Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

CRISPR/Cas9 Gene Editing: A Novel Approach Towards Alzheimer's Disease Treatment

Author(s): Siddhant Tripathi, Yashika Sharma, Rajesh Rane and Dileep Kumar*

Volume 23, Issue 12, 2024

Published on: 22 April, 2024

Page: [1405 - 1424] Pages: 20

DOI: 10.2174/0118715273283786240408034408

Price: $65

Abstract

In defiance of the vast amount of information regarding Alzheimer's disease (AD) that has been learned over the past thirty years, progress toward developing an effective therapy has been difficult. A neurological ailment that progresses and cannot be reversed is Alzheimer's disease, which shows neurofibrillary tangles, beta-amyloid plaque, and a lack of cognitive processes that is created by tau protein clumps with hyperphosphorylation that finally advances to neuronal damage without a recognized treatment, which has stimulated research into new therapeutic strategies. The protein CAS9 is linked to CRISPR, which is a clustered Regularly Interspaced Short Palindromic Repeat that inactivates or corrects a gene by recognizing a gene sequence that produces a doublestranded break has enchanted a whole amount of interest towards its potency to cure gene sequences in AD. The novel CRISPR-Cas9 applications for developing in vitro and in vivo models to the benefit of AD investigation and therapies are thoroughly analyzed in this work. The discussion will also touch on the creation of delivery methods, which is a significant obstacle to the therapeutic use of CRISPR/Cas9 technology. By concentrating on specific genes, such as those that are significant early- onset AD risk factors and late-onset AD risk factors, like the apolipoprotein E4 (APOE4) gene, this study aims to evaluate the potential application of CRISPR/Cas9 as a possible treatment for AD.

[1]
Kumar P, Jha NK, Jha SK, Ramani K, Ambasta RK. Tau phosphorylation, molecular chaperones, and ubiquitin E3 ligase: clinical relevance in Alzheimer’s disease. J Alzheimers Dis 2014; 43(2): 341-61.
[http://dx.doi.org/10.3233/JAD-140933] [PMID: 25096626]
[2]
Barrangou R, Horvath P. A decade of discovery: CRISPR functions and applications. Nat Microbiol 2017; 2(7): 17092.
[http://dx.doi.org/10.1038/nmicrobiol.2017.92] [PMID: 28581505]
[3]
Karch CM, Goate AM. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 2015; 77(1): 43-51.
[http://dx.doi.org/10.1016/j.biopsych.2014.05.006] [PMID: 24951455]
[4]
Gaugler J, James B, Johnson T, Marin A, Weuve J. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement 2019; 15(3): 321-87.
[http://dx.doi.org/10.1016/j.jalz.2019.01.010]
[5]
Shea YF, Chu LW, Chan AOK, Ha J, Li Y, Song YQ. A systematic review of familial Alzheimer’s disease: Differences in presentation of clinical features among three mutated genes and potential ethnic differences. J Formos Med Assoc 2016; 115(2): 67-75.
[http://dx.doi.org/10.1016/j.jfma.2015.08.004] [PMID: 26337232]
[6]
Pandey G, Ramakrishnan V. Invasive and non-invasive therapies for Alzheimer’s disease and other amyloidosis. Biophys Rev 2020; 12(5): 1175-86.
[http://dx.doi.org/10.1007/s12551-020-00752-y] [PMID: 32930962]
[7]
Jones EL, Kalaria RN, Sharp SI, O’Brien JT, Francis PT, Ballard CG. Genetic associations of autopsy-confirmed vascular dementia subtypes. Dement Geriatr Cogn Disord 2011; 31(4): 247-53.
[http://dx.doi.org/10.1159/000327171] [PMID: 21474934]
[8]
Milà-Alomà M, Salvadó G, Gispert JD, et al. Amyloid beta, tau, synaptic, neurodegeneration, and glial biomarkers in the preclinical stage of the Alzheimer’s continuum. Alzheimers Dement 2020; 16(10): 1358-71.
[http://dx.doi.org/10.1002/alz.12131] [PMID: 32573951]
[9]
Zetterberg H, Bendlin BB. Biomarkers for Alzheimer’s disease-preparing for a new era of disease-modifying therapies. Mol Psychiatry 2021; 26(1): 296-308.
[http://dx.doi.org/10.1038/s41380-020-0721-9] [PMID: 32251378]
[10]
Carr DB, Goate A, Phil D, Morris JC. Current concepts in the pathogenesis of Alzheimer’s disease. Am J Med 1997; 103(3): 3S-10S.
[http://dx.doi.org/10.1016/S0002-9343(97)00262-3] [PMID: 9344401]
[11]
Yan R, Vassar R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 2014; 13(3): 319-29.
[http://dx.doi.org/10.1016/S1474-4422(13)70276-X] [PMID: 24556009]
[12]
Frisoni GB, Boccardi M, Barkhof F, et al. Strategic roadmap for an early diagnosis of Alzheimer’s disease based on biomarkers. Lancet Neurol 2017; 16(8): 661-76.
[http://dx.doi.org/10.1016/S1474-4422(17)30159-X] [PMID: 28721928]
[13]
Giau VV, Lee H, Shim KH, Bagyinszky E, An SSA. Genome-editing applications of CRISPR–Cas9 to promote in vitro studies of Alzheimer’s disease. Clin Interv Aging 2018; 13: 221-33.
[http://dx.doi.org/10.2147/CIA.S155145] [PMID: 29445268]
[14]
Hanafy AS, Schoch S, Lamprecht A. CRISPR/Cas9 delivery potentials in alzheimer’s disease management: A mini review. Pharmaceutics 2020; 12(9): 801.
[http://dx.doi.org/10.3390/pharmaceutics12090801] [PMID: 32854251]
[15]
Getz GS, Reardon CA. Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J Lipid Res 2009; 50 (Suppl)(Suppl.): S156-61.
[http://dx.doi.org/10.1194/jlr.R800058-JLR200] [PMID: 19018038]
[16]
Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron 2009; 63(3): 287-303.
[http://dx.doi.org/10.1016/j.neuron.2009.06.026] [PMID: 19679070]
[17]
Castellano JM, Kim J, Stewart FR, et al. Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci Transl Med 2011; 3(89): 89ra57.
[http://dx.doi.org/10.1126/scitranslmed.3002156] [PMID: 21715678]
[18]
Aikawa T, Holm ML, Kanekiyo T. ABCA7 and pathogenic pathways of alzheimer’s disease. Brain Sci 2018; 8(2): 27.
[http://dx.doi.org/10.3390/brainsci8020027] [PMID: 29401741]
[19]
Kim WS, Li H, Ruberu K, et al. Deletion of Abca7 increases cerebral amyloid-β accumulation in the J20 mouse model of Alzheimer’s disease. J Neurosci 2013; 33(10): 4387-94.
[http://dx.doi.org/10.1523/JNEUROSCI.4165-12.2013] [PMID: 23467355]
[20]
Tanaka N, Abe-Dohmae S, Iwamoto N, Fitzgerald ML, Yokoyama S. HMG-CoA reductase inhibitors enhance phagocytosis by upregulating ATP-binding cassette transporter A7. Atherosclerosis 2011; 217(2): 407-14.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.06.031] [PMID: 21762915]
[21]
Tanaka N, Abe-Dohmae S, Iwamoto N, Yokoyama S. Roles of ATP-binding cassette transporter A7 in cholesterol homeostasis and host defense system. J Atheroscler Thromb 2011; 18(4): 274-81.
[http://dx.doi.org/10.5551/jat.6726] [PMID: 21173549]
[22]
Rizzi F, Coletta M, Bettuzzi S. Clusterin (CLU). Adv Cancer Res 2009; 104: 9-23.
[http://dx.doi.org/10.1016/S0065-230X(09)04002-0] [PMID: 19878770]
[23]
May PC, Lampert-Etchells M, Johnson SA, Poirier J, Masters JN, Finch CE. Dynamics of gene expression for a hippocampal glycoprotein elevated in Alzheimer’s disease and in response to experimental lesions in rat. Neuron 1990; 5(6): 831-9.
[http://dx.doi.org/10.1016/0896-6273(90)90342-D] [PMID: 1702645]
[24]
Calero M, Rostagno A, Matsubara E, et al. Apolipoprotein J (clusterin) and Alzheimer’s disease. Microsc Res Tech 2000; 50(4): 305-15.
[http://dx.doi.org/10.1002/1097-0029(20000815)50:4<305:AID-JEMT10>3.0.CO;2-L] [PMID: 10936885]
[25]
DeMattos RB, O’dell MA, Parsadanian M, et al. Clusterin promotes amyloid plaque formation and is critical for neuritic toxicity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 2002; 99(16): 10843-8.
[http://dx.doi.org/10.1073/pnas.162228299] [PMID: 12145324]
[26]
Oliveira LC, Kretzschmar GC, dos Santos ACM, et al. Complement Receptor 1 (CR1, CD35) Polymorphisms and Soluble CR1: A Proposed Anti-inflammatory Role to Quench the Fire of “Fogo Selvagem” Pemphigus Foliaceus. Front Immunol 2019; 10: 2585.
[http://dx.doi.org/10.3389/fimmu.2019.02585] [PMID: 31824479]
[27]
Biffi A, Anderson CD, Desikan RS, et al. Genetic variation and neuroimaging measures in Alzheimer disease. Arch Neurol 2010; 67(6): 677-85.
[http://dx.doi.org/10.1001/archneurol.2010.108] [PMID: 20558387]
[28]
Shulman JM, Chen K, Keenan BT, et al. Genetic susceptibility for Alzheimer disease neuritic plaque pathology. JAMA Neurol 2013; 70(9): 1150-7.
[http://dx.doi.org/10.1001/jamaneurol.2013.2815] [PMID: 23836404]
[29]
Kenderian SS, Ruella M, Shestova O, et al. CD33-specific chimeric antigen receptor T cells exhibit potent preclinical activity against human acute myeloid leukemia. Leukemia 2015; 29(8): 1637-47.
[http://dx.doi.org/10.1038/leu.2015.52] [PMID: 25721896]
[30]
Griciuc A, Serrano-Pozo A, Parrado AR, et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 2013; 78(4): 631-43.
[http://dx.doi.org/10.1016/j.neuron.2013.04.014] [PMID: 23623698]
[31]
Li RY, Qin Q, Yang HC, et al. TREM2 in the pathogenesis of AD: a lipid metabolism regulator and potential metabolic therapeutic target. Mol Neurodegener 2022; 17(1): 40.
[http://dx.doi.org/10.1186/s13024-022-00542-y] [PMID: 35658903]
[32]
Baig S, Joseph SA, Tayler H, et al. Distribution and expression of picalm in Alzheimer disease. J Neuropathol Exp Neurol 2010; 69(10): 1071-7.
[http://dx.doi.org/10.1097/NEN.0b013e3181f52e01] [PMID: 20838239]
[33]
Tian Y, Chang JC, Fan EY, Flajolet M, Greengard P. Adaptor complex AP2/PICALM, through interaction with LC3, targets Alzheimer’s APP-CTF for terminal degradation via autophagy. Proc Natl Acad Sci USA 2013; 110(42): 17071-6.
[http://dx.doi.org/10.1073/pnas.1315110110] [PMID: 24067654]
[34]
Lambert E, Saha O, Soares Landeira B, et al. The Alzheimer susceptibility gene BIN1 induces isoform-dependent neurotoxicity through early endosome defects. Acta Neuropathol Commun 2022; 10(1): 4.
[http://dx.doi.org/10.1186/s40478-021-01285-5] [PMID: 34998435]
[35]
Meunier B, Quaranta M, Daviet L, Hatzoglou A, Leprince C. The membrane-tubulating potential of amphiphysin 2/BIN1 is dependent on the microtubule-binding cytoplasmic linker protein 170 (CLIP-170). Eur J Cell Biol 2009; 88(2): 91-102.
[http://dx.doi.org/10.1016/j.ejcb.2008.08.006] [PMID: 19004523]
[36]
Wang YC, Dai Y, Xu GL, Yu W, Quan RL, Zhao YJ. Association between epha1 and tumor microenvironment in gastric carcinoma and its clinical significance. Med Sci Monit 2020; 26: e923409.
[http://dx.doi.org/10.12659/MSM.923409] [PMID: 32218416]
[37]
Martínez A, Otal R, Sieber BA, Ibáñez C, Soriano E. Disruption of ephrin-A/EphA binding alters synaptogenesis and neural connectivity in the hippocampus. Neuroscience 2005; 135(2): 451-61.
[http://dx.doi.org/10.1016/j.neuroscience.2005.06.052] [PMID: 16112477]
[38]
Lai KO, Ip NY. Synapse development and plasticity: roles of ephrin/Eph receptor signaling. Curr Opin Neurobiol 2009; 19(3): 275-83.
[http://dx.doi.org/10.1016/j.conb.2009.04.009] [PMID: 19497733]
[39]
Rogaeva E, Meng Y, Lee JH, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet 2007; 39(2): 168-77.
[http://dx.doi.org/10.1038/ng1943] [PMID: 17220890]
[40]
Spoelgen R, von Arnim CAF, Thomas AV, et al. Interaction of the cytosolic domains of sorLA/LR11 with the amyloid precursor protein (APP) and beta-secretase beta-site APP-cleaving enzyme. J Neurosci 2006; 26(2): 418-28.
[http://dx.doi.org/10.1523/JNEUROSCI.3882-05.2006] [PMID: 16407538]
[41]
Offe K, Dodson SE, Shoemaker JT, et al. The lipoprotein receptor LR11 regulates amyloid beta production and amyloid precursor protein traffic in endosomal compartments. J Neurosci 2006; 26(5): 1596-603.
[http://dx.doi.org/10.1523/JNEUROSCI.4946-05.2006] [PMID: 16452683]
[42]
Schmidt V, Sporbert A, Rohe M, et al. SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1. J Biol Chem 2007; 282(45): 32956-64.
[http://dx.doi.org/10.1074/jbc.M705073200] [PMID: 17855360]
[43]
Smaruj P, Kieliszek M. Casposons - silent heroes of the CRISPR-Cas systems evolutionary history. EXCLI J 2023; 22: 70-83.
[PMID: 36814855]
[44]
Zhu X, Ye K. Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex. Nucleic Acids Res 2015; 43(2): 1257-67.
[http://dx.doi.org/10.1093/nar/gku1355] [PMID: 25541196]
[45]
Jansen R, Embden JDA, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 2002; 43(6): 1565-75.
[http://dx.doi.org/10.1046/j.1365-2958.2002.02839.x] [PMID: 11952905]
[46]
Nakata A, Amemura M, Makino K. Unusual nucleotide arrangement with repeated sequences in the Escherichia coli K-12 chromosome. J Bacteriol 1989; 171(6): 3553-6.
[http://dx.doi.org/10.1128/jb.171.6.3553-3556.1989] [PMID: 2656660]
[47]
Hermans PW, van Soolingen D, Bik EM, de Haas PE, Dale JW, van Embden JD. Insertion element IS987 from Mycobacterium bovis BCG is located in a hot-spot integration region for insertion elements in Mycobacterium tuberculosis complex strains. Infect Immun 1991; 59(8): 2695-705.
[http://dx.doi.org/10.1128/iai.59.8.2695-2705.1991] [PMID: 1649798]
[48]
Jeffreys AJ, MacLeod A, Tamaki K, Neil DL, Monckton DG. Minisatellite repeat coding as a digital approach to DNA typing. Nature 1991; 354(6350): 204-9.
[http://dx.doi.org/10.1038/354204a0] [PMID: 1961248]
[49]
Groenen PMA, Bunschoten AE, Soolingen D, Errtbden JDA. Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application for strain differentiation by a novel typing method. Mol Microbiol 1993; 10(5): 1057-65.
[http://dx.doi.org/10.1111/j.1365-2958.1993.tb00976.x] [PMID: 7934856]
[50]
Mojica FJM, Juez G, Rodríguez-Valera F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified Pst I sites. Mol Microbiol 1993; 9(3): 613-21.
[http://dx.doi.org/10.1111/j.1365-2958.1993.tb01721.x] [PMID: 8412707]
[51]
Mojica FJM, Díez-Villaseñor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 2000; 36(1): 244-6.
[http://dx.doi.org/10.1046/j.1365-2958.2000.01838.x] [PMID: 10760181]
[52]
Mojica FJ, Díez-Villaseñor C, García-Martínez J, Soria E. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 2005; 60(2): 174-82.
[http://dx.doi.org/10.1007/s00239-004-0046-3] [PMID: 15791728]
[53]
Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 2012; 109(39): E2579-86.
[http://dx.doi.org/10.1073/pnas.1208507109] [PMID: 22949671]
[54]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
[http://dx.doi.org/10.1126/science.1225829] [PMID: 22745249]
[55]
Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 2013; 31(3): 233-9.
[http://dx.doi.org/10.1038/nbt.2508] [PMID: 23360965]
[56]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[57]
Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9. Science 2013; 339(6121): 823-6.
[http://dx.doi.org/10.1126/science.1232033] [PMID: 23287722]
[58]
Gupta SK, Shukla P. Gene editing for cell engineering: trends and applications. Crit Rev Biotechnol 2017; 37(5): 672-84.
[http://dx.doi.org/10.1080/07388551.2016.1214557] [PMID: 27535623]
[59]
Khadempar S, Familghadakchi S, Motlagh RA, et al. CRISPR–Cas9 in genome editing: Its function and medical applications. J Cell Physiol 2019; 234(5): 5751-61.
[http://dx.doi.org/10.1002/jcp.27476] [PMID: 30362544]
[60]
Banan M. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells. J Biotechnol 2020; 308: 1-9.
[http://dx.doi.org/10.1016/j.jbiotec.2019.11.010] [PMID: 31751596]
[61]
Torres-Ruiz R, Rodriguez-Perales S. CRISPR-Cas9 technology: applications and human disease modelling. Brief Funct Genomics 2017; 16(1): 4-12.
[http://dx.doi.org/10.1093/bfgp/elw025] [PMID: 27345434]
[62]
Wang JC, Alinaghi S, Tafakhori A, et al. Genetic screening in two Iranian families with early-onset Alzheimer’s disease identified a novel PSEN1 mutation. Neurobiol Aging 2018; 62: 244.e15-7.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.10.011] [PMID: 29175279]
[63]
Li L, Song L, Liu X, et al. Artificial virus delivers CRISPR-Cas9 system for genome editing of cells in mice. ACS Nano 2017; 11(1): 95-111.
[http://dx.doi.org/10.1021/acsnano.6b04261] [PMID: 28114767]
[64]
Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR–Cas systems. Nat Rev Microbiol 2011; 9(6): 467-77.
[http://dx.doi.org/10.1038/nrmicro2577] [PMID: 21552286]
[65]
Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007; 315(5819): 1709-12.
[http://dx.doi.org/10.1126/science.1138140] [PMID: 17379808]
[66]
Barman NC, Khan NM, Islam M, et al. CRISPR-Cas9: A promising genome editing therapeutic tool for alzheimer’s disease—a narrative review. Neurol Ther 2020; 9(2): 419-34.
[http://dx.doi.org/10.1007/s40120-020-00218-z] [PMID: 33089409]
[67]
Tozzo P, Zullo S, Caenazzo L. Science runs and the debate brakes: Somatic gene-editing as a new tool for gender-specific medicine in alzheimer’s disease. Brain Sci 2020; 10(7): 421.
[http://dx.doi.org/10.3390/brainsci10070421] [PMID: 32630809]
[68]
Gaj T, Epstein BE, Schaffer DV. Genome engineering using adeno-associated virus: Basic and clinical research applications. Mol Ther 2016; 24(3): 458-64.
[http://dx.doi.org/10.1038/mt.2015.151] [PMID: 26373345]
[69]
Recchia A, Perani L, Sartori D, Olgiati C, Mavilio F. Site-specific integration of functional transgenes into the human genome by adeno/AAV hybrid vectors. Mol Ther 2004; 10(4): 660-70.
[http://dx.doi.org/10.1016/j.ymthe.2004.07.003] [PMID: 15451450]
[70]
Grimm D, Kay M. From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther 2003; 3(4): 281-304.
[http://dx.doi.org/10.2174/1566523034578285] [PMID: 12871018]
[71]
Dissen GA, McBride J, Lomniczi A, et al. Using Lentiviral Vectors as Delivery Vehicles for Gene TherapyControlled Genetic Manipulations. Totowa, NJ: Humana Press 2012; pp. 69-96.
[http://dx.doi.org/10.1007/978-1-61779-533-6_4]
[72]
Poon A, Schmid B, Pires C, et al. Generation of a gene-corrected isogenic control hiPSC line derived from a familial Alzheimer’s disease patient carrying a L150P mutation in presenilin 1. Stem Cell Res 2016; 17(3): 466-9.
[http://dx.doi.org/10.1016/j.scr.2016.09.018] [PMID: 27789395]
[73]
Pires C, Schmid B, Petræus C, et al. Generation of a gene-corrected isogenic control cell line from an Alzheimer’s disease patient iPSC line carrying a A79V mutation in PSEN1. Stem Cell Res 2016; 17(2): 285-8.
[http://dx.doi.org/10.1016/j.scr.2016.08.002] [PMID: 27879212]
[74]
Paquet D, Kwart D, Chen A, et al. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 2016; 533(7601): 125-9.
[http://dx.doi.org/10.1038/nature17664] [PMID: 27120160]
[75]
Sun L, Zhou R, Yang G, Shi Y. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc Natl Acad Sci USA 2017; 114(4): E476-85.
[http://dx.doi.org/10.1073/pnas.1618657114] [PMID: 27930341]
[76]
Maurice T, Volle JN, Strehaiano M, et al. Neuroprotection in non-transgenic and transgenic mouse models of Alzheimer’s disease by positive modulation of σ1 receptors. Pharmacol Res 2019; 144: 315-30.
[http://dx.doi.org/10.1016/j.phrs.2019.04.026] [PMID: 31048034]
[77]
Ryskamp DA, Zhemkov V, Bezprozvanny I. Mutational Analysis of Sigma-1 Receptor’s Role in Synaptic Stability. Front Neurosci 2019; 13: 1012.
[http://dx.doi.org/10.3389/fnins.2019.01012] [PMID: 31607852]
[78]
Holm IE, Alstrup AKO, Luo Y. Genetically modified pig models for neurodegenerative disorders. J Pathol 2016; 238(2): 267-87.
[http://dx.doi.org/10.1002/path.4654] [PMID: 26446984]
[79]
Sasaguri H, Nagata K, Sekiguchi M, et al. Introduction of pathogenic mutations into the mouse Psen1 gene by Base Editor and Target-AID. Nat Commun 2018; 9(1): 2892.
[http://dx.doi.org/10.1038/s41467-018-05262-w] [PMID: 30042426]
[80]
Jiang B, Bi M, Li J, et al. A pathogenic variant p.Phe177Val in PSEN1 causes early-onset alzheimer’s disease in a chinese family. Front Genet 2020; 11: 713.
[http://dx.doi.org/10.3389/fgene.2020.00713] [PMID: 32754199]
[81]
Park H, Oh J, Shim G, et al. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nat Neurosci 2019; 22(4): 524-8.
[http://dx.doi.org/10.1038/s41593-019-0352-0] [PMID: 30858603]
[82]
LaFerla FM, Oddo S. Alzheimer’s disease: Aβ, tau and synaptic dysfunction. Trends Mol Med 2005; 11(4): 170-6.
[http://dx.doi.org/10.1016/j.molmed.2005.02.009] [PMID: 15823755]
[83]
Park SA, Jang YJ, Kim MK, Lee SM, Moon SY. Promising blood biomarkers for clinical use in alzheimer’s disease: A focused update. J Clin Neurol 2022; 18(4): 401-9.
[http://dx.doi.org/10.3988/jcn.2022.18.4.401] [PMID: 35796265]
[84]
Querfurth HW, LaFerla FM. Alzheimer’s Disease. N Engl J Med 2010; 362(4): 329-44.
[http://dx.doi.org/10.1056/NEJMra0909142] [PMID: 20107219]
[85]
Schellenberg GD, Bird TD, Wijsman EM, et al. Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 1992; 258(5082): 668-71.
[http://dx.doi.org/10.1126/science.1411576] [PMID: 1411576]
[86]
György B, Lööv C, Zaborowski MP, et al. CRISPR/Cas9 mediated disruption of the swedish APP allele as a therapeutic approach for early-onset alzheimer’s disease. Mol Ther Nucleic Acids 2018; 11: 429-40.
[http://dx.doi.org/10.1016/j.omtn.2018.03.007] [PMID: 29858078]
[87]
Ortiz-Virumbrales M, Moreno CL, Kruglikov I, et al. CRISPR/Cas9-Correctable mutation-related molecular and physiological phenotypes in iPSC-derived Alzheimer’s PSEN2N141I neurons. Acta Neuropathol Commun 2017; 5(1): 77.
[http://dx.doi.org/10.1186/s40478-017-0475-z] [PMID: 29078805]
[88]
Dabrowska M, Juzwa W, Krzyzosiak WJ, Olejniczak M. Precise Excision of the CAG Tract from the Huntingtin Gene by Cas9 Nickases. Front Neurosci 2018; 12: 75.
[http://dx.doi.org/10.3389/fnins.2018.00075] [PMID: 29535594]
[89]
Weisgraber KH, Rall SC Jr, Mahley RW. Human E apoprotein heterogeneity. Cysteine-arginine interchanges in the amino acid sequence of the apo-E isoforms. J Biol Chem 1981; 256(17): 9077-83.
[http://dx.doi.org/10.1016/S0021-9258(19)52510-8] [PMID: 7263700]
[90]
Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA 1997; 278(16): 1349-56.
[http://dx.doi.org/10.1001/jama.1997.03550160069041] [PMID: 9343467]
[91]
Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993; 43(8): 1467-72.
[http://dx.doi.org/10.1212/WNL.43.8.1467] [PMID: 8350998]
[92]
Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer’s disease: accidental encounters or partners? Neuron 2014; 81(4): 740-54.
[http://dx.doi.org/10.1016/j.neuron.2014.01.045] [PMID: 24559670]
[93]
Wang C, Najm R, Xu Q, et al. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat Med 2018; 24(5): 647-57.
[http://dx.doi.org/10.1038/s41591-018-0004-z] [PMID: 29632371]
[94]
Dong LM, Weisgraber KH. Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J Biol Chem 1996; 271(32): 19053-7.
[http://dx.doi.org/10.1074/jbc.271.32.19053] [PMID: 8702576]
[95]
Nagata K, Takahashi M, Matsuba Y, et al. Generation of App knock-in mice reveals deletion mutations protective against Alzheimer’s disease-like pathology. Nat Commun 2018; 9(1): 1800.
[http://dx.doi.org/10.1038/s41467-018-04238-0] [PMID: 29728560]
[96]
Sun J, Carlson-Stevermer J, Das U, et al. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage. Nat Commun 2019; 10(1): 53.
[http://dx.doi.org/10.1038/s41467-018-07971-8] [PMID: 30604771]
[97]
Huang YWA, Zhou B, Wernig M, Südhof TC. ApoE2, ApoE3, and ApoE4 differentially stimulate APP transcription and Aβ secretion. Cell 2017; 168(3): 427-441.e21.
[http://dx.doi.org/10.1016/j.cell.2016.12.044] [PMID: 28111074]
[98]
Wadhwani AR, Affaneh A, Van Gulden S, Kessler JA. Neuronal apolipoprotein E4 increases cell death and phosphorylated tau release in alzheimer disease. Ann Neurol 2019; 85(5): 726-39.
[http://dx.doi.org/10.1002/ana.25455] [PMID: 30840313]
[99]
Lin YT, Seo J, Gao F, et al. APOE4 causes widespread molecular and cellular alterations associated with alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 2018; 98(6): 1294.
[http://dx.doi.org/10.1016/j.neuron.2018.06.011] [PMID: 29953873]
[100]
Wong E, Liao GP, Chang JC, Xu P, Li YM, Greengard P. GSAP modulates γ-secretase specificity by inducing conformational change in PS1. Proc Natl Acad Sci USA 2019; 116(13): 6385-90.
[http://dx.doi.org/10.1073/pnas.1820160116] [PMID: 30850537]
[101]
Sweeney MD, Montagne A, Sagare AP, et al. Vascular dysfunction—The disregarded partner of Alzheimer’s disease. Alzheimers Dement 2019; 15(1): 158-67.
[http://dx.doi.org/10.1016/j.jalz.2018.07.222] [PMID: 30642436]
[102]
Serneels L. T’Syen D, Perez-Benito L, Theys T, Holt MG, De Strooper B. Modeling the β-secretase cleavage site and humanizing amyloid-beta precursor protein in rat and mouse to study Alzheimer’s disease. Mol Neurodegener 2020; 15(1): 60.
[http://dx.doi.org/10.1186/s13024-020-00399-z] [PMID: 33076948]
[103]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420-4.
[http://dx.doi.org/10.1038/nature17946] [PMID: 27096365]
[104]
Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014; 156(4): 836-43.
[http://dx.doi.org/10.1016/j.cell.2014.01.027] [PMID: 24486104]
[105]
Chen Y, Cui Y, Shen B, et al. Germline acquisition of Cas9/RNA-mediated gene modifications in monkeys. Cell Res 2015; 25(2): 262-5.
[http://dx.doi.org/10.1038/cr.2014.167] [PMID: 25533168]
[106]
Zuo E, Cai YJ, Li K, et al. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Res 2017; 27(7): 933-45.
[http://dx.doi.org/10.1038/cr.2017.81] [PMID: 28585534]
[107]
Worman HJ, Fong LG, Muchir A, Young SG. Laminopathies and the long strange trip from basic cell biology to therapy. J Clin Invest 2009; 119(7): 1825-36.
[http://dx.doi.org/10.1172/JCI37679] [PMID: 19587457]
[108]
Gordon LB, Massaro J, D’Agostino RB Sr, et al. Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome. Circulation 2014; 130(1): 27-34.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.008285] [PMID: 24795390]
[109]
Vidak S, Foisner R. Molecular insights into the premature aging disease progeria. Histochem Cell Biol 2016; 145(4): 401-17.
[http://dx.doi.org/10.1007/s00418-016-1411-1] [PMID: 26847180]
[110]
De Sandre-Giovannoli A, Bernard R, Cau P, et al. Lamin a truncation in Hutchinson-Gilford progeria. Science 2003; 300(5628): 2055-5.
[http://dx.doi.org/10.1126/science.1084125] [PMID: 12702809]
[111]
Eriksson M, Brown WT, Gordon LB, et al. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 2003; 423(6937): 293-8.
[http://dx.doi.org/10.1038/nature01629] [PMID: 12714972]
[112]
Beyret E, Liao HK, Yamamoto M, et al. Single-dose CRISPR–Cas9 therapy extends lifespan of mice with Hutchinson–Gilford progeria syndrome. Nat Med 2019; 25(3): 419-22.
[http://dx.doi.org/10.1038/s41591-019-0343-4] [PMID: 30778240]
[113]
Xu CL, Ruan MZC, Mahajan VB, Tsang SH. Viral delivery systems for CRISPR. Viruses 2019; 11(1): 28.
[http://dx.doi.org/10.3390/v11010028] [PMID: 30621179]
[114]
Rose JA, Hoggan MD, Shatkin AJ. Nucleic acid from an adeno-associated virus: chemical and physical studies. Proc Natl Acad Sci USA 1966; 56(1): 86-92.
[http://dx.doi.org/10.1073/pnas.56.1.86] [PMID: 5229859]
[115]
Weinmann J, Weis S, Sippel J, et al. Identification of a myotropic AAV by massively parallel in vivo evaluation of barcoded capsid variants. Nat Commun 2020; 11(1): 5432.
[http://dx.doi.org/10.1038/s41467-020-19230-w] [PMID: 33116134]
[116]
Rayaprolu V, Kruse S, Kant R, et al. Comparative analysis of adeno-associated virus capsid stability and dynamics. J Virol 2013; 87(24): 13150-60.
[http://dx.doi.org/10.1128/JVI.01415-13] [PMID: 24067976]
[117]
Wright JF. Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther 2008; 15(11): 840-8.
[http://dx.doi.org/10.1038/gt.2008.65] [PMID: 18418418]
[118]
Wold W, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 2014; 13(6): 421-33.
[http://dx.doi.org/10.2174/1566523213666131125095046] [PMID: 24279313]
[119]
Athanasopoulos T, Munye MM, Yáñez-Muñoz RJ. Nonintegrating Gene Therapy Vectors. Hematol Oncol Clin North Am 2017; 31(5): 753-70.
[http://dx.doi.org/10.1016/j.hoc.2017.06.007] [PMID: 28895845]
[120]
Escors D, Breckpot K. Lentiviral vectors in gene therapy: their current status and future potential. Arch Immunol Ther Exp (Warsz) 2010; 58(2): 107-19.
[http://dx.doi.org/10.1007/s00005-010-0063-4] [PMID: 20143172]
[121]
Delenda C. Lentiviral vectors: optimization of packaging, transduction and gene expression. J Gene Med 2004; 6(S1) (Suppl. 1): S125-38.
[http://dx.doi.org/10.1002/jgm.501] [PMID: 14978756]
[122]
Naldini L, Blömer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272(5259): 263-7.
[http://dx.doi.org/10.1126/science.272.5259.263] [PMID: 8602510]
[123]
Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Leukemia 2018; 32(7): 1529-41.
[http://dx.doi.org/10.1038/s41375-018-0106-0] [PMID: 29654266]
[124]
Sun W, Ji W, Hall JM, et al. Self-assembled DNA nanoclews for the efficient delivery of CRISPR-Cas9 for genome editing. Angew Chem Int Ed 2015; 54(41): 12029-33.
[http://dx.doi.org/10.1002/anie.201506030] [PMID: 26310292]
[125]
Wang D, Zhang F, Gao G. CRISPR-based therapeutic genome editing: Strategies and In Vivo delivery by AAV vectors. Cell 2020; 181(1): 136-50.
[http://dx.doi.org/10.1016/j.cell.2020.03.023] [PMID: 32243786]
[126]
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 2019; 576(7785): 149-57.
[http://dx.doi.org/10.1038/s41586-019-1711-4] [PMID: 31634902]
[127]
Shen F, Fan Y, Su H, et al. Adeno-associated viral vector-mediated hypoxia-regulated VEGF gene transfer promotes angiogenesis following focal cerebral ischemia in mice. Gene Ther 2008; 15(1): 30-9.
[http://dx.doi.org/10.1038/sj.gt.3303048] [PMID: 17960159]
[128]
Hayes MT. Parkinson’s disease and parkinsonism. Am J Med 2019; 132(7): 802-7.
[http://dx.doi.org/10.1016/j.amjmed.2019.03.001] [PMID: 30890425]
[129]
Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat 2010; 31(7): 763-80.
[http://dx.doi.org/10.1002/humu.21277] [PMID: 20506312]
[130]
Chai C, Lim KL. Genetic insights into sporadic Parkinson’s disease pathogenesis. Curr Genomics 2014; 14(8): 486-501.
[http://dx.doi.org/10.2174/1389202914666131210195808] [PMID: 24532982]
[131]
Vermilyea SC, Babinski A, Tran N, et al. In vitro CRISPR/Cas9-directed gene editing to model LRRK2 G2019S Parkinson’s disease in common marmosets. Sci Rep 2020; 10(1): 3447.
[http://dx.doi.org/10.1038/s41598-020-60273-2] [PMID: 32103062]
[132]
Wulansari N, Darsono W H W, Woo H-J, et al. Neurodevelopmental defects and neurodegenerative phenotypes in human brain organoids carrying Parkinson’s disease-linked DNAJC6 mutations. Sci Adv 2021; 7(8): eabb1540.
[http://dx.doi.org/10.1126/sciadv.abb1540]
[133]
Ishizu N, Yui D, Hebisawa A, et al. Impaired striatal dopamine release in homozygous Vps35 D620N knock-in mice. Hum Mol Genet 2016; 25(20): ddw279.
[http://dx.doi.org/10.1093/hmg/ddw279] [PMID: 28173004]
[134]
Chen ZZ, Wang JY, Kang Y, et al. PINK1 gene mutation by pair truncated sgRNA/Cas9-D10A in cynomolgus monkeys. Zool Res 2021; 42(4): 469-77.
[http://dx.doi.org/10.24272/j.issn.2095-8137.2021.023] [PMID: 34213093]
[135]
Guhathakurta S, Kim J, Adams L, et al. Targeted attenuation of elevated histone marks at SNCA alleviates α‐synuclein in Parkinson’s disease. EMBO Mol Med 2021; 13(2): e12188.
[http://dx.doi.org/10.15252/emmm.202012188] [PMID: 33428332]
[136]
Marcoux J, Mangione PP, Porcari R, et al. A novel mechano‐enzymatic cleavage mechanism underlies transthyretin amyloidogenesis. EMBO Mol Med 2015; 7(10): 1337-49.
[http://dx.doi.org/10.15252/emmm.201505357] [PMID: 26286619]
[137]
Gertz MA, Benson MD, Dyck PJ, et al. Diagnosis, prognosis, and therapy of transthyretin amyloidosis. J Am Coll Cardiol 2015; 66(21): 2451-66.
[http://dx.doi.org/10.1016/j.jacc.2015.09.075] [PMID: 26610878]
[138]
Maurer MS, Schwartz JH, Gundapaneni B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med 2018; 379(11): 1007-16.
[http://dx.doi.org/10.1056/NEJMoa1805689] [PMID: 30145929]
[139]
Berk JL, Suhr OB, Obici L, et al. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA 2013; 310(24): 2658-67.
[http://dx.doi.org/10.1001/jama.2013.283815] [PMID: 24368466]
[140]
Adams D, Gonzalez-Duarte A, O’Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med 2018; 379(1): 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[141]
Solomon SD, Adams D, Kristen A, et al. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis: analysis of the APOLLO study. Circulation 2019; 139(4): 431-43.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035831] [PMID: 30586695]
[142]
Gillmore JD, Gane E, Taubel J, et al. CRISPR-Cas9 In Vivo Gene Editing for Transthyretin Amyloidosis. N Engl J Med 2021; 385(6): 493-502.
[http://dx.doi.org/10.1056/NEJMoa2107454] [PMID: 34215024]
[143]
Finn JD, Smith AR, Patel MC, et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep 2018; 22(9): 2227-35.
[http://dx.doi.org/10.1016/j.celrep.2018.02.014] [PMID: 29490262]
[144]
Wood K, Pink M, Seitzer J, et al. Development of NTLA-2001, a CRISPR/Cas9 genome editing therapeutic for the treatment of ATTR. Liver 2019; 17(19): 24.
[145]
Sabnis S, Kumarasinghe ES, Salerno T, et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther 2018; 26(6): 1509-19.
[http://dx.doi.org/10.1016/j.ymthe.2018.03.010] [PMID: 29653760]
[146]
Akinc A, Maier MA, Manoharan M, et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat Nanotechnol 2019; 14(12): 1084-7.
[http://dx.doi.org/10.1038/s41565-019-0591-y] [PMID: 31802031]
[147]
Ferri CP, Prince M, Brayne C, et al. Global prevalence of dementia: a Delphi consensus study. Lancet 2005; 366(9503): 2112-7.
[http://dx.doi.org/10.1016/S0140-6736(05)67889-0] [PMID: 16360788]
[148]
Plassman BL, Langa KM, Fisher GG, et al. Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology 2007; 29(1-2): 125-32.
[http://dx.doi.org/10.1159/000109998] [PMID: 17975326]
[149]
Qiu C, Kivipelto M, von Strauss E. Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 2009; 11(2): 111-28.
[http://dx.doi.org/10.31887/DCNS.2009.11.2/cqiu] [PMID: 19585947]
[150]
Reitz C, Brayne C, Mayeux R. Epidemiology of Alzheimer disease. Nat Rev Neurol 2011; 7(3): 137-52.
[http://dx.doi.org/10.1038/nrneurol.2011.2] [PMID: 21304480]
[151]
Jonsson T, Atwal JK, Steinberg S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature 2012; 488(7409): 96-9.
[http://dx.doi.org/10.1038/nature11283] [PMID: 22801501]
[152]
Giau VV, Lee H, Shim KH, Bagyinszky E, An SSA. Genome-editing applications of CRISPR&ndash;Cas9 to promote in vitro studies of Alzheimer&rsquo;s disease. Clin Interv Aging 2018; 13: 221-33.
[http://dx.doi.org/10.2147/CIA.S155145] [PMID: 29445268]
[153]
Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. J Control Release 2017; 266: 17-26.
[http://dx.doi.org/10.1016/j.jconrel.2017.09.012] [PMID: 28911805]
[154]
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. eLife 2013; 2: e00471.
[http://dx.doi.org/10.7554/eLife.00471] [PMID: 23386978]
[155]
Kaulich M, Lee YJ, Lönn P, Springer AD, Meade BR, Dowdy SF. Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi. Nucleic Acids Res 2015; 43(7): e45-5.
[http://dx.doi.org/10.1093/nar/gku1403] [PMID: 25586224]
[156]
Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 2013; 31(9): 827-32.
[http://dx.doi.org/10.1038/nbt.2647] [PMID: 23873081]
[157]
Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol 2014; 32(3): 279-84.
[http://dx.doi.org/10.1038/nbt.2808] [PMID: 24463574]
[158]
Kuscu C, Arslan S, Singh R, Thorpe J, Adli M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol 2014; 32(7): 677-83.
[http://dx.doi.org/10.1038/nbt.2916] [PMID: 24837660]
[159]
Murovec J, Pirc Ž, Yang B. New variants of CRISPR RNA‐guided genome editing enzymes. Plant Biotechnol J 2017; 15(8): 917-26.
[http://dx.doi.org/10.1111/pbi.12736] [PMID: 28371222]
[160]
Guilinger JP, Thompson DB, Liu DR. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol 2014; 32(6): 577-82.
[http://dx.doi.org/10.1038/nbt.2909] [PMID: 24770324]
[161]
Ran FA, Hsu PD, Lin CY, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 2013; 154(6): 1380-9.
[http://dx.doi.org/10.1016/j.cell.2013.08.021] [PMID: 23992846]
[162]
Liang X, Potter J, Kumar S, Ravinder N, Chesnut JD. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotechnol 2017; 241: 136-46.
[http://dx.doi.org/10.1016/j.jbiotec.2016.11.011] [PMID: 27845164]
[163]
Doench JG, Hartenian E, Graham DB, et al. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nat Biotechnol 2014; 32(12): 1262-7.
[http://dx.doi.org/10.1038/nbt.3026] [PMID: 25184501]
[164]
Swiech L, Heidenreich M, Banerjee A, et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 2015; 33(1): 102-6.
[http://dx.doi.org/10.1038/nbt.3055] [PMID: 25326897]
[165]
Dow LE, Fisher J, O’Rourke KP, et al. Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 2015; 33(4): 390-4.
[http://dx.doi.org/10.1038/nbt.3155] [PMID: 25690852]
[166]
Cho SW, Kim S, Kim JM, Kim JS. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 2013; 31(3): 230-2.
[http://dx.doi.org/10.1038/nbt.2507] [PMID: 23360966]
[167]
Deverman BE, Ravina BM, Bankiewicz KS, Paul SM, Sah DWY. Gene therapy for neurological disorders: progress and prospects. Nat Rev Drug Discov 2018; 17(9): 641-59.
[http://dx.doi.org/10.1038/nrd.2018.110] [PMID: 30093643]
[168]
Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 2016; 540(7631): 144-9.
[http://dx.doi.org/10.1038/nature20565] [PMID: 27851729]
[169]
Naidoo J, Stanek LM, Ohno K, et al. Extensive transduction and enhanced spread of a modified AAV2 capsid in the non-human primate CNS. Mol Ther 2018; 26(10): 2418-30.
[http://dx.doi.org/10.1016/j.ymthe.2018.07.008] [PMID: 30057240]
[170]
Robertson KD. DNA methylation and human disease. Nat Rev Genet 2005; 6(8): 597-610.
[http://dx.doi.org/10.1038/nrg1655] [PMID: 16136652]
[171]
Lyubartseva G, Smith JL, Markesbery WR, Lovell MA. Alterations of zinc transporter proteins ZnT-1, ZnT-4 and ZnT-6 in preclinical Alzheimer’s disease brain. Brain Pathol 2010; 20(2): 343-50.
[http://dx.doi.org/10.1111/j.1750-3639.2009.00283.x] [PMID: 19371353]
[172]
Lashley T, Gami P, Valizadeh N, Li A, Revesz T, Balazs R. Alterations in global DNA methylation and hydroxymethylation are not detected in A lzheimer’s disease. Neuropathol Appl Neurobiol 2015; 41(4): 497-506.
[http://dx.doi.org/10.1111/nan.12183] [PMID: 25201696]
[173]
LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci 2007; 8(7): 499-509.
[http://dx.doi.org/10.1038/nrn2168] [PMID: 17551515]
[174]
Suzuki Y, Onuma H, Sato R, et al. Lipid nanoparticles loaded with ribonucleoprotein–oligonucleotide complexes synthesized using a microfluidic device exhibit robust genome editing and hepatitis B virus inhibition. J Control Release 2021; 330: 61-71.
[http://dx.doi.org/10.1016/j.jconrel.2020.12.013] [PMID: 33333121]
[175]
Deng HX, Zhai H, Shi Y, et al. Efficacy and long-term safety of CRISPR/Cas9 genome editing in the SOD1-linked mouse models of ALS. Commun Biol 2021; 4(1): 396.
[http://dx.doi.org/10.1038/s42003-021-01942-4] [PMID: 33767386]
[176]
Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 2013; 31(9): 822-6.
[http://dx.doi.org/10.1038/nbt.2623] [PMID: 23792628]
[177]
Shin HY, Wang C, Lee HK, et al. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 2017; 8(1): 15464.
[http://dx.doi.org/10.1038/ncomms15464] [PMID: 28561021]
[178]
Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 2018; 36(8): 765-71.
[http://dx.doi.org/10.1038/nbt.4192] [PMID: 30010673]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy