Generic placeholder image

Current Physics

Editor-in-Chief

ISSN (Print): 2772-3348
ISSN (Online): 2772-3356

Research Article

Understanding the Origins of Quark Charges, Quantum of Magnetic Flux, Planck’s Radiation Constant and Celestial Magnetic Moments with the 4G Model of Nuclear Charge

Author(s): Utpala Venkata Satya Seshavatharam* and Sreerama Lakshminarayana

Volume 1, 2024

Published on: 09 May, 2024

Article ID: e090524229812 Pages: 26

DOI: 10.2174/0127723348291145240427074503

Price: $65

Abstract

Introduction: In our previous published papers, considering 3 large atomic gravitational constants assumed to be associated with weak, strong and electromagnetic interactions, we have proposed the existence of a nuclear charge of magnitude, en=2.95e and developed a nuclear mass formula associated with strong and weak interactions having 4 simple terms and only one energy coefficient.

Methods: Two important assumptions are that there exists a weak fermion of rest energy 585 GeV and strong coupling constant is the squared ratio of electromagnetic charge and nuclear charge. The aim of this paper is associated with understanding the mystery of the quantum of magnetic flux, Planck’s quantum radiation constant and Reduced Planck’s constant. Proceeding further, quark charges, strong coupling constant, nuclear stability, nuclear binding energy, medium and heavy atomic X-ray levels and celestial magnetic moments can be understood in a unified approach. It may also be noted that, by considering the integral nature of elementary particle masses, it seems possible to understand the discreteness of angular momentum.

Results: Considering our proposed en=2.95e=3e as a characteristic nuclear charge, it seems possible to understand the integral nature of quarks electromagnetic charge. With this idea, neutron, proton and pion decay can be understood very easily.

Conclusion: In all the cases, the up quark of charge (±2e) seems to play a crucial role in the internal transformation of the down quark of charge (±e) and external observable elementary basic elementary particles. It needs further study at the fundamental level. Proceeding further, quantum of magnetic flux, Planck’s radiation constant and Reduced Planck’s constant can be understood with our 4G model of final unification.

[1]
Gross, D. Einstein and the search for Unification. Curr. Sci., 2005, 89(12), 2034-2040.
[2]
van Dongen, J. Index.Einstein’s Unification; Cambridge University Press, 2010, pp. 208-213.
[http://dx.doi.org/10.1017/CBO9780511781377]
[3]
Landsman, N.P. Einstein’s Unification by Jeroen van Dongen. Math. Intell., 2011, 33(2), 62-64.
[http://dx.doi.org/10.1007/s00283-011-9202-y]
[4]
Schweber, S.S. Unifying EinsteinJeroen van Dongen. Einstein’s Unification., 2011, 213. Schweber, S.S. Review of Einstein’s Unification In: Illus. Bibl. index; van Dongen, J., Ed.; Cambridge University Press: Cambridge, 2011; 102, pp. (4)739-742.
[http://dx.doi.org/10.1086/663617]
[5]
Nugayev, Rinat M. Einstein's Revolution: A Study in Theory Unification; Bentham Science Publishers: Sharjah, UAE, 2018.
[http://dx.doi.org/10.2174/97816810863541180101]
[6]
Oppenheim, J.; Sparaciari, C.; Šoda, B.; Weller-Davies, Z. Gravitationally induced decoherence vs space-time diffusion: testing the quantum nature of gravity. Nat. Commun., 2023, 14(1), 7910.
[http://dx.doi.org/10.1038/s41467-023-43348-2] [PMID: 38049417]
[7]
Einstein, A.; Podolsky, B.; Rosen, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 1935, 47(10), 777-780.
[http://dx.doi.org/10.1103/PhysRev.47.777]
[8]
Bohr, N. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 1935, 48(8), 696-702.
[http://dx.doi.org/10.1103/PhysRev.48.696]
[9]
Bell, J.S. On the einstein-podolsky-rosen paradox. Physics Physique Fizika, 1964, 1(3), 195-200.
[http://dx.doi.org/10.1103/PhysicsPhysiqueFizika.1.195]
[10]
Greenberger, D.M.; Horne, M.A.; Shimony, A.; Zeilinger, A. Bell’s theorem without inequalities. Am. J. Phys., 1990, 58(12), 1131-1143.
[http://dx.doi.org/10.1119/1.16243]
[11]
Tu, Z.; Kharzeev, D.; Ullrich, T. The EPR paradox and quantum entanglement at sub-nucleonic scales. Phys. Rev. Lett., 2020, 124, 062001.
[http://dx.doi.org/10.1103/PhysRevLett.124.062001] [PMID: 32109114]
[12]
Mukhi, S. String theory: a perspective over the last 25 years. Classical and Quantum Gravity., 2011, 28(15), 153001.
[http://dx.doi.org/10.1088/0264-9381/28/15/153001]
[13]
Banks, T.; Seiberg, N. Symmetries and strings in field theory and gravity. Phys. Rev. D Part. Fields Gravit. Cosmol., 2011, 83(8), 084019.
[http://dx.doi.org/10.1103/PhysRevD.83.084019]
[14]
Gross, D.J.; Harvey, J.A.; Martinec, E.; Rohm, R. Heterotic String. Phys. Rev. Lett., 1985, 54(6), 502-505.
[http://dx.doi.org/10.1103/PhysRevLett.54.502] [PMID: 10031535]
[15]
Dixon, L.J.; Kaplunovsky, V.S.; Vafa, C. On four-dimensional gauge theories from type II superstrings. Nucl. Phys. B, 1987, 294, 43-82.
[http://dx.doi.org/10.1016/0550-3213(87)90572-4]
[16]
Maharana, A.; Palti, E. Models of particle physics from type IIB string theory and f-theory: a review. Int. J. Mod. Phys. A, 2013, 28(05n06), 1330005.
[http://dx.doi.org/10.1142/S0217751X13300056]
[17]
Pablo, A. Cano and Alejandro Ruipérez. String gravity in D = 4. Phys. Rev. D, 2022, 105, 044022.
[18]
Seshavatharam, U.V.S.; Lakshminarayana, S. Role of four gravitational constants in nuclear structure. Mapana-J. Sci., 2019, 18(1), 21.
[http://dx.doi.org/10.12723/mjs.48.2]
[19]
Seshavatharam, U.V.S.; Naidu, T.G.; Lakshminarayana, S. To confirm the existence of heavy weak fermion of rest energy 585 GeV.AIP Conf. Proc; , 2022, 2451, pp. 020003-, 020003-020006.
[http://dx.doi.org/10.1063/5.0095313]
[20]
Seshavatharam, U.V.S.; Lakshminarayana, S. EPR argument and mystery of the reduced Planck’s constant. Algebras, Groups, and Geometries., 2020, 36(4), 801-822.
[21]
Seshavatharam, U.V.S.; Lakshminarayana, S. 4G model of final unification – A brief report. J. Phys. Conf. Ser., 2022, 2197(1), 012029.
[http://dx.doi.org/10.1088/1742-6596/2197/1/012029]
[22]
Seshavatharam, U.V.S.; Lakshminarayana, S. Is reduced Planck’s constant - an outcome of electroweak gravity? Mapana J. Sci., 2020, 19(1), 1.
[23]
Seshavatharam, U.V.S.; Lakshminarayana, S. On the compactification and reformation of string theory with three large atomic gravitational con-stants. Int. J. Physi. Res., 2021, 9(1), 42-48.
[http://dx.doi.org/10.14419/ijpr.v9i1.31432]
[24]
Sinha, K.P. Gauge theories of weak and strong gravity. Pramana, 1984, 23(2), 205-214.
[http://dx.doi.org/10.1007/BF02846517]
[25]
Sivaram, C.; Sinha, K.P. Strong gravity, black holes, and hadrons. Phys. Rev. D Part. Fields, 1977, 16(6), 1975-1978.
[http://dx.doi.org/10.1103/PhysRevD.16.1975]
[26]
Salam, A.; Sivaram, C. Strong gravity approach to QCD and confinement. Mod. Phys. Lett. A., 1993, 8(4), 321.
[http://dx.doi.org/10.1142/S0217732393000325]
[27]
Onofrio, Roberto On weak interactions as short-distance manifestations of gravity. Mod. Phys. Lett. A., 2013, 28(7), 1350022.
[http://dx.doi.org/10.1142/S0217732313500223]
[28]
Onofrio, R. Proton radius puzzle and quantum gravity at the Fermi scale. Europhys. Lett., 2013, 104(2), 20002.
[http://dx.doi.org/10.1209/0295-5075/104/20002]
[29]
Onofrio, Roberto High-energy density implications of a gravitoweak unification scenario. Mod. Phys. Lett. A., 2014, 29(1), 1350187.
[http://dx.doi.org/10.1142/S0217732313501873]
[30]
Seshavatharam, U.V.S.; Lakshminarayana, S. 4G model of fractional charge strong-weak super symmetry. Int. Astron. Astrophy. Res. J., 2020, 2(1), 31-55.
[31]
Seshavatharam, U.V.S.; Lakshminarayana, S. Super symmetry in strong and weak interactions. Int. J. Mod. Phys. E., 2010, 19(2), 263.
[http://dx.doi.org/10.1142/S021830131001473X]
[32]
Brack, T.; Zybach, B.; Balabdaoui, F.; Kaufmann, S.; Palmegiano, F.; Tomasina, J-C.; Blunier, S.; Scheiwiller, D.; Fankhauser, J.; Dual, J. Dynamic measurement of gravitational coupling between resonating beams in the hertz regime. Nat. Phys., 2022, 18(8), 952-957.
[http://dx.doi.org/10.1038/s41567-022-01642-8]
[33]
Tiesinga, E.; Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA recommended values of the fundamental physical constants: 2018. Rev. Mod. Phys., 2021, 93(2), 025010.
[http://dx.doi.org/10.1103/RevModPhys.93.025010] [PMID: 36733295]
[34]
Loder, F.; Kampf, A.P.; Kopp, T.; Mannhart, J.; Schneider, C.W.; Barash, Y.S. Magnetic flux periodicity of h/e in superconducting loops. Nat. Phys., 2008, 4(2), 112-115.
[http://dx.doi.org/10.1038/nphys813]
[35]
Jacak, J.E. Magnetic flux quantum in 2D correlated states of multiparticle charged system. New J. Phys., 2020, 22(9), 093027.
[http://dx.doi.org/10.1088/1367-2630/abae68]
[36]
Planck, Max On the law of distribution of energy in the normal spectrum. Int. Mod. Phys., 1901, 4, 553-563.
[37]
Russell, C.T.; Dougherty, M.K. Magnetic fields of the outer planets. Space Sci. Rev., 2010, 152(1-4), 251-269.
[http://dx.doi.org/10.1007/s11214-009-9621-7]
[38]
Durand-Manterola, H.J. Dipolar magnetic moment of the bodies of the solar system and the Hot Jupiters. Planet. Space Sci., 2009, 57(12), 1405-1411.
[http://dx.doi.org/10.1016/j.pss.2009.06.024]
[39]
Seshavatharam, U.V.S.; Lakshminarayana, S. To validate the role of electromagnetic and strong gravitational constants via the strong elementary charge. Univer. J. Phys. Applic., 2015, 9(5), 216-225.
[http://dx.doi.org/10.13189/ujpa.2015.090503]
[40]
Penrose, R. Chandrasekhar, black holes, and singularities. J. Astrophys. Astron., 1996, 17(3-4), 213-231.
[http://dx.doi.org/10.1007/BF02702305]
[41]
Gibbons, G.W. The maximum tension principle in general relativity. Found. Phys., 2002, 32(12), 1891-1901.
[http://dx.doi.org/10.1023/A:1022370717626]
[42]
Seshavatharam, U.V.S.; Lakshminarayana, S. Final unification with Schwarzschild’s Interaction. J. Appl. Phys. Sci. Int., 2015, 3(1), 12-22.
[43]
Bohr, N.I. On the constitution of atoms and molecules. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1913, 26(151), 1-25.
[http://dx.doi.org/10.1080/14786441308634955]
[44]
Moseley, H.G.J. LXXX. The high-frequency spectra of the elements. Part II. Lond. Edinb. Dublin Philos. Mag. J. Sci., 1914, 27(160), 703-713.
[http://dx.doi.org/10.1080/14786440408635141]
[45]
Whitaker, M A B. The Bohr-Moseley synthesis and a simple model for atomic x-ray energies. Eur. J. Phys., 1999, 20(3), 213-220.
[http://dx.doi.org/10.1088/0143-0807/20/3/312]
[46]
Myers, W. D.; Swiatecki, W. J. Nuclear properties according to the thomas-fermi model. LBL-36557 Rev., 1995, UC-413.
[47]
Myers, W.D.; Swiatecki, W.J. Table of nuclear masses according to the 1994 Thomas-Fermi model. In: University Libraries; UNT Digital Library: United States, 1994; p. 141.
[48]
Xia, X.W.; Lim, Y.; Zhao, P.W.; Liang, H.Z.; Qu, X.Y.; Chen, Y.; Liu, H.; Zhang, L.F.; Zhang, S.Q.; Kim, Y.; Meng, J. The limits of the nuclear land-scape explored by the relativistic continuum Hartree–Bogoliubov theory. At. Data Nucl. Data Tables, 2018, 121-122, 1-215.
[http://dx.doi.org/10.1016/j.adt.2017.09.001]
[49]
Mavrodiev, S.C.; Deliyergiyev, M.A. Modification of the nuclear landscape in the inverse problem framework using the generalized Bethe–Weizsäcker mass formula. Int. J. Mod. Phys. E, 2018, 27(2), 1850015.
[http://dx.doi.org/10.1142/S0218301318500155]
[50]
Seshavatharam, U.V.S.; Lakshminarayana, S.H.K.; Cherop; Khanna, K.M. Three unified nuclear binding energy formulae. World Sci. News, 2022, 163, 30-77.
[51]
Seshavatharam, U.V.S.; Lakshminarayana, S. On the combined role of strong and electroweak interactions in understanding nuclear binding energy scheme. Mapana J. Sci., 2021, 20(1), 1-18.
[52]
Kharzeev, D.E. Mass radius of the proton. Phys. Rev. D, 2021, 104(5), 054015.
[http://dx.doi.org/10.1103/PhysRevD.104.054015]
[53]
Peset, C.; Pineda, A.; Tomalak, O. The proton radius (puzzle?) and its relatives. Prog. Part. Nucl. Phys., 2021, 121, 103901.
[http://dx.doi.org/10.1016/j.ppnp.2021.103901]
[54]
Oks, E. A possible explanation of the proton radius puzzle based on the second flavor of muonic hydrogen atoms. Foundations, 2022, 2(4), 912-917.
[http://dx.doi.org/10.3390/foundations2040062]
[55]
Gao, H.; Vanderhaeghen, M. The proton charge radius. Rev. Mod. Phys., 2022, 94(1), 015002.
[http://dx.doi.org/10.1103/RevModPhys.94.015002]
[56]
Green, A.E.S. Nuclear Physics; McGraw Hill Book Co., 1955.
[57]
Gao, Z.P.; Wang, Y.J.; Lü, H.L.; Li, Q-F.; Shen, C-W.; Liu, L. Machine learning the nuclear mass. Nucl. Sci. Tech., 2021, 32(10), 109.
[http://dx.doi.org/10.1007/s41365-021-00956-1]
[58]
Seshavatharam, U.V.S.; Lakshminarayana, S. An open review on light speed expanding Hubble-Hawking universe. J. Phys. Astron., 2023, 11(2), 322.
[59]
Seshavatharam, U.V.S.; Lakshminarayana, S. Understanding nearby cosmic halt with 4g model of final unification – is universe really accelerating? towards atomic and nuclear cosmology! Amer. J. Planet. Space Sci., 2023, 2(3), 118.
[60]
Seshavatharam, U.V.S.; Lakshminarayana, S. Wrong definition and wrong implications of cosmic red shift (correction and possible solutions). J. Phy. & Opt. Sci., 2024, 6(2), 1-10.
[61]
Seshavatharam, U.V.S.; Lakshminarayana, S. On the role of cosmic mass in understanding the relationships among galactic dark matter, visible matter and flat rotation speeds. NRIAG J. Astron. Geophys., 2021, 10(1), 466-481.
[http://dx.doi.org/10.1080/20909977.2021.1992136]
[62]
Seshavatharam, U.; Lakshminarayana, S. Weak interaction dependent super gravity of galactic baryon mass. J. Asi. Scienti. Res., 2022, 12, 146-155.
[63]
Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J., 1983, 270, 365-370.
[http://dx.doi.org/10.1086/161130]
[64]
Brownstein, J.R.; Moffat, J.W. Galaxy rotation curves without nonbaryonic dark matter. Astrophys. J., 2006, 636(2), 721-741.
[http://dx.doi.org/10.1086/498208]
[65]
van Dokkum, P.; Danieli, S.; Abraham, R.; Conroy, C.; Romanowsky, A.J. A second galaxy missing dark matter in the NGC1052 group. Astrophys. J. Lett., 2019, 874(1), L5.
[http://dx.doi.org/10.3847/2041-8213/ab0d92]
[66]
Danieli, S.; van Dokkum, P.; Conroy, C.; Abraham, R.; Romanowsky, A.J. Still missing dark matter: KCWI high-resolution stellar kinematics of NGC1052-DF2. Astrophys. J. Lett., 2019, 874(2), L12.
[http://dx.doi.org/10.3847/2041-8213/ab0e8c]
[67]
Shen, Z.; Danieli, S.; van Dokkum, P.; Abraham, R.; Brodie, J.P.; Conroy, C.; Dolphin, A.E.; Romanowsky, A.J.; Diederik Kruijssen, J.M.; Dutta Chowdhury, D. A tip of the red giant branch distance of 22.1 ± 1.2 mpc to the dark matter deficient galaxy NGC 1052–DF2 from 40 orbits of hubble space telescope imaging. Astrophys. J. Lett., 2021, 914(1), L12.
[http://dx.doi.org/10.3847/2041-8213/ac0335]
[68]
Guo, Q.; Hu, H.; Zheng, Z.; Liao, S.; Du, W.; Mao, S.; Jiang, L.; Wang, J.; Peng, Y.; Gao, L.; Wang, J.; Wu, H. Further evidence for a population of dark-matter-deficient DWARF galaxies. Nat. Astron., 2019, 4(3), 246-251.
[http://dx.doi.org/10.1038/s41550-019-0930-9]
[69]
Pan, S.; Mukherjee, A.; Banerjee, N. Astronomical bounds on a cosmological model allowing a general interaction in the dark sector. Mon. Not. R. Astron. Soc., 2018, 477(1), 1189-1205.
[http://dx.doi.org/10.1093/mnras/sty755]
[70]
Garcia-Cely, C.; Heeck, J. Neutrino lines from majoron dark matter. J. High Energy Phys., 2017, 102, 2017.
[71]
El-Nabulsi, R.A. Rami. maxwell brane cosmology with higher-order string curvature corrections, a nonminimally coupled scalar field, dark matter-dark energy interaction and a varying speed of light. Int. J. Mod. Phys. D, 2009, 18(2), 289-318.
[http://dx.doi.org/10.1142/S0218271809014431]
[72]
Rami, E-N.A. Accelerated d-dimensional compactified universe in gauss–bonnet–dilatonic scalar gravity from d-brane/m-theory. Chin. Phys. Lett., 2008, 25(8), 2785-2788.
[http://dx.doi.org/10.1088/0256-307X/25/8/014]
[73]
Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; Hook, I.M.; Kim, A.G.; Kim, M.Y.; Lee, J.C.; Nunes, N.J.; Pain, R.; Pennypacker, C.R.; Quimby, R.; Lidman, C.; Ellis, R.S.; Irwin, M.; McMahon, R.G.; Ruiz-Lapuente, P.; Walton, N.; Schaefer, B.; Boyle, B.J.; Filippenko, A.V.; Matheson, T.; Fruchter, A.S.; Panagia, N.; Newberg, H.J.M.; Couch, W.J.; Project, T.S.C. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J., 1999, 517(2), 565-586.
[http://dx.doi.org/10.1086/307221]
[74]
Balakrishna, S.; Haridasu; Luković, V.V; D’Agostino, R.; Vittorio, N. Strong evidence for an accelerating Universe. Astron. Astrophys., 2017, 600, L1.
[75]
Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Anand, G.S.; Breuval, L.; Brink, T.G.; Filippenko, A.V.; Hoffmann, S.; Jha, S.W.; D’arcy Kenworthy, W.; Mackenty, J.; Stahl, B.E.; Zheng, W.K. A comprehensive measurement of the local value of the hubble constant with 1 km s −1 mpc −1 uncertainty from the hubble space telescope and the shoes team. Astrophys. J. Lett., 2022, 934(1), L7.
[http://dx.doi.org/10.3847/2041-8213/ac5c5b]
[76]
Dam, L.H.; Heinesen, A.; Wiltshire, D.L. Apparent cosmic acceleration from Type Ia supernovae. Mon. Not. R. Astron. Soc., 2017, 472(1), 835-851.
[http://dx.doi.org/10.1093/mnras/stx1858]
[77]
Colin, J.; Mohayaee, R.; Rameez, M.; Sarkar, S. Evidence for anisotropy of cosmic acceleration. Astron. Astrophys., 2019, 631, L13.
[http://dx.doi.org/10.1051/0004-6361/201936373]
[78]
Tutusaus, I.; Lamine, B.; Blanchard, A. Model-independent cosmic acceleration and redshift-dependent intrinsic luminosity in type-Ia supernovae. Astron. Astrophys., 2019, 625, A15.
[http://dx.doi.org/10.1051/0004-6361/201833032]
[79]
Mohayaee, R.; Rameez, M.; Sarkar, S. Do supernovae indicate an accelerating universe? Eur. Phys. J. Spec. Top., 2021, 230(9), 2067-2076.
[http://dx.doi.org/10.1140/epjs/s11734-021-00199-6]
[80]
Li, P. Distance duality test: the evolution of radio sources mimics a nonexpanding universe. Astrophys. J. Lett., 2023, 950(2), L14.
[http://dx.doi.org/10.3847/2041-8213/acdb49]
[81]
Lerner, E.J. Observations contradict galaxy size and surface brightness predictions that are based on the expanding universe hypothesis. Mon. Not. R. Astron. Soc., 2018, 477(3), 3185-3196.
[http://dx.doi.org/10.1093/mnras/sty728]
[82]
Lovyagin, N.; Raikov, A.; Yershov, V.; Lovyagin, Y. Cosmological model tests with JWST. Galaxies, 2022, 10, 108.
[http://dx.doi.org/10.3390/galaxies10060108]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy