Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Review Article

Diabetes Management: Herbal Remedies and Emerging Therapies

Author(s): Pratik Kumar Vishwakarma, Ankita Moharana, Snigdha Rani Behra, Priyabati Choudhury, Sonali Jayronia and Shivendra Mani Tripathi*

Volume 5, 2024

Published on: 10 May, 2024

Article ID: e100524229823 Pages: 11

DOI: 10.2174/0126659786283493240415155919

Price: $65

Abstract

Diabetes is a chronic disease affecting millions worldwide, characterized by inadequate insulin production or malfunctioning insulin action, leading to elevated blood sugar levels. Its prevalence is escalating globally, with estimates projecting a rise from 2.8% to over 5.4% of the world's population by 2025. In India, diabetes poses a significant health challenge, especially in urban areas. While conventional medications are widely available, herbal remedies have gained popularity due to their potential for fewer side effects and lower costs. Herbal remedies have been employed for centuries in diabetes management and have been extensively studied for their blood sugar regulatory properties. Prominent herbs studied for their potential to manage diabetes include gymnema, cinnamon, fenugreek, and bitter melon. These herbs are believed to enhance insulin sensitivity, reduce glucose absorption in the intestines, and improve glucose metabolism. This review highlights emerging alternative treatment options, such as stem cell therapy and gene therapy, in the field of diabetes management. Stem cell therapy aims to regenerate insulin-producing cells or enhance their function, while gene therapy targets the underlying genetic factors contributing to diabetes. These innovative approaches hold promise for more effective and personalized treatments in the future. It is essential to emphasize that any diabetes treatment or remedy should be discussed with a healthcare professional. Diabetes management requires a personalized approach based on individual needs and medical history. The integration of herbal remedies and alternative treatment options into conventional diabetes management warrants further research to determine their efficacy, safety, and potential for widespread implementation.

[1]
Rizvi, S.I.; Mishra, N. Traditional Indian medicines used for the management of diabetes mellitus. J. Diabetes Res., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/712092] [PMID: 23841105]
[2]
Shah, A.A.; Qayoom, S.; Gupta, A.; Rehman, A.U. Role of polyherbal formulations of medicinal plants from himalayan regions in the management of diabetes.Innovative Approaches for Nanobiotechnology in Healthcare Systems; IGI Global: Hershey, Pennsylvania, 2021, pp. 212-229.
[http://dx.doi.org/10.4018/978-1-7998-8251-0.ch007]
[3]
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[4]
Delaney, M.F.; Zisman, A.; Kettyle, W.M. Diabetic ketoacidosis and hyperglycemic hyperosmolar nonketotic syndrome. Endocrinol. Metab. Clin. North Am., 2000, 29(4), 683-705. [V].
[http://dx.doi.org/10.1016/S0889-8529(05)70159-6] [PMID: 11149157 ]
[5]
Sriraman, S.; Sreejith, D.; Andrew, E.; Okello, I.; Willcox, M. Use of herbal medicines for the management of type 2 diabetes: A systematic review of qualitative studies. Complement. Ther. Clin. Pract., 2023, 53, 101808.
[http://dx.doi.org/10.1016/j.ctcp.2023.101808] [PMID: 37977099]
[6]
Modak, M.; Dixit, P.; Londhe, J.; Ghaskadbi, S.; Devasagayam, T.P.A. Indian herbs and herbal drugs used for the treatment of diabetes. J. Clin. Biochem. Nutr., 2007, 40(3), 163-173.
[http://dx.doi.org/10.3164/jcbn.40.163] [PMID: 18398493]
[7]
Alberti, K.G.M.M.; Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO Consultation. Diabet. Med., 1998, 15(7), 539-553.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S] [PMID: 9686693]
[8]
Nambam, B.; Winter, W.; Schatz, D. Type 1 diabetes. Encycl. Endocr. Dis, 2018, 2018, 110-115.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.03820-4]
[9]
von Scholten, B.J.; Kreiner, F.F.; Gough, S.C.L.; von Herrath, M. Current and future therapies for type 1 diabetes. Diabetologia, 2021, 64(5), 1037-1048.
[http://dx.doi.org/10.1007/s00125-021-05398-3] [PMID: 33595677]
[10]
Warshauer, J.T.; Bluestone, J.A.; Anderson, M.S. New frontiers in the treatment of Type 1 Diabetes. Cell Metab., 2020, 31(1), 46-61.
[http://dx.doi.org/10.1016/j.cmet.2019.11.017] [PMID: 31839487]
[11]
Paschou, S.A.; Papadopoulou-Marketou, N.; Chrousos, G.P.; Kanaka-Gantenbein, C. On type 1 diabetes mellitus pathogenesis. Endocr. Connect., 2018, 7(1), R38-R46.
[http://dx.doi.org/10.1530/EC-17-0347] [PMID: 29191919]
[12]
Pearson, E.R. Type 2 diabetes: A multifaceted disease. Diabetologia, 2019, 62(7), 1107-1112.
[http://dx.doi.org/10.1007/s00125-019-4909-y] [PMID: 31161345]
[13]
Galicia-Garcia, U.; Benito-Vicente, A.; Jebari, S.; Larrea-Sebal, A.; Siddiqi, H.; Uribe, K.B.; Ostolaza, H.; Martín, C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci., 2020, 21(17), 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[14]
Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci., 2014, 11(11), 1185-1200.
[http://dx.doi.org/10.7150/ijms.10001] [PMID: 25249787]
[15]
Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 2020, 51, 102590.
[http://dx.doi.org/10.1016/j.ebiom.2019.11.051] [PMID: 31901868]
[16]
Buchanan, T.A.; Xiang, A.H.; Page, K.A. Gestational diabetes mellitus: Risks and management during and after pregnancy. Nat. Rev. Endocrinol., 2012, 8(11), 639-649.
[http://dx.doi.org/10.1038/nrendo.2012.96] [PMID: 22751341]
[17]
Johns, E.C.; Denison, F.C.; Norman, J.E.; Reynolds, R.M. Gestational diabetes mellitus: Mechanisms, treatment, and complications. Trends Endocrinol. Metab., 2018, 29(11), 743-754.
[http://dx.doi.org/10.1016/j.tem.2018.09.004] [PMID: 30297319]
[18]
Mensah, G.P.; ten Ham-Baloyi, W.; van Rooyen, D.R.M.; Jardien-Baboo, S. Guidelines for the nursing management of gestational diabetes mellitus: An integrative literature review. Nurs. Open, 2020, 7(1), 78-90.
[http://dx.doi.org/10.1002/nop2.324] [PMID: 31871693]
[19]
Laredo-Aguilera, J.A.; Gallardo-Bravo, M.; Rabanales-Sotos, J.A.; Cobo-Cuenca, A.I.; Carmona-Torres, J.M. Physical activity programs during pregnancy are effective for the control of gestational diabetes mellitus. Int. J. Environ. Res. Public Health, 2020, 17(17), 6151.
[http://dx.doi.org/10.3390/ijerph17176151] [PMID: 32847106]
[20]
Volkova, N.I.; Davidenko, I.Y.; Degtyareva, Y.S. Gestational diabetes mellitus; Russian Federation: Russia, 2021.
[http://dx.doi.org/10.54393/df.v2i2.18]
[21]
Almahfoodh, D.; Alabbood, M.; Alali, A.; Mansour, A. Epidemiology of type 1 diabetes mellitus in Basrah, Southern Iraq: A retrospective study. Diabetes Res. Clin. Pract., 2017, 133, 104-108.
[http://dx.doi.org/10.1016/j.diabres.2017.09.001] [PMID: 28926733]
[22]
AlMutair, A.; AlSabty, N.; AlNuaim, H.; Al Hamdan, R.; Moukaddem, A. Prevalence and special clinical and biochemical characteristics of familial type 1 (insulin dependent) diabetes mellitus in pediatric patients in a tertiary care setting. Int. J. Pediatr. Adolesc. Med., 2021, 8(2), 107-111.
[http://dx.doi.org/10.1016/j.ijpam.2020.11.006] [PMID: 34084882]
[23]
Balcha, S.A.; Phillips, D.I.W.; Trimble, E.R. Type 1 diabetes in a resource-poor setting: Malnutrition related, malnutrition modified, or just diabetes? Curr. Diab. Rep., 2018, 18(7), 47.
[http://dx.doi.org/10.1007/s11892-018-1003-7] [PMID: 29904886]
[24]
Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol., 2018, 14(2), 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[25]
Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract, 2019, 157, 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843]
[26]
Kaku, K.; Kisanuki, K.; Shibata, M.; Oohira, T. Benefit-risk assessment of alogliptin for the treatment of type 2 diabetes mellitus. Drug Saf., 2019, 42(11), 1311-1327.
[http://dx.doi.org/10.1007/s40264-019-00857-8] [PMID: 31654243]
[27]
Eliaschewitz, F.; Almeida-Pititto, B.; Dias, M.L.; Franco de Moraes, A.C.; Ferreira, S.R.G.; Franco, D.R. Type 2 diabetes in Brazil: Epidemiology and management. Diabetes Metab. Syndr. Obes., 2015, 8, 17-28.
[http://dx.doi.org/10.2147/DMSO.S72542] [PMID: 25609989]
[28]
Atkinson, M.A.; Eisenbarth, G.S. Type 1 diabetes: New perspectives on disease pathogenesis and treatment. Lancet, 2001, 358(9277), 221-229.
[http://dx.doi.org/10.1016/S0140-6736(01)05415-0] [PMID: 11476858]
[29]
Rossboth, S.; Lechleitner, M.; Oberaigner, W. Risk factors for diabetic foot complications in type 2 diabetes—A systematic review. Endocrinol. Diabetes Metab., 2021, 4(1), e00175.
[http://dx.doi.org/10.1002/edm2.175] [PMID: 33532615]
[30]
Al-Maskari, F.; El-Sadig, M. Prevalence of risk factors for diabetic foot complications. BMC Fam. Pract., 2007, 8(1), 59.
[http://dx.doi.org/10.1186/1471-2296-8-59] [PMID: 17927826]
[31]
Al-Rubeaan, K.; Al Derwish, M.; Ouizi, S.; Youssef, A.M.; Subhani, S.N.; Ibrahim, H.M.; Alamri, B.N. Diabetic foot complications and their risk factors from a large retrospective cohort study. PLoS One, 2015, 10(5), e0124446.
[http://dx.doi.org/10.1371/journal.pone.0124446] [PMID: 25946144]
[32]
Girgis, M.M.F.; Fekete, K.; Homoródi, N.; Márton, S.; Fekete, I.; Horváth, L. Use of complementary and alternative medicine among patients with epilepsy and diabetes mellitus, focusing on the outcome of treatment. Front. Neurosci., 2022, 15, 787512.
[http://dx.doi.org/10.3389/fnins.2021.787512] [PMID: 35087374]
[33]
Le, Q.; Lay, H. Herbs for the management of diabetes mellitus in Traditional Vietnamese Medicine. J. appl. biopharm. pharmacokinet., 2019, 7, 17.
[34]
Kasole, R.; Martin, H.D.; Kimiywe, J. Traditional medicine and its role in the management of diabetes mellitus: “Patients” and ‘herbalists’ perspectives. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-12.
[http://dx.doi.org/10.1155/2019/2835691] [PMID: 31354852]
[35]
Yedjou, C.G.; Grigsby, J.; Mbemi, A.; Nelson, D.; Mildort, B.; Latinwo, L.; Tchounwou, P.B. The management of diabetes mellitus using medicinal plants and vitamins. Int. J. Mol. Sci., 2023, 24(10), 9085.
[http://dx.doi.org/10.3390/ijms24109085] [PMID: 37240430]
[36]
Andrade, C.; Gomes, N.G.M.; Duangsrisai, S.; Andrade, P.B.; Pereira, D.M.; Valentão, P. Medicinal plants utilized in Thai Traditional Medicine for diabetes treatment: Ethnobotanical surveys, scientific evidence and phytochemicals. J. Ethnopharmacol., 2020, 263, 113177.
[http://dx.doi.org/10.1016/j.jep.2020.113177] [PMID: 32768637]
[37]
Japhet, M.; Mlungisi, N.; Exnevia, G. Mechanisms of action of traditional herbal medicines used in the management of diabetes mellitus: A review of the literature. Afr. J. Tradit. Complement. Altern. Med., 2017, 14(5), 156-165.
[http://dx.doi.org/10.21010/ajtcam.v14i5.19]
[38]
Saneja, A.; Sharma, C. Gymnema sylvestre (Gurmar): A review. Pharmbit, 2010, 2, 275-284.
[39]
Aditi, S.L.; Sharma, L.; More, P.; Ghangale, G.; Tare, H. Effect of Gymnema sylvestre in the control of diabetes: A review. Int.J. Pharmaceut Quality Assurance, 2023, 14(1), 214-219.
[http://dx.doi.org/10.25258/ijpqa.14.1.37]
[40]
Akbar, S. Gymnema sylvestre R. Br.(Apocynaceae). In: Handbook of 200 Medicinal Plants;; SpringerLink: United States, 2020, pp. 981-990.
[http://dx.doi.org/10.1007/978-3-030-16807-0_104]
[41]
Zimare, S.B.; Malpathak, N.P. In vitro multiple shoot and gymnemic acid production inGymnema sylvestre (Retz.). R. Br. Ex. Sm. Indian J. Biotechnol., 2017, 16, 635-640.
[42]
Pandey, A.; Yadav, S. Variation in gymnemic acid content and non-destructive harvesting of Gymnema sylvestre (Gudmar). Pharmacognosy Res., 2010, 2(5), 309-312.
[http://dx.doi.org/10.4103/0976-4836.72330] [PMID: 21589758]
[43]
Akhigbe, R.E.; Ajayi, A.F.; Adewumi, O.M.; Okeleji, L.O.; Mujaidu, K.B.; Olaleye, S.B. Effect of ethanolic extract of Cryptolepis sanguinolenta stem on in vivo and in vitro glucose absorption and transport: Mechanism of its antidiabetic activity. Indian J. Endocrinol. Metab., 2012, 16(7)(Suppl. 1), 91.
[http://dx.doi.org/10.4103/2230-8210.94265] [PMID: 22701855]
[44]
Osafo, N.; Mensah, K.B.; Yeboah, O.K. Phytochemical and Pharmacological Review of Cryptolepis sanguinolenta (Lindl.). Schlechter. Adv. Pharmacol. Sci., 2017, 2017, 1-13.
[http://dx.doi.org/10.1155/2017/3026370] [PMID: 29750083]
[45]
Luo, J.; Fort, D.M.; Carlson, T.J.; Noamesi, B.K. nii-Amon-Kotei, D.; King, S.R.; Tsai, J.; Quan, J.; Hobensack, C.; Lapresca, P.; Waldeck, N.; Mendez, C.D.; Jolad, S.D.; Bierer, D.E.; Reaven, G.M. Cryptolepis sanguinolenta: An ethnobotanical approach to drug discovery and the isolation of a potentially useful new antihyperglycaemic agent. Diabet. Med., 1998, 15(5), 367-374.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199805)15:5<367::AID-DIA576>3.0.CO;2-G] [PMID: 9609357]
[46]
Zofou, D.; Kuete, V.; Titanji, V.P.K. Antimalarial and other antiprotozoal products from African Medicinal Plants.Medicinal Plant Research in Africa Pharmacology and Chemistry; Elsevier: Amsterdam, 2013, pp. 661-709.
[http://dx.doi.org/10.1016/B978-0-12-405927-6.00017-5]
[47]
Islam, Z.; Islam, S.M.R.; Hossen, F.; Mahtab-ul-Islam, K.; Hasan, M.R.; Karim, R. Moringa oleifera is a Prominent Source of Nutrients with Potential Health Benefits. Int. J. Food Sci., 2021, 2021, 1-11.
[http://dx.doi.org/10.1155/2021/6627265] [PMID: 34423026]
[48]
Watanabe, S.; Okoshi, H.; Yamabe, S.; Shimada, M. Moringa oleifera lam. In diabetes mellitus: A systematic review and meta-analysis. Molecules, 2021, 26(12), 3513.
[http://dx.doi.org/10.3390/molecules26123513] [PMID: 34207664]
[49]
Nova, E.; Redondo-Useros, N.; Martínez-García, R.M.; Gómez-Martínez, S.; Díaz-Prieto, L.E.; Marcos, A. Potential of moringa oleifera to improve glucose control for the prevention of diabetes and related metabolic alterations: A systematic review of animal and human studies. Nutrients, 2020, 12(7), 2050.
[http://dx.doi.org/10.3390/nu12072050] [PMID: 32664295]
[50]
Vergara-Jimenez, M.; Almatrafi, M.; Fernandez, M. Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants, 2017, 6(4), 91.
[http://dx.doi.org/10.3390/antiox6040091] [PMID: 29144438]
[51]
Matic, I.; Guidi, A.; Kenzo, M.; Mattei, M.; Galgani, A. Investigation of medicinal adietary plants review traditionally supplements: On moringa used oleiferaas. J. Public Health Africa, 2018, 9, 191-199.
[http://dx.doi.org/10.4081/jphia.2018.841] [PMID: 30854178]
[52]
Leone, A.; Bertoli, S.; Di Lello, S.; Bassoli, A.; Ravasenghi, S.; Borgonovo, G.; Forlani, F.; Battezzati, A. Effect of moringa oleifera leaf powder on postprandial blood glucose response: In vivo study on saharawi people living in refugee camps. Nutrients, 2018, 10(10), 1494.
[http://dx.doi.org/10.3390/nu10101494] [PMID: 30322091]
[53]
Owens, F.S., III; Dada, O.; Cyrus, J.W.; Adedoyin, O.O.; Adunlin, G. The effects of Moringa oleifera on blood glucose levels: A scoping review of the literature. Complement. Ther. Med., 2020, 50, 102362.
[http://dx.doi.org/10.1016/j.ctim.2020.102362] [PMID: 32444043]
[54]
Rahayu, S.E.; Sinaga, E. Antihyperglycemic and antihyperlipidemic effects of methanolic seeds extract of pandanus odoratissimus in Alloxan-Induced Diabetic Rats. Syst. Rev. Pharm., 2020, 11, 946-953.
[http://dx.doi.org/10.31838/srp.2020.6.133]
[55]
Adkar, P.P.; Bhaskar, V.H. Pandanus odoratissimus (Kewda): A review on ethnopharmacology, phytochemistry, and nutritional aspects. Adv. Pharmacol. Sci., 2014, 2014, 1-19.
[http://dx.doi.org/10.1155/2014/120895] [PMID: 25949238]
[56]
Andriani, Y.; Ramli, N.M.; Syamsumir, D.F.; Kassim, M.N.I.; Jaafar, J.; Aziz, N.A.; Marlina, L.; Musa, N.S.; Mohamad, H. Phytochemical analysis, antioxidant, antibacterial and cytotoxicity properties of keys and cores part of Pandanus tectorius fruits. Arab. J. Chem., 2019, 12(8), 3555-3564.
[http://dx.doi.org/10.1016/j.arabjc.2015.11.003]
[57]
Raina, V.K.; Kumar, A.; Srivastava, S.K.; Syamsundar, K.V.; Kahol, A.P. Essential oil composition of ‘kewda’ (Pandanus odoratissimus) from India. Flavour Fragrance J., 2004, 19(5), 434-436.
[http://dx.doi.org/10.1002/ffj.1331]
[58]
Venkatesh, S.; Kusuma, R.; Sateesh, V.; Madhava, R.B.; Mullangr, R. Antidiabetic activity of pandanus odoratissimus root extract. Indian J Pharm Educ Res., 2012, 46(4), 340-345.
[59]
Kusuma, R. Phytochemical and phamacological studies of Pandanus odoratissimus Linn. Int J Res Phytochem Pharmacol, 2012, 2(4), 2.
[60]
Chaudhary, G.; Kumari, I. Boswellia serrata ROXB. EX COLEBR. (Salai): An Ayurvedic Herb with Anti-inflammatory Potential. Int. J. Pharm. Sci. Rev. Res., 2021, 69(1)
[http://dx.doi.org/10.47583/ijpsrr.2021.v69i01.024]
[61]
Mishra, S.; Bishnoi, R.S.; Maurya, R.; Jain, D. BOSWELLIA SERRATA ROXB. – A bioactive herbs with various pharmacological activities. Asian J. Pharm. Clin. Res., 2020, 2020, 33-39.
[http://dx.doi.org/10.22159/ajpcr.2020.v13i11.39354]
[62]
Gomaa, A.A.; Farghaly, H.A.; Abdel-Wadood, Y.A.; Gomaa, G.A. Potential therapeutic effects of boswellic acids/Boswellia serrata extract in the prevention and therapy of type 2 diabetes and Alzheimer’s disease. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(11), 2167-2185.
[http://dx.doi.org/10.1007/s00210-021-02154-7] [PMID: 34542667]
[63]
Roy, N.K.; Parama, D.; Banik, K.; Bordoloi, D.; Devi, A.K.; Thakur, K.K.; Padmavathi, G.; Shakibaei, M.; Fan, L.; Sethi, G.; Kunnumakkara, A.B. An update on pharmacological potential of boswellic acids against chronic diseases. Int. J. Mol. Sci., 2019, 20(17), 4101.
[http://dx.doi.org/10.3390/ijms20174101] [PMID: 31443458]
[64]
Ahangarpour, A.; Heidari, H.; Fatemeh, R.A.A.; Pakmehr, M.; Shahbazian, H.; Ahmadi, I.; Mombeini, Z.; Mehrangiz, B.H. Effect of Boswellia serrata supplementation on blood lipid, hepatic enzymes and fructosamine levels in type2 diabetic patients. J. Diabetes Metab. Disord., 2014, 13(1), 29.
[http://dx.doi.org/10.1186/2251-6581-13-29] [PMID: 24495344]
[65]
Franić, Z.; Franić, Z.; Vrkić, N.; Gabaj, N.N.; Petek, I. Effect of extract from Boswellia serrata gum resin on decrease of GAD65 autoantibodies in a patient with Latent Autoimmune Diabetes in Adults. Altern. Ther. Health Med., 2020, 26(5), 38-40.
[PMID: 32663183]
[66]
Chandel, H.; Pathak, A.K.; Tailang, M. Standardization of some herbal antidiabetic drugs in polyherbal formulation. Pharmacognosy Res., 2011, 3(1), 49-56.
[http://dx.doi.org/10.4103/0974-8490.79116] [PMID: 21731396]
[67]
Tiwari, R.; Siddiqui, M.H.; Mahmood, T.; Bagga, P.; Ahsan, F.; Shamim, A. Herbal remedies: A boon for diabetic neuropathy. J. Diet. Suppl., 2019, 16(4), 470-490.
[http://dx.doi.org/10.1080/19390211.2018.1441203] [PMID: 29580105]
[68]
Mishra, R.; Shuaib, M. A review on herbal antidiabetic drugs. J. Appl. Pharm. Sci., 2011, 1(6), 235.
[69]
Bais, N.; Choudhary, G.P. Recent updates on natural compounds in treatment of diabetes mellitus : A comprehensive approach. J. Drug Deliv. Ther., 2019, 9, 9.
[70]
Campbell, A.P. Diabetes and dietary supplements. Clin. Diabetes, 2010, 28(1), 35-39.
[http://dx.doi.org/10.2337/diaclin.28.1.35]
[71]
Ewers, B.; Trolle, E.; Jacobsen, S.S.; Vististen, D.; Almdal, T.P.; Vilsbøll, T.; Bruun, J.M. Data on the use of dietary supplements in Danish patients with type 1 and type 2 diabetes. Data Brief, 2019, 22, 241-244.
[http://dx.doi.org/10.1016/j.dib.2018.11.144] [PMID: 30591942]
[72]
Issa, C.M. Vitamin D and type 2 diabetes mellitus. Adv. Exp. Med. Biol., 2017, 996, 193-205.
[http://dx.doi.org/10.1007/978-3-319-56017-5_16] [PMID: 29124701]
[73]
Guo, Y.; Huang, Z.; Sang, D.; Gao, Q.; Li, Q. The role of nutrition in the prevention and intervention of Type 2 Diabetes. Front. Bioeng. Biotechnol., 2020, 8, 575442.
[http://dx.doi.org/10.3389/fbioe.2020.575442] [PMID: 33042976]
[74]
Papaioannou, I.; Pantazidou, G.; Kokkalis, Z.; Georgopoulos, N.; Jelastopulu, E.; Vitamin, D. Vitamin D deficiency in elderly with Diabetes Mellitus Type 2: A review. Cureus, 2021, 13(1), e12506.
[http://dx.doi.org/10.7759/cureus.12506] [PMID: 33564514]
[75]
Palomer, X.; González-Clemente, J.M.; Blanco-Vaca, F.; Mauricio, D. Role of vitamin D in the pathogenesis of type 2 diabetes mellitus. Diabetes Obes. Metab., 2008, 10(3), 185-197.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00710.x] [PMID: 18269634]
[76]
Feng, J.; Wang, H.; Jing, Z.; Wang, Y.; Cheng, Y.; Wang, W.; Sun, W. Role of magnesium in Type 2 Diabetes Mellitus. Biol. Trace Elem. Res., 2020, 196(1), 74-85.
[http://dx.doi.org/10.1007/s12011-019-01922-0] [PMID: 31713111]
[77]
Kostov, K. Effects of magnesium deficiency on mechanisms of insulin resistance in type 2 diabetes: Focusing on the processes of insulin secretion and signaling. Int. J. Mol. Sci., 2019, 20(6), 1351.
[http://dx.doi.org/10.3390/ijms20061351] [PMID: 30889804]
[78]
Havel, P.J. A scientific review: The role of chromium in insulin resistance. Diabetes Educ., 2004, 30(Suppl.), 2-14.
[PMID: 15208835]
[79]
Golbidi, S.; Badran, M.; Laher, I. Diabetes and alpha lipoic Acid. Front. Pharmacol., 2011, 2, 69.
[http://dx.doi.org/10.3389/fphar.2011.00069] [PMID: 22125537]
[80]
Vallianou, N.; Evangelopoulos, A.; Koutalas, P. Alpha-lipoic Acid and diabetic neuropathy. Rev. Diabet. Stud., 2009, 6(4), 230-236.
[http://dx.doi.org/10.1900/RDS.2009.6.230] [PMID: 20043035]
[81]
Lepretti, M.; Martucciello, S.; Burgos Aceves, M.; Putti, R.; Lionetti, L. Omega-3 fatty acids and insulin resistance: Focus on the regulation of mitochondria and endoplasmic reticulum stress. Nutrients, 2018, 10(3), 350.
[http://dx.doi.org/10.3390/nu10030350] [PMID: 29538286]
[82]
Samah, S.; Fen Neoh, C.; Lim, S.M.; Ramasamy, K.; Nasir, N.M.; Baharudin, N. Managing type 2 diabetes mellitus (T2DM) with probiotics. Asian J. Pharm. Clin. Res., 2018, 15(10), e46741.
[83]
Rittiphairoj, T.; Pongpirul, K.; Janchot, K.; Mueller, N.T.; Li, T. Probiotics Contribute to Glycemic Control in Patients with Type 2 Diabetes Mellitus: A systematic review and meta-analysis. Adv. Nutr., 2021, 12(3), 722-734.
[http://dx.doi.org/10.1093/advances/nmaa133] [PMID: 33126241]
[84]
Mishra, V.; Nayak, P.; Sharma, M.; Albutti, A.; Alwashmi, A.S.S.; Aljasir, M.A.; Alsowayeh, N.; Tambuwala, M.M. Emerging treatment strategies for diabetes mellitus and associated complications: An update. Pharmaceutics, 2021, 13(10), 1568.
[http://dx.doi.org/10.3390/pharmaceutics13101568] [PMID: 34683861]
[85]
Memon, B.; Abdelalim, E.M. Stem cell therapy for diabetes: Beta cells versus pancreatic progenitors. Cells, 2020, 9(2), 283.
[http://dx.doi.org/10.3390/cells9020283] [PMID: 31979403]
[86]
Voltarelli, J.C.; Couri, C.E.B.; Oliveira, M.C.; Moraes, D.A.; Stracieri, A.B.P.L.; Pieroni, F.; Barros, G.M.N.; Malmegrim, K.C.R.; Simões, B.P.; Leal, A.M.O.; Foss, M.C. Stem cell therapy for diabetes mellitus. Kidney Int. Suppl., 2011, 1(3), 94-98.
[http://dx.doi.org/10.1038/kisup.2011.22] [PMID: 25018908]
[87]
Sun, Z.Y.; Yu, T.Y.; Jiang, F.X.; Wang, W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J. Stem Cells, 2021, 13(3), 193-207.
[http://dx.doi.org/10.4252/wjsc.v13.i3.193] [PMID: 33815669]
[88]
Chen, S.; Du, K.; Zou, C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res. Ther., 2020, 11(1), 275.
[http://dx.doi.org/10.1186/s13287-020-01793-6] [PMID: 32641151]
[89]
Pyrlis, F.; Brown, F.; Ekinci, E.I. Recent advances in management of type 1 diabetes. Aust. J. Gen. Pract., 2019, 48(5), 256-261.
[http://dx.doi.org/10.31128/AJGP-12-18-4775] [PMID: 31129934]
[90]
Singh, A.; Afshan, N.; Singh, A.; Singh, S.K.; Yadav, S.; Kumar, M.; Sarma, D.K.; Verma, V. Recent trends and advances in type 1 diabetes therapeutics: A comprehensive review. Eur. J. Cell Biol., 2023, 102(2), 151329.
[http://dx.doi.org/10.1016/j.ejcb.2023.151329] [PMID: 37295265]
[91]
Wong, M.S.; Hawthorne, W.J.; Manolios, N. Gene therapy in diabetes. Self Nonself, 2010, 1(3), 165-175.
[http://dx.doi.org/10.4161/self.1.3.12643] [PMID: 21487475]
[92]
Chellappan, D.K.; Sivam, N.S.; Teoh, K.X.; Leong, W.P.; Fui, T.Z.; Chooi, K.; Khoo, N.; Yi, F.J.; Chellian, J.; Cheng, L.L.; Dahiya, R.; Gupta, G.; Singhvi, G.; Nammi, S.; Hansbro, P.M.; Dua, K. Gene therapy and type 1 diabetes mellitus. Biomed. Pharmacother., 2018, 108, 1188-1200.
[http://dx.doi.org/10.1016/j.biopha.2018.09.138] [PMID: 30372820]
[93]
Yue, Z.; Zhang, L.; Li, C.; Chen, Y.; Tai, Y.; Shen, Y.; Sun, Z. Advances and potential of gene therapy for type 2 diabetes mellitus. Biotechnol. Biotechnol. Equip., 2019, 33(1), 1150-1157.
[http://dx.doi.org/10.1080/13102818.2019.1643783]
[94]
Templer, S. Closed-loop insulin delivery systems: Past, present, and future directions. Front. Endocrinol. (Lausanne), 2022, 13, 919942.
[http://dx.doi.org/10.3389/fendo.2022.919942] [PMID: 35733769]
[95]
Brunetti, P.; Benedetti, M.M.; Calabrese, G.; Reboldi, G.P. Closed-loop delivery systems for insulin therapy. Int. J. Artif. Organs, 1991, 14(4), 216-226.
[http://dx.doi.org/10.1177/039139889101400404] [PMID: 2060988]
[96]
Nakhleh, A.; Shehadeh, N. Hypoglycemia in diabetes: An update on pathophysiology, treatment, and prevention. World J. Diabetes, 2021, 12(12), 2036-2049.
[http://dx.doi.org/10.4239/wjd.v12.i12.2036] [PMID: 35047118]
[97]
Kesavadev, J.; Srinivasan, S.; Saboo, B.; Krishna B, M.; Krishnan, G. The do-it-yourself artificial pancreas: A comprehensive review. Diabetes Ther., 2020, 11(6), 1217-1235.
[http://dx.doi.org/10.1007/s13300-020-00823-z] [PMID: 32356245]
[98]
Moon, S.J.; Jung, I.; Park, C.Y. Current advances of artificial pancreas systems: A comprehensive review of the clinical evidence. Diabetes Metab. J., 2021, 45(6), 813-839.
[http://dx.doi.org/10.4093/dmj.2021.0177] [PMID: 34847641]
[99]
Cinar, A. Advances in artificial pancreas control systems. J. Process Contr., 2019, 81, 221-222.
[http://dx.doi.org/10.1016/j.jprocont.2019.07.004]
[100]
Schubert-Olesen, O.; Kröger, J.; Siegmund, T.; Thurm, U.; Halle, M. Continuous glucose monitoring and physical activity. Int. J. Environ. Res. Public Health, 2022, 19(19), 12296.
[http://dx.doi.org/10.3390/ijerph191912296] [PMID: 36231598]
[101]
Chen, C.; Zhao, X.L.; Li, Z.H.; Zhu, Z.G.; Qian, S.H.; Flewitt, A. Current and emerging technology for continuous glucose monitoring. Sensors (Basel), 2017, 17(12), 182.
[http://dx.doi.org/10.3390/s17010182] [PMID: 28106820]
[102]
Weinstock, R.; Aleppo, G.; Bailey, T.; Bergenstal, R.; Fisher, W.; Greenwood, D.; Young, L. The role of blood glucose monitoring in diabetes management. ADA Clin Compendia, 2020, 2020(3), 1-32.
[http://dx.doi.org/10.2337/db2020-31] [PMID: 33411424]
[103]
Dungan, K.; Verma, N. Monitoring technologies- continuous glucose monitoring, mobile technology, biomarkers of glycemic control; National Library of Medicine: 8600 Rockville Pike, 2000.
[104]
Modern perspective on the role of blood glucose self-monitoring in management of diabetes mellitus. FOCUS. Endocrinology, 2021, 2(1)
[http://dx.doi.org/10.47407/ef2021.2.1.0024]
[105]
McCall, A.L.; Farhy, L.S. Treating type 1 diabetes: From strategies for insulin delivery to dual hormonal control. Minerva Endocrinol., 2013, 38(2), 145-163.
[PMID: 23732369]
[106]
Aschner, P. Insulin therapy in Type 2 Diabetes. Am. J. Ther., 2020, 27(1), e79-e90.
[http://dx.doi.org/10.1097/MJT.0000000000001088] [PMID: 31567175]
[107]
Donner, T. Insulin- pharmacology, therapeutic regimens and principles of intensive insulin therapy;; Endotext: South Dartmouth, 2000.
[108]
Chun, J.; Strong, J.; Urquhart, S. Insulin initiation and titration in patients with type 2 diabetes. Diabetes Spectr., 2019, 32(2), 104-111.
[http://dx.doi.org/10.2337/ds18-0005] [PMID: 31168280]
[109]
Hassanein, M.; Al Dahi, W.; Radhi, H.T. AIMahfouz, A.; Al Kaabi, J.; Alshammari, A.; Alfutaisi, A.; AlMalki, M.H.; Malik, R. Expert-group practical advice on insulin initiation and titration for patients with type 2 diabetes in the Gulf Region. Dubai Diabetes Endocrinol. J., 2022, 28(2), 45-55.
[http://dx.doi.org/10.1159/000521437]
[110]
Giri, B.; Dey, S.; Das, T.; Sarkar, M.; Banerjee, J.; Dash, S.K. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed. Pharmacother., 2018, 107, 306-328.
[http://dx.doi.org/10.1016/j.biopha.2018.07.157] [PMID: 30098549]
[111]
Silver, B.; Ramaiya, K.; Andrew, S.B.; Fredrick, O.; Bajaj, S.; Kalra, S.; Charlotte, B.M.; Claudine, K.; Makhoba, A. EADSG Guidelines: Insulin therapy in diabetes. Diabetes Ther., 2018, 9(2), 449-492.
[http://dx.doi.org/10.1007/s13300-018-0384-6] [PMID: 29508275]
[112]
Tripathi, P.; Pandey, A.; Pandey, R.; Srivatava, R.; Goswami, S. Alternative therapies useful in the management of diabetes: A systematic review. J. Pharm. Bioallied Sci., 2011, 3(4), 504-512.
[http://dx.doi.org/10.4103/0975-7406.90103] [PMID: 22219583]
[113]
Behrouz, V.; Dastkhosh, A.; Sohrab, G. Overview of dietary supplements on patients with type 2 diabetes. Diabetes Metab. Syndr., 2020, 14(4), 325-334.
[http://dx.doi.org/10.1016/j.dsx.2020.03.019] [PMID: 32298985]
[114]
Liu, D.; Wen, Q.; Liu, M.; Gao, Y.; Luo, L.; Zhang, Z.; Chen, Q. Dietary supplements for prediabetes. Medicine (Baltimore), 2020, 99(20), e20347.
[http://dx.doi.org/10.1097/MD.0000000000020347] [PMID: 32443387]
[115]
Garcia-Cazarin, M.L.; Wambogo, E.A.; Regan, K.S.; Davis, C.D. Dietary supplement research portfolio at the NIH, 2009-2011. J. Nutr., 2014, 144(4), 414-418.
[http://dx.doi.org/10.3945/jn.113.189803] [PMID: 24523489]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy