[195]
de Miranda AS, Zhang CJ, Katsumoto A, Teixeira AL. Hippocampal adult neurogenesis: Does the immune system matter? J Neurol Sci 2017; 372: 482-95.
[http://dx.doi.org/10.1016/j.jns.2016.10.052] [PMID: 27838002]
[196]
Kopschina Feltes P, Doorduin J, Klein HC, et al. Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J Psychopharmacol 2017; 31(9): 1149-65.
[http://dx.doi.org/10.1177/0269881117711708] [PMID: 28653857]
[197]
Paudel YN, Shaikh MF, Shah S, Kumari Y, Othman I. Role of inflammation in epilepsy and neurobehavioral comorbidities: Implication for therapy. Eur J Pharmacol 2018; 837: 145-55.
[http://dx.doi.org/10.1016/j.ejphar.2018.08.020] [PMID: 30125565]
[198]
Woelfer M, Kasties V, Kahlfuss S, Walter M. The role of depressive subtypes within the neuroinflammation hypothesis of major depressive disorder. Neuroscience 2019; 403: 93-110.
[http://dx.doi.org/10.1016/j.neuroscience.2018.03.034] [PMID: 29604382]
[199]
Felger JC, Treadway MT. Inflammation Effects on Motivation and Motor Activity: Role of Dopamine. Neuropsychopharmacology 2017; 42(1): 216-41.
[http://dx.doi.org/10.1038/npp.2016.143] [PMID: 27480574]
[200]
Song C, Wang H. Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35(3): 760-8.
[http://dx.doi.org/10.1016/j.pnpbp.2010.06.020] [PMID: 20600462]
[201]
Carvalho LA, Torre JP, Papadopoulos AS, et al. Lack of clinical therapeutic benefit of antidepressants is associated overall activation of the inflammatory system. J Affect Disord 2013; 148(1): 136-40.
[http://dx.doi.org/10.1016/j.jad.2012.10.036] [PMID: 23200297]
[202]
Bertilsson G, Patrone C, Zachrisson O, et al. Peptide hormone exendin‐4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of parkinson’s disease. J Neurosci Res 2008; 86(2): 326-38.
[http://dx.doi.org/10.1002/jnr.21483] [PMID: 17803225]
[203]
Li Y, Perry T, Kindy MS, et al. GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism. Proc Natl Acad Sci 2009; 106(4): 1285-90.
[http://dx.doi.org/10.1073/pnas.0806720106] [PMID: 19164583]
[204]
Hölscher C. Central effects of GLP-1: new opportunities for treatments of neurodegenerative diseases. J Endocrinol 2014; 221(1): T31-41.
[http://dx.doi.org/10.1530/JOE-13-0221] [PMID: 23999914]
[205]
Sango K, Utsunomiya K. Efficacy of glucagon-like peptide-1 mimetics for neural regeneration. Neural Regen Res 2015; 10(11): 1723-4.
[http://dx.doi.org/10.4103/1673-5374.169611] [PMID: 26807090]
[206]
Isacson R, Nielsen E, Dannaeus K, et al. The glucagon-like peptide 1 receptor agonist exendin-4 improves reference memory performance and decreases immobility in the forced swim test. Eur J Pharmacol 2011; 650(1): 249-55.
[http://dx.doi.org/10.1016/j.ejphar.2010.10.008] [PMID: 20951130]
[207]
Cai HY, Hölscher C, Yue XH, et al. Lixisenatide rescues spatial memory and synaptic plasticity from amyloid β protein-induced impairments in rats. Neuroscience 2014; 277: 6-13.
[http://dx.doi.org/10.1016/j.neuroscience.2014.02.022] [PMID: 24583037]
[208]
Petrik D, Jiang Y, Birnbaum SG, et al. Functional and mechanistic exploration of an adult neurogenesis‐promoting small molecule. FASEB J 2012; 26(8): 3148-62.
[http://dx.doi.org/10.1096/fj.11-201426] [PMID: 22542682]
[209]
Klempin F, Beis D, Mosienko V, Kempermann G, Bader M, Alenina N. Serotonin is required for exercise-induced adult hippocampal neurogenesis. J Neurosci 2013; 33(19): 8270-5.
[http://dx.doi.org/10.1523/JNEUROSCI.5855-12.2013] [PMID: 23658167]
[210]
Wang YH, Liou KT, Tsai KC, et al. GSK-3 inhibition through GLP-1R allosteric activation mediates the neurogenesis promoting effect of P7C3 after cerebral ischemic/reperfusional injury in mice. Toxicol Appl Pharmacol 2018; 357: 88-105.
[http://dx.doi.org/10.1016/j.taap.2018.08.023] [PMID: 30189238]
[211]
Li Y, Tweedie D, Mattson MP, Holloway HW, Greig NH. Enhancing the GLP‐1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J Neurochem 2010; 113(6): 1621-31.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06731.x] [PMID: 20374430]
[212]
Salcedo I, Tweedie D, Li Y, Greig NH. Neuroprotective and neurotrophic actions of glucagon‐like peptide‐1: An emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br J Pharmacol 2012; 166(5): 1586-99.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01971.x] [PMID: 22519295]
[213]
Denny CA, Burghardt NS, Schachter DM, Hen R, Drew MR. 4‐ to 6‐week‐old adult‐born hippocampal neurons influence novelty‐evoked exploration and contextual fear conditioning. Hippocampus 2012; 22(5): 1188-201.
[http://dx.doi.org/10.1002/hipo.20964] [PMID: 21739523]
[214]
Duman R, Nakagawa S, Malberg J. Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology 2001; 25(6): 836-44.
[http://dx.doi.org/10.1016/S0893-133X(01)00358-X] [PMID: 11750177]
[215]
Toni N, Teng EM, Bushong EA, et al. Synapse formation on neurons born in the adult hippocampus. Nat Neurosci 2007; 10(6): 727-34.
[http://dx.doi.org/10.1038/nn1908] [PMID: 17486101]
[216]
Boldrini M, Underwood MD, Hen R, et al. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology 2009; 34(11): 2376-89.
[http://dx.doi.org/10.1038/npp.2009.75] [PMID: 19606083]
[217]
Anacker C, Zunszain PA, Cattaneo A, et al. Antidepressants increase human hippocampal neurogenesis by activating the glucocorticoid receptor. Mol Psychiatry 2011; 16(7): 738-50.
[http://dx.doi.org/10.1038/mp.2011.26] [PMID: 21483429]
[218]
Weina H, Yuhu N, Christian H, Birong L, Feiyu S, Le W. Liraglutide attenuates the depressive- and anxiety-like behaviour in the corticosterone induced depression model via improving hippocampal neural plasticity. Brain Res 2018; 1694: 55-62.
[http://dx.doi.org/10.1016/j.brainres.2018.04.031] [PMID: 29705602]
[219]
Cuomo A, Bolognesi S, Goracci A, et al. Feasibility, adherence and efficacy of liraglutide treatment in a sample of individuals with mood disorders and obesity. Front Psychiatry 2019; 9: 784.
[http://dx.doi.org/10.3389/fpsyt.2018.00784] [PMID: 30728788]
[220]
Hayes MR, Schmidt HD. GLP-1 influences food and drug reward. Curr Opin Behav Sci 2016; 9: 66-70.
[http://dx.doi.org/10.1016/j.cobeha.2016.02.005] [PMID: 27066524]
[221]
Fletcher JB, Reback CJ. Depression mediates and moderates effects of methamphetamine use on sexual risk taking among treatment-seeking gay and bisexual men. Health Psychol 2015; 34(8): 865-9.
[http://dx.doi.org/10.1037/hea0000207] [PMID: 25581704]
[222]
Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, Janak PH. A causal link between prediction errors, dopamine neurons and learning. Nat Neurosci 2013; 16(7): 966-73.
[http://dx.doi.org/10.1038/nn.3413] [PMID: 23708143]
[223]
Lietzau G, Magni G, Kehr J, et al. Dipeptidyl peptidase-4 inhibitors and sulfonylureas prevent the progressive impairment of the nigrostriatal dopaminergic system induced by diabetes during aging. Neurobiol Aging 2020; 89: 12-23.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.01.004] [PMID: 32143981]
[224]
Korol SV, Jin Z, Babateen O, Birnir B. GLP-1 and exendin-4 transiently enhance GABAA receptor-mediated synaptic and tonic currents in rat hippocampal CA3 pyramidal neurons. Diabetes 2015; 64(1): 79-89.
[http://dx.doi.org/10.2337/db14-0668] [PMID: 25114295]
[225]
Lennox R, Porter DW, Flatt PR, Holscher C, Irwin N, Gault VA. Comparison of the independent and combined effects of sub-chronic therapy with metformin and a stable GLP-1 receptor agonist on cognitive function, hippocampal synaptic plasticity and metabolic control in high-fat fed mice. Neuropharmacology 2014; 86: 22-30.
[http://dx.doi.org/10.1016/j.neuropharm.2014.06.026] [PMID: 24998752]
[226]
Gault VA, Porter WD, Flatt PR, Hölscher C. Actions of exendin-4 therapy on cognitive function and hippocampal synaptic plasticity in mice fed a high-fat diet. Int J Obes 2010; 34(8): 1341-4.
[http://dx.doi.org/10.1038/ijo.2010.59] [PMID: 20351729]
[227]
Milaneschi Y, Simmons WK, van Rossum EFC, Penninx BWJH. Depression and obesity: Evidence of shared biological mechanisms. Mol Psychiatry 2019; 24(1): 18-33.
[http://dx.doi.org/10.1038/s41380-018-0017-5] [PMID: 29453413]
[228]
Xu Q, Anderson D, Lurie-Beck J. The relationship between abdominal obesity and depression in the general population: A systematic review and meta-analysis. Obes Res Clin Pract 2011; 5(4): e267-78.
[http://dx.doi.org/10.1016/j.orcp.2011.04.007] [PMID: 24331129]
[229]
Ross R, Neeland IJ, Yamashita S, et al. Waist circumference as a vital sign in clinical practice: A Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat Rev Endocrinol 2020; 16(3): 177-89.
[http://dx.doi.org/10.1038/s41574-019-0310-7] [PMID: 32020062]
[230]
Mannan M, Mamun A, Doi S, Clavarino A. Prospective associations between depression and obesity for adolescent males and females-a systematic review and meta-analysis of longitudinal studies. PLoS One 2016; 11(6): e0157240.
[http://dx.doi.org/10.1371/journal.pone.0157240] [PMID: 27285386]
[231]
Zhao G, Ford ES, Dhingra S, Li C, Strine TW, Mokdad AH. Depression and anxiety among US adults: Associations with body mass index. Int J Obes 2009; 33(2): 257-66.
[http://dx.doi.org/10.1038/ijo.2008.268] [PMID: 19125163]
[232]
Gariepy G, Wang J, Lesage AD, Schmitz N. The longitudinal association from obesity to depression: results from the 12-year National Population Health Survey. Obesity 2010; 18(5): 1033-8.
[http://dx.doi.org/10.1038/oby.2009.333] [PMID: 19816409]
[233]
Lai JS, Oldmeadow C, Hure AJ, et al. Inflammation mediates the association between fatty acid intake and depression in older men and women. Nutr Res 2016; 36(3): 234-45.
[http://dx.doi.org/10.1016/j.nutres.2015.11.017] [PMID: 26923510]
[234]
Tsuboi H, Watanabe M, Kobayashi F, Kimura K, Kinae N. Associations of depressive symptoms with serum proportions of palmitic and arachidonic acids, and α-tocopherol effects among male population: A preliminary study. Clin Nutr 2013; 32(2): 289-93.
[http://dx.doi.org/10.1016/j.clnu.2012.07.011] [PMID: 22901744]
[235]
Sharma S, Fulton S. Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes 2013; 37(3): 382-9.
[http://dx.doi.org/10.1038/ijo.2012.48] [PMID: 22508336]
[236]
André C, Dinel AL, Ferreira G, Layé S, Castanon N. Diet-induced obesity progressively alters cognition, anxiety-like behavior and lipopolysaccharide-induced depressive-like behavior: Focus on brain indoleamine 2,3-dioxygenase activation. Brain Behav Immun 2014; 41: 10-21.
[http://dx.doi.org/10.1016/j.bbi.2014.03.012] [PMID: 24681251]
[237]
Nakajima S, Fukasawa K, Gotoh M, Murakami-Murofushi K, Kunugi H. Saturated fatty acid is a principal cause of anxiety-like behavior in diet-induced obese rats in relation to serum lysophosphatidyl choline level. Int J Obes 2020; 44(3): 727-38.
[http://dx.doi.org/10.1038/s41366-019-0468-z] [PMID: 31636375]
[238]
Sharma S, Fernandes MF, Fulton S. Adaptations in brain reward circuitry underlie palatable food cravings and anxiety induced by high-fat diet withdrawal. Int J Obes 2013; 37(9): 1183-91.
[http://dx.doi.org/10.1038/ijo.2012.197] [PMID: 23229740]
[239]
Hryhorczuk C, Décarie-Spain L, Sharma S, et al. Saturated high-fat feeding independent of obesity alters hypothalamus-pituitary-adrenal axis function but not anxiety-like behaviour. Psychoneuroendocrinology 2017; 83: 142-9.
[http://dx.doi.org/10.1016/j.psyneuen.2017.06.002] [PMID: 28623763]
[240]
Davis JF, Tracy AL, Schurdak JD, et al. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci 2008; 122(6): 1257-63.
[http://dx.doi.org/10.1037/a0013111] [PMID: 19045945]
[241]
Sartorius T, Ketterer C, Kullmann S, et al. Monounsaturated fatty acids prevent the aversive effects of obesity on locomotion, brain activity, and sleep behavior. Diabetes 2012; 61(7): 1669-79.
[http://dx.doi.org/10.2337/db11-1521] [PMID: 22492529]
[242]
Hryhorczuk C, Florea M, Rodaros D, et al. Dampened mesolimbic dopamine function and signaling by saturated but not monounsaturated dietary lipids. Neuropsychopharmacology 2016; 41(3): 811-21.
[http://dx.doi.org/10.1038/npp.2015.207] [PMID: 26171719]
[243]
Soriguer F, Rojo-Martínez G, Goday A, et al. Olive oil has a beneficial effect on impaired glucose regulation and other cardiometabolic risk factors. Di@bet.es study. Eur J Clin Nutr 2013; 67(9): 911-6.
[http://dx.doi.org/10.1038/ejcn.2013.130] [PMID: 23859999]
[244]
Décarie-Spain L, Sharma S, Hryhorczuk C, et al. Nucleus accumbens inflammation mediates anxiodepressive behavior and compulsive sucrose seeking elicited by saturated dietary fat. Mol Metab 2018; 10: 1-13.
[http://dx.doi.org/10.1016/j.molmet.2018.01.018] [PMID: 29454579]
[245]
Thaler JP, Schwartz MW. Minireview: Inflammation and obesity pathogenesis: the hypothalamus heats up. Endocrinology 2010; 151(9): 4109-15.
[http://dx.doi.org/10.1210/en.2010-0336] [PMID: 20573720]
[246]
Kim JD, Yoon NA, Jin S, Diano S. Microglial UCP2 mediates inflammation and obesity induced by high-fat feeding. Cell Metab 2019; 30(5): 952-962.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.08.010] [PMID: 31495690]
[247]
Douglass JD, Dorfman MD, Fasnacht R, Shaffer LD, Thaler JP. Astrocyte IKKβ/NF-κB signaling is required for diet-induced obesity and hypothalamic inflammation. Mol Metab 2017; 6(4): 366-73.
[http://dx.doi.org/10.1016/j.molmet.2017.01.010] [PMID: 28377875]
[248]
André C, Guzman-Quevedo O, Rey C, et al. Inhibiting microglia expansion prevents diet-induced hypothalamic and peripheral inflammation. Diabetes 2017; 66(4): 908-19.
[http://dx.doi.org/10.2337/db16-0586] [PMID: 27903745]
[249]
Gutiérrez-Martos M, Girard B, Mendonça-Netto S, et al. Cafeteria diet induces neuroplastic modifications in the nucleus accumbens mediated by microglia activation. Addict Biol 2018; 23(2): 735-49.
[http://dx.doi.org/10.1111/adb.12541] [PMID: 28872733]
[250]
Xu MX, Yu R, Shao LF, et al. Up-regulated fractalkine (FKN) and its receptor CX3CR1 are involved in fructose-induced neuroinflammation: Suppression by curcumin. Brain Behav Immun 2016; 58: 69-81.
[http://dx.doi.org/10.1016/j.bbi.2016.01.001] [PMID: 26765996]
[251]
Wells KB, Stewart A, Hays RD, et al. The functioning and well-being of depressed patients. Results from the Medical Outcomes Study. JAMA 1989; 262(7): 914-9.
[http://dx.doi.org/10.1001/jama.1989.03430070062031] [PMID: 2754791]
[252]
Ford ES, Moriarty DG, Zack MM, Mokdad AH, Chapman DP. Self-reported body mass index and health-related quality of life: findings from the Behavioral Risk Factor Surveillance System. Obes Res 2001; 9(1): 21-31.
[http://dx.doi.org/10.1038/oby.2001.4] [PMID: 11346664]
[253]
Kolotkin RL, Meter K, Williams GR. Quality of life and obesity. Obes Rev 2001; 2(4): 219-29.
[http://dx.doi.org/10.1046/j.1467-789X.2001.00040.x] [PMID: 12119993]
[254]
Fontaine KR, Barofsky I. Obesity and health‐related quality of life. Obes Rev 2001; 2(3): 173-82.
[http://dx.doi.org/10.1046/j.1467-789x.2001.00032.x] [PMID: 12120102]
[255]
Ferraro KF, Su Y, Gretebeck RJ, Black DR, Badylak SF. Body mass index and disability in adulthood: A 20-year panel study. Am J Public Health 2002; 92(5): 834-40.
[http://dx.doi.org/10.2105/AJPH.92.5.834] [PMID: 11988456]
[256]
Han TS, Tijhuis MA, Lean ME, Seidell JC. Quality of life in relation to overweight and body fat distribution. Am J Public Health 1998; 88(12): 1814-20.
[http://dx.doi.org/10.2105/AJPH.88.12.1814] [PMID: 9842379]
[257]
Camacho TC, Roberts RE, Lazarus NB, Kaplan GA, Cohen RD. Physical activity and depression: Evidence from the alameda county study. Am J Epidemiol 1991; 134(2): 220-31.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a116074] [PMID: 1862805]
[258]
Talbot F, Nouwen A, Gingras J, Bélanger A, Audet J. Relations of diabetes intrusiveness and personal control to symptoms of depression among adults with diabetes. Health Psychol 1999; 18(5): 537-42.
[http://dx.doi.org/10.1037/0278-6133.18.5.537] [PMID: 10519470]
[259]
Devins GM, Edworthy SM, Seland TP, Klein GM, Paul LC, Mandin H. Differences in illness intrusiveness across rheumatoid arthritis, end-stage renal disease, and multiple sclerosis. J Nerv Ment Dis 1993; 181(6): 377-81.
[http://dx.doi.org/10.1097/00005053-199306000-00007] [PMID: 8501459]
[260]
Neugebauer A, Katz PP, Pasch LA. Effect of valued activity disability, social comparisons, and satisfaction with ability on depressive symptoms in rheumatoid arthritis. Health Psychol 2003; 22(3): 253-62.
[http://dx.doi.org/10.1037/0278-6133.22.3.253] [PMID: 12790252]
[261]
Williamson GM, Schulz R. Activity restriction mediates the association between pain and depressed affect: A study of younger and older adult cancer patients. Psychol Aging 1995; 10(3): 369-78.
[http://dx.doi.org/10.1037/0882-7974.10.3.369] [PMID: 8527058]
[262]
Sabshin M. Depression: Clinical, experimental and theoretical aspects. Arch Gen Psychiatry 1968; 19(6): 766-7.
[http://dx.doi.org/10.1001/archpsyc.1968.01740120126024]
[263]
Luyten P, Blatt SJ, Corveleyn J. Epilogue Towards Integration in the Theory and Treatment of Depression? The Time is NowThe theory and treatment of depression: Towards a dynamic interactionism model Lawrence Erlbaum Associates Publishers. Leuven University Press 2013; pp. 253-84.
[264]
Kessler RC, Mickelson KD, Williams DR. The prevalence, distribution, and mental health correlates of perceived discrimination in the United States. J Health Soc Behav 1999; 40(3): 208-30.
[http://dx.doi.org/10.2307/2676349] [PMID: 10513145]
[265]
Carr D, Friedman MA. Is obesity stigmatizing? Body weight, perceived discrimination, and psychological well-being in the United States. J Health Soc Behav 2005; 46(3): 244-59.
[http://dx.doi.org/10.1177/002214650504600303] [PMID: 16259147]
[266]
Puhl R, Brownell KD. Ways of coping with obesity stigma: review and conceptual analysis. Eat Behav 2003; 4(1): 53-78.
[http://dx.doi.org/10.1016/S1471-0153(02)00096-X] [PMID: 15000988]
[267]
Friedman MA, Brownell KD. Psychological correlates of obesity: Moving to the next research generation. Psychol Bull 1995; 117(1): 3-20.
[http://dx.doi.org/10.1037/0033-2909.117.1.3] [PMID: 7870862]
[268]
Friedman KE, Reichmann SK, Costanzo PR, Musante GJ. Body image partially mediates the relationship between obesity and psychological distress. Obes Res 2002; 10(1): 33-41.
[http://dx.doi.org/10.1038/oby.2002.5] [PMID: 11786599]
[269]
Sarwer DB, Wadden TA, Foster GD. Assessment of body image dissatisfaction in obese women: Specificity, severity, and clinical significance. J Consult Clin Psychol 1998; 66(4): 651-4.
[http://dx.doi.org/10.1037/0022-006X.66.4.651] [PMID: 9735582]
[270]
Wardle J, Waller J, Fox E. Age of onset and body dissatisfaction in obesity. Addict Behav 2002; 27(4): 561-73.
[http://dx.doi.org/10.1016/S0306-4603(01)00193-9] [PMID: 12188592]
[271]
Gharipour M, Barekatain M, Sung J, et al. The epigenetic overlap between obesity and mood disorders: A systematic review. Int J Mol Sci 2020; 21(18): 6758.
[http://dx.doi.org/10.3390/ijms21186758] [PMID: 32942585]
[272]
Murphy TM, Crawford B, Dempster EL, et al. Methylomic profiling of cortex samples from completed suicide cases implicates a role for PSORS1C3 in major depression and suicide. Transl Psychiatry 2017; 7(1): e989.
[http://dx.doi.org/10.1038/tp.2016.249] [PMID: 28045465]
[273]
Martin CL, Jima D, Sharp GC, et al. Maternal pre-pregnancy obesity, offspring cord blood DNA methylation, and offspring cardiometabolic health in early childhood: An epigenome-wide association study. Epigenetics 2019; 14(4): 325-40.
[http://dx.doi.org/10.1080/15592294.2019.1581594] [PMID: 30773972]
[274]
Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat Rev Immunol 2016; 16(8): 469-84.
[http://dx.doi.org/10.1038/nri.2016.62] [PMID: 27346803]
[275]
Özcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004; 306(5695): 457-61.
[http://dx.doi.org/10.1126/science.1103160] [PMID: 15486293]
[276]
Abarca-Heidemann K, Friederichs S, Klamp T, Boehm U, Guethlein LA, Ortmann B. Regulation of the expression of mouse TAP-associated glycoprotein (tapasin) by cytokines. Immunol Lett 2002; 83(3): 197-207.
[http://dx.doi.org/10.1016/S0165-2478(02)00104-9] [PMID: 12095710]
[277]
Mayer WE, Klein J. Is tapasin a modified Mhc class I molecule? Immunogenetics 2001; 53(9): 719-23.
[http://dx.doi.org/10.1007/s00251-001-0403-y] [PMID: 11862402]
[278]
Zhu Y, Strachan E, Fowler E, Bacus T, Roy-Byrne P, Zhao J. Genome-wide profiling of DNA methylome and transcriptome in peripheral blood monocytes for major depression: A monozygotic discordant twin study. Transl Psychiatry 2019; 9(1): 215.
[http://dx.doi.org/10.1038/s41398-019-0550-2] [PMID: 31477685]
[279]
Hindley A, Kolch W. Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. J Cell Sci 2002; 115(8): 1575-81.
[http://dx.doi.org/10.1242/jcs.115.8.1575] [PMID: 11950876]
[280]
McCarthy MJ, Leckband SG, Kelsoe JR. Pharmacogenetics of lithium response in bipolar disorder. Pharmacogenomics 2010; 11(10): 1439-65.
[http://dx.doi.org/10.2217/pgs.10.127] [PMID: 21047205]
[281]
Keller M, Hopp L, Liu X, et al. Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metab 2017; 6(1): 86-100.
[http://dx.doi.org/10.1016/j.molmet.2016.11.003] [PMID: 28123940]
[282]
Ferrer-Lorente R, Bejar MT, Badimon L. Notch signaling pathway activation in normal and hyperglycemic rats differs in the stem cells of visceral and subcutaneous adipose tissue. Stem Cells Dev 2014; 23(24): 3034-48.
[http://dx.doi.org/10.1089/scd.2014.0070] [PMID: 25035907]
[283]
Zhang Q, Gao X, Li C, et al. Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice. J Neurosci 2016; 36(7): 2247-60.
[http://dx.doi.org/10.1523/JNEUROSCI.2528-15.2016] [PMID: 26888934]
[284]
Cai Z, Zhao B, Deng Y, et al. Notch signaling in cerebrovascular diseases [Review]. Mol Med Rep 2016; 14(4): 2883-98.
[http://dx.doi.org/10.3892/mmr.2016.5641] [PMID: 27574001]
[285]
Ahearn EP, Speer MC, Chen YT, et al. Investigation of Notch3 as a candidate gene for bipolar disorder using brain hyperintensities as an endophenotype. Am J Med Genet 2002; 114(6): 652-8.
[http://dx.doi.org/10.1002/ajmg.10512] [PMID: 12210282]
[286]
Fung E, Tang SMT, Canner JP, et al. Delta-like 4 induces notch signaling in macrophages: Implications for inflammation. Circulation 2007; 115(23): 2948-56.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.675462] [PMID: 17533181]
[287]
Aoyama T, Takeshita K, Kikuchi R, et al. γ-Secretase inhibitor reduces diet-induced atherosclerosis in apolipoprotein E-deficient mice. Biochem Biophys Res Commun 2009; 383(2): 216-21.
[http://dx.doi.org/10.1016/j.bbrc.2009.03.154] [PMID: 19345673]
[288]
Ando K, Kanazawa S, Tetsuka T, et al. Induction of Notch signaling by tumor necrosis factor in rheumatoid synovial fibroblasts. Oncogene 2003; 22(49): 7796-803.
[http://dx.doi.org/10.1038/sj.onc.1206965] [PMID: 14586405]
[289]
Hu X, Chung AY, Wu I, et al. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity 2008; 29(5): 691-703.
[http://dx.doi.org/10.1016/j.immuni.2008.08.016] [PMID: 18976936]
[290]
Hanson IM, Seawright A, van Heyningen V. The human BDNF gene maps between FSHB and HVBS1 at the boundary of 11p13–p14. Genomics 1992; 13(4): 1331-3.
[http://dx.doi.org/10.1016/0888-7543(92)90060-6] [PMID: 1505967]
[291]
Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T. Dissecting the human BDNF locus: Bidirectional transcription, complex splicing, and multiple promoters. Genomics 2007; 90(3): 397-406.
[http://dx.doi.org/10.1016/j.ygeno.2007.05.004] [PMID: 17629449]
[292]
Gray J, Yeo GSH, Cox JJ, et al. Hyperphagia, severe obesity, impaired cognitive function, and hyperactivity associated with functional loss of one copy of the brain-derived neurotrophic factor (BDNF) gene. Diabetes 2006; 55(12): 3366-71.
[http://dx.doi.org/10.2337/db06-0550] [PMID: 17130481]
[293]
Bonaccorso S, Sodhi M, Li J, et al. The brain‐derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with increased body mass index and insulin resistance measures in bipolar disorder and schizophrenia. Bipolar Disord 2015; 17(5): 528-35.
[http://dx.doi.org/10.1111/bdi.12294] [PMID: 25874530]
[294]
Stanley S, Wynne K, McGowan B, Bloom S. Hormonal regulation of food intake. Physiol Rev 2005; 85(4): 1131-58.
[http://dx.doi.org/10.1152/physrev.00015.2004] [PMID: 16183909]
[295]
Ray MT, Weickert CS, Wyatt E, Webster MJ. Decreased BDNF, trkB-TK+ and GAD 67 mRNA expression in the hippocampus of individuals with schizophrenia and mood disorders. J Psychiatry Neurosci 2011; 36(3): 195-203.
[http://dx.doi.org/10.1503/jpn.100048] [PMID: 21223646]
[296]
Zhang Y, Zhang J, Jiang D, et al. Inhibition of T‐type Ca 2+ channels by endostatin attenuates human glioblastoma cell proliferation and migration. Br J Pharmacol 2012; 166(4): 1247-60.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01852.x] [PMID: 22233416]
[297]
Jin Y, Sun LH, Yang W, Cui RJ, Xu SB. The Role of BDNF in the neuroimmune axis regulation of mood disorders. Front Neurol 2019; 10: 515.
[http://dx.doi.org/10.3389/fneur.2019.00515] [PMID: 31231295]
[298]
Polyakova M, Stuke K, Schuemberg K, Mueller K, Schoenknecht P, Schroeter ML. BDNF as a biomarker for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J Affect Disord 2015; 174: 432-40.
[http://dx.doi.org/10.1016/j.jad.2014.11.044] [PMID: 25553404]
[299]
Fernandes BS, Molendijk ML, Köhler CA, et al. Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: A meta-analysis of 52 studies. BMC Med 2015; 13(1): 289.
[http://dx.doi.org/10.1186/s12916-015-0529-7] [PMID: 26621529]
[300]
Fernandes BS, Steiner J, Berk M, et al. Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: meta-analysis and implications. Mol Psychiatry 2015; 20(9): 1108-19.
[http://dx.doi.org/10.1038/mp.2014.117] [PMID: 25266124]
[301]
Papathanassoglou EDE, Miltiadous P, Karanikola MN. May BDNF be implicated in the exercise-mediated regulation of inflammation? critical review and synthesis of evidence. Biol Res Nurs 2015; 17(5): 521-39.
[http://dx.doi.org/10.1177/1099800414555411] [PMID: 25358684]
[302]
Zhang J, Yao W, Hashimoto K. Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol 2016; 14(7): 721-31.
[http://dx.doi.org/10.2174/1570159X14666160119094646] [PMID: 26786147]
[303]
Chaldakov GN, Fiore M, Stankulov IS, et al. Neurotrophin presence in human coronary atherosclerosis and metabolic syndrome: A role for NGF and BDNF in cardiovascular disease? Prog Brain Res. 2004; 146: pp. 279-89.
[http://dx.doi.org/10.1016/S0079-6123(03)46018-4] [PMID: 14699970]
[304]
Sandrini L, Di Minno A, Amadio P, Ieraci A, Tremoli E, Barbieri S. Association between obesity and circulating brain-derived neurotrophic factor (BDNF) levels: systematic review of literature and meta-analysis. Int J Mol Sci 2018; 19(8): 2281.
[http://dx.doi.org/10.3390/ijms19082281] [PMID: 30081509]
[305]
Gardner KR, Sapienza C, Fisher JO. Genetic and epigenetic associations to obesity‐related appetite phenotypes among A frican– A merican children. Pediatr Obes 2015; 10(6): 476-82.
[http://dx.doi.org/10.1111/ijpo.12010] [PMID: 25779370]
[306]
Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges. Trends Endocrinol Metab 2014; 25(2): 89-98.
[http://dx.doi.org/10.1016/j.tem.2013.10.006] [PMID: 24361004]
[307]
Martínez-Levy GA, Cruz-Fuentes CS. Genetic and epigenetic regulation of the brain-derived neurotrophic factor in the central nervous system. Yale J Biol Med 2014; 87(2): 173-86.
[PMID: 24910563]
[308]
Keller S, Sarchiapone M, Zarrilli F, et al. Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch Gen Psychiatry 2010; 67(3): 258-67.
[http://dx.doi.org/10.1001/archgenpsychiatry.2010.9] [PMID: 20194826]
[309]
Januar V, Ancelin M-L, Ritchie K, Saffery R, Ryan J. BDNF promoter methylation and genetic variation in late-life depression. Transl Psychiatry 2015; 5(8): e619.
[http://dx.doi.org/10.1038/tp.2015.114] [PMID: 26285129]
[310]
Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006; 9(4): 519-25.
[http://dx.doi.org/10.1038/nn1659] [PMID: 16501568]
[311]
Fuchikami M, Morinobu S, Segawa M, et al. DNA methylation profiles of the brain-derived neurotrophic factor (BDNF) gene as a potent diagnostic biomarker in major depression. PLoS One 2011; 6(8): e23881.
[http://dx.doi.org/10.1371/journal.pone.0023881] [PMID: 21912609]
[312]
Kurita M, Nishino S, Kato M, Numata Y, Sato T. Plasma brain-derived neurotrophic factor levels predict the clinical outcome of depression treatment in a naturalistic study. PLoS One 2012; 7(6): e39212.
[http://dx.doi.org/10.1371/journal.pone.0039212] [PMID: 22761741]
[313]
Kim JM, Stewart R, Glozier N, et al. Physical health, depression and cognitive function as correlates of disability in an older Korean population. Int J Geriatr Psychiatry 2005; 20(2): 160-7.
[http://dx.doi.org/10.1002/gps.1266]
[314]
Kim JM, Stewart R, Kang HJ, et al. A longitudinal study of BDNF promoter methylation and genotype with poststroke depression. J Affect Disord 2013; 149(1-3): 93-9.
[http://dx.doi.org/10.1016/j.jad.2013.01.008] [PMID: 23399480]
[315]
Kang HJ, Kim JM, Lee JY, et al. BDNF promoter methylation and suicidal behavior in depressive patients. J Affect Disord 2013; 151(2): 679-85.
[http://dx.doi.org/10.1016/j.jad.2013.08.001] [PMID: 23992681]
[316]
Jin HJ, Pei L, Li YN, et al. Alleviative effects of fluoxetine on depressive-like behaviors by epigenetic regulation of BDNF gene transcription in mouse model of post-stroke depression. Sci Rep 2017; 7(1): 14926.
[http://dx.doi.org/10.1038/s41598-017-13929-5] [PMID: 29097744]
[317]
Bathina S, Das UN. Brain-derived neurotrophic factor and its clinical implications. Arch Med Sci 2015; 6(6): 1164-78.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[318]
Crowder RJ, Freeman RS. Phosphatidylinositol 3-kinase and Akt protein kinase are necessary and sufficient for the survival of nerve growth factor-dependent sympathetic neurons. J Neurosci 1998; 18(8): 2933-43.
[http://dx.doi.org/10.1523/JNEUROSCI.18-08-02933.1998] [PMID: 9526010]
[319]
Han BH, Holtzman DM. BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 2000; 20(15): 5775-81.
[http://dx.doi.org/10.1523/JNEUROSCI.20-15-05775.2000] [PMID: 10908618]
[320]
Makar TK, Trisler D, Sura KT, Sultana S, Patel N, Bever CT. Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J Neurol Sci 2008; 270(1-2): 70-6.
[http://dx.doi.org/10.1016/j.jns.2008.02.011] [PMID: 18374360]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy