Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Advances of Oxidative Stress Impact in Periodontitis: Biomarkers and Effective Targeting Options

Author(s): Chrysi Pouliou and Christina Piperi*

Volume 31, Issue 38, 2024

Published on: 09 May, 2024

Page: [6187 - 6203] Pages: 17

DOI: 10.2174/0109298673297545240507091410

Price: $65

Abstract

Periodontitis is the most common inflammatory oral disease that affects around 15% of adults and contributes to severe periodontal tissue destruction with subsequent tooth loosening and loss. Among the main pathogenic mechanisms underlying periodontitis, excessive reactive oxygen species production and oxidative stress play a predominant role in inducing both local and systemic damage. Current therapeutic approaches have expanded the conventional methods combined with herbal antioxidant compounds to free radical-scavenging nanomaterials and infrared laser therapy, offering promising pre-clinical evidence in periodontitis management. Herein, we review the pathogenic mechanisms of reactive oxygen species tissue damage, along with recent advances in oxidative stress biomarkers and novel targeting options.

Next »
[1]
Nazir, M.A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci., 2017, 11(2), 72-80.
[PMID: 28539867]
[2]
Benjamin, R.M. Oral health: the silent epidemic. Public Health Rep., 2010, 125(2), 158-159.
[http://dx.doi.org/10.1177/003335491012500202] [PMID: 20297740]
[3]
Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem., 2017, 86(1), 715-748.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[4]
Jones, D.P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol., 2008, 295(4), C849-C868.
[http://dx.doi.org/10.1152/ajpcell.00283.2008] [PMID: 18684987]
[5]
Battino, M.; Bullon, P.; Wilson, M.; Newman, H. Oxidative injury and inflammatory periodontal diseases: the challenge of anti-oxidants to free radicals and reactive oxygen species. Crit. Rev. Oral Biol. Med., 1999, 10(4), 458-476.
[http://dx.doi.org/10.1177/10454411990100040301] [PMID: 10634583]
[6]
Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans., 2007, 35(5), 1147-1150.
[http://dx.doi.org/10.1042/BST0351147] [PMID: 17956298]
[7]
Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; Gasparovic, A.C.; Cuadrado, A.; Weber, D.; Poulsen, H.E.; Grune, T.; Schmidt, H.H.H.W.; Ghezzi, P. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal., 2015, 23(14), 1144-1170.
[http://dx.doi.org/10.1089/ars.2015.6317] [PMID: 26415143]
[8]
Franco, R.; Vargas, M.R. Redox biology in neurological function, dysfunction, and aging. Antioxid. Redox Signal., 2018, 28(18), 1583-1586.
[http://dx.doi.org/10.1089/ars.2018.7509] [PMID: 29634346]
[9]
Sadasivam, N.; Kim, Y.J.; Radhakrishnan, K.; Kim, D.K. Oxidative stress, genomic integrity, and liver diseases. Molecules, 2022, 27(10), 3159.
[http://dx.doi.org/10.3390/molecules27103159] [PMID: 35630636]
[10]
Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol., 2003, 552(2), 335-344.
[http://dx.doi.org/10.1113/jphysiol.2003.049478] [PMID: 14561818]
[11]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[12]
Espinosa-Diez, C.; Miguel, V.; Mennerich, D.; Kietzmann, T.; Sánchez-Pérez, P.; Cadenas, S.; Lamas, S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol., 2015, 6, 183-197.
[http://dx.doi.org/10.1016/j.redox.2015.07.008] [PMID: 26233704]
[13]
Russell, E.G.; Cotter, T.G. New insight into the role of reactive oxygen species (ROS) in cellular signal-transduction processes. Int. Rev. Cell Mol. Biol., 2015, 319, 221-254.
[http://dx.doi.org/10.1016/bs.ircmb.2015.07.004] [PMID: 26404470]
[14]
Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol., 2011, 194(1), 7-15.
[http://dx.doi.org/10.1083/jcb.201102095] [PMID: 21746850]
[15]
Weidinger, A.; Kozlov, A. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules, 2015, 5(2), 472-484.
[http://dx.doi.org/10.3390/biom5020472] [PMID: 25884116]
[16]
Obeng-Gyasi, E. Lead exposure and oxidative stress-a life course approach in U.S. adults. Toxics, 2018, 6(3), 42.
[http://dx.doi.org/10.3390/toxics6030042] [PMID: 30071602]
[17]
Besednova, N.N.; Andryukov, B.G.; Zaporozhets, T.S.; Kuznetsova, T.A.; Kryzhanovsky, S.P.; Ermakova, S.P.; Galkina, I.V.; Shchelkanov, M.Y. Molecular targets of brown algae phlorotannins for the therapy of inflammatory processes of various origins. Mar. Drugs, 2022, 20(4), 243.
[http://dx.doi.org/10.3390/md20040243] [PMID: 35447916]
[18]
Perera, W.P.T.D.; Dissanayake, R.K.; Ranatunga, U.I.; Hettiarachchi, N.M.; Perera, K.D.C.; Unagolla, J.M.; De Silva, R.T.; Pahalagedara, L.R. Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Advances, 2020, 10(51), 30785-30795.
[http://dx.doi.org/10.1039/D0RA05755J] [PMID: 35516060]
[19]
Zhu, Y.; Luo, M.; Bai, X.; Li, J.; Nie, P.; Li, B.; Luo, P. SS-31, a mitochondria-targeting peptide, ameliorates kidney disease. Oxid. Med. Cell. Longev., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/1295509] [PMID: 35707274]
[20]
Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/5080843] [PMID: 31737171]
[21]
Ruan, Y.; Jiang, S.; Gericke, A. Age-related macular degeneration: role of oxidative stress and blood vessels. Int. J. Mol. Sci., 2021, 22(3), 1296.
[http://dx.doi.org/10.3390/ijms22031296] [PMID: 33525498]
[22]
Chen, Z.; Gan, J.; Zhang, M.; Du, Y.; Zhao, H. Ferroptosis and its emerging role in pre-eclampsia. Antioxidants, 2022, 11(7), 1282.
[http://dx.doi.org/10.3390/antiox11071282] [PMID: 35883776]
[23]
Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Rev. Mutat. Res., 2021, 787, 108365.
[http://dx.doi.org/10.1016/j.mrrev.2021.108365] [PMID: 34083039]
[24]
Fu, Z.; Zhang, J.; Zhang, Y. Role of molecular hydrogen in ageing and ageing-related diseases. Oxid. Med. Cell. Longev., 2022, 2022, 1-17.
[http://dx.doi.org/10.1155/2022/2249749] [PMID: 35340218]
[25]
Matsuo, K.; Hosoda, K.; Tanaka, J.; Yamamoto, Y.; Imahori, T.; Nakai, T.; Irino, Y.; Shinohara, M.; Sasayama, T.; Kohmura, E. Geranylgeranylacetone attenuates cerebral ischemia–reperfusion injury in rats through the augmentation of HSP 27 phosphorylation: a preliminary study. BMC Neurosci., 2021, 22(1), 9.
[http://dx.doi.org/10.1186/s12868-021-00614-7] [PMID: 33557752]
[26]
Sologova, S.S.; Zavadskiy, S.P.; Mokhosoev, I.M.; Moldogazieva, N.T. Short linear motifs orchestrate functioning of human proteins during embryonic development, redox regulation, and cancer. Metabolites, 2022, 12(5), 464.
[http://dx.doi.org/10.3390/metabo12050464] [PMID: 35629968]
[27]
Khan, S.N.; Kumar, S.; Iqbal, S.; Joy, M.T.; Ramaprabha, G. Oxidative stress, antioxidants and periodontitis: how are they linked? Int. J. Oral Care Res., 2018, 6(2), 107-112.
[28]
Jones, D.P. Redefining oxidative stress. Antioxid. Redox Signal., 2006, 8(9-10), 1865-1879.
[http://dx.doi.org/10.1089/ars.2006.8.1865] [PMID: 16987039]
[29]
Trivedi, S.; Lal, N. Oxidative stress and periodontitis: cause or effect. J. Nepal Dent. Assoc., 2015, 15, 87.
[30]
Jia, L.; Han, N.; Du, J.; Guo, L.; Luo, Z.; Liu, Y. Pathogenesis of important virulence factors of Porphyromonas gingivalis via toll-like receptors. Front. Cell. Infect. Microbiol., 2019, 9, 262.
[http://dx.doi.org/10.3389/fcimb.2019.00262] [PMID: 31380305]
[31]
Sidhu, P.; Shankargouda, S.; Rath, A.; Hesarghatta Ramamurthy, P.; Fernandes, B.; Kumar Singh, A. Therapeutic benefits of liquorice in dentistry. J. Ayurveda Integr. Med., 2020, 11(1), 82-88.
[http://dx.doi.org/10.1016/j.jaim.2017.12.004] [PMID: 30391123]
[32]
Miyasaki, K.T. The neutrophil: mechanisms of controlling periodontal bacteria. J. Periodontol., 1991, 62(12), 761-774.
[http://dx.doi.org/10.1902/jop.1991.62.12.761] [PMID: 1765939]
[33]
Gustafsson, A.; Ito, H.; Åsman, B.; Bergström, K. Hyper-reactive mononuclear cells and neutrophils in chronic periodontitis. J. Clin. Periodontol., 2006, 33(2), 126-129.
[http://dx.doi.org/10.1111/j.1600-051X.2005.00883.x] [PMID: 16441737]
[34]
Matthews, J.B.; Wright, H.J.; Roberts, A.; Cooper, P.R.; Chapple, I.L.C. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis. Clin. Exp. Immunol., 2007, 147(2), 255-264.
[http://dx.doi.org/10.1111/j.1365-2249.2006.03276.x] [PMID: 17223966]
[35]
Ling, M.R.; Chapple, I.L.C.; Matthews, J.B. Neutrophil superoxide release and plasma C-reactive protein levels pre- and post-periodontal therapy. J. Clin. Periodontol., 2016, 43(8), 652-658.
[http://dx.doi.org/10.1111/jcpe.12575] [PMID: 27168055]
[36]
Chapple, I. L.; Matthews, J. B. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol, 2007, 43, 160-232.
[http://dx.doi.org/10.1111/j.1600-0757.2006.00178.x]
[37]
Gustafsson, A.; Åsman, B. Increased release of free oxygen radicals from peripheral neutrophils in adult periodontitis after Feγ-receptor stimulation. J. Clin. Periodontol., 1996, 23(1), 38-44.
[http://dx.doi.org/10.1111/j.1600-051X.1996.tb00502.x] [PMID: 8636455]
[38]
Fredriksson, M.; Gustafsson, A.; Åsman, B.; Bergström, K. Hyper-reactive peripheral neutrophils in adult periodontitis: generation of chemiluminescence and intracellular hydrogen peroxide after in vitro priming and FcγR-stimulation. J. Clin. Periodontol., 1998, 25(5), 394-398.
[http://dx.doi.org/10.1111/j.1600-051X.1998.tb02461.x] [PMID: 9650876]
[39]
Fredriksson, M.I.; Gustafsson, A.K.; Bergström, K.G.; Åsman, B.E. Constitutionally hyperreactive neutrophils in periodontitis. J. Periodontol., 2003, 74(2), 219-224.
[http://dx.doi.org/10.1902/jop.2003.74.2.219] [PMID: 12666711]
[40]
Guarnieri, C.; Zucchelli, G.; Bernardi, F.; Scheda, M.; Valentini, A.F.; Calandriello, M. Enhanced superoxide production with no change of the antioxidant activity in gingival fluid of patients with chronic adult periodontitis. Free Radic. Res. Commun., 1991, 15(1), 11-16.
[http://dx.doi.org/10.3109/10715769109049120] [PMID: 1663065]
[41]
Kimura, S.; Yonemura, T.; Kaya, H. Increased oxidative product formation by peripheral blood polymorphonuclear leukocytes in human periodontal diseases. J. Periodontal Res., 1993, 28(3), 197-203.
[http://dx.doi.org/10.1111/j.1600-0765.1993.tb01069.x] [PMID: 8496783]
[42]
Bullon, P.; Cordero, M.D.; Quiles, J.L.; Morillo, J.M.; Ramirez-Tortosa, M.C.; Battino, M. Mitochondrial dysfunction promoted by Porphyromonas gingivalis lip- opolysaccharide as a possible link between cardiovascular disease and periodontitis. Free Radic. Biol. Med., 2011, 50(10), 1336-1343.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.02.018] [PMID: 21354301]
[43]
Gölz, L.; Memmert, S.; Rath-Deschner, B.; Jäger, A.; Appel, T.; Baumgarten, G.; Götz, W.; Frede, S. LPS from P. gingivalis and hypoxia increases oxidative stress in periodontal ligament fibroblasts and contributes to periodontitis. Mediators Inflamm., 2014, 2014, 1-13.
[http://dx.doi.org/10.1155/2014/986264] [PMID: 25374447]
[44]
Govindaraj, P.; Khan, N.A.; Gopalakrishna, P.; Chandra, R.V.; Vanniarajan, A.; Reddy, A.A.; Singh, S.; Kumaresan, R.; Srinivas, G.; Singh, L.; Thangaraj, K. Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis. Mitochondrion, 2011, 11(3), 504-512.
[http://dx.doi.org/10.1016/j.mito.2011.01.009] [PMID: 21296687]
[45]
Sui, L.; Wang, J.; Xiao, Z.; Yang, Y.; Yang, Z.; Ai, K. ROS-scavenging nanomaterials to treat periodontitis. Front Chem., 2020, 8, 595530.
[http://dx.doi.org/10.3389/fchem.2020.595530] [PMID: 33330384]
[46]
Tottoli, E.M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics, 2020, 12(8), 735.
[http://dx.doi.org/10.3390/pharmaceutics12080735] [PMID: 32764269]
[47]
Cordani, M.; Resines-Urien, E.; Gamonal, A.; Milán-Rois, P.; Salmon, L.; Bousseksou, A.; Costa, J.S.; Somoza, Á. Water soluble iron-based coordination trimers as synergistic adjuvants for pancreatic cancer. Antioxidants, 2021, 10(1), 66.
[http://dx.doi.org/10.3390/antiox10010066] [PMID: 33430324]
[48]
Lee, N.K.; Choi, Y.G.; Baik, J.Y.; Han, S.Y.; Jeong, D.; Bae, Y.S.; Kim, N.; Lee, S.Y. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood, 2005, 106(3), 852-859.
[http://dx.doi.org/10.1182/blood-2004-09-3662] [PMID: 15817678]
[49]
Cochran, D.L. Inflammation and bone loss in periodontal disease. J. Periodontol., 2008, 79(8S)(Suppl.), 1569-1576.
[http://dx.doi.org/10.1902/jop.2008.080233] [PMID: 18673012]
[50]
Graves, D. Cytokines that promote periodontal tissue destruction. J. Periodontol., 2008, 79(8S)(Suppl.), 1585-1591.
[http://dx.doi.org/10.1902/jop.2008.080183] [PMID: 18673014]
[51]
Garrett, I.R.; Boyce, B.F.; Oreffo, R.O.; Bonewald, L.; Poser, J.; Mundy, G.R. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J. Clin. Invest., 1990, 85(3), 632-639.
[http://dx.doi.org/10.1172/JCI114485] [PMID: 2312718]
[52]
Fearon, I.M.; Phillips, G.; Carr, T.; Taylor, M.; Breheny, D.; Faux, S.P. The role of oxidative stress in smoking-related diseases. Mini Rev. Org. Chem., 2011, 8, 360-371.
[http://dx.doi.org/10.2174/157019311797440317]
[53]
Caley, M.P.; Martins, V.L.C.; O’Toole, E.A. Metalloproteinases and wound healing. Adv. Wound Care (New Rochelle), 2015, 4(4), 225-234.
[http://dx.doi.org/10.1089/wound.2014.0581] [PMID: 25945285]
[54]
Stanisic, D.; Obradovic, R.; Vujovic, S.; Jovanovic, M.; Zivkovic, V. The connection of periodontal disease and diabetes mellitus: the role of matrix metalloproteinases and oxidative stress. Serbian J. Exp. Clin. Res., 1019, 2019, 1-10.
[55]
Franco, C.; Patricia, H.R.; Timo, S.; Claudia, B.; Marcela, H. Matrix metalloproteinases as regulators of periodontal inflammation. Int. J. Mol. Sci., 2017, 18(2), 440.
[http://dx.doi.org/10.3390/ijms18020440] [PMID: 28218665]
[56]
Cook-Mills, J.M. Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Cell. Mol. Biol., 2006, 52(4), 8-16.
[PMID: 17543193]
[57]
Osorio, C.; Cavalla, F.; Paula-Lima, A.; Díaz-Araya, G.; Vernal, R.; Ahumada, P.; Gamonal, J.; Hernández, M. H2O2 activates matrix metalloproteinases through the nuclear factor kappa B pathway and Ca2+ signals in human periodontal fibroblasts. J. Periodontal Res., 2015, 50(6), 798-806.
[http://dx.doi.org/10.1111/jre.12267] [PMID: 25824649]
[58]
Hernández-Ríos, P.; Pussinen, P.J.; Vernal, R.; Hernández, M. Oxidative stress in the local and systemic events of apical periodontitis. Front. Physiol., 2017, 8, 869.
[http://dx.doi.org/10.3389/fphys.2017.00869] [PMID: 29163211]
[59]
Desarda, H.; Gaikwad, S. Matrix metalloproteinases & Implication in periodontitis- A short review. Journal of Dental and Allied Sciences, 2013, 2(2), 66.
[http://dx.doi.org/10.4103/2277-4696.159288]
[60]
Moseley, R.; Waddington, R.J.; Embery, G. Degradation of glycosaminoglycans by reactive oxygen species derived from stimulated polymorphonuclear leukocytes. Biochim. Biophys. Acta Mol. Basis Dis., 1997, 1362(2-3), 221-231.
[http://dx.doi.org/10.1016/S0925-4439(97)00083-5] [PMID: 9540853]
[61]
Montemurro, N.; Perrini, P.; Rapone, B. Clinical risk and overall survival in patients with diabetes mellitus, hyperglycemia and glioblastoma multiforme. a review of the current literature. Int. J. Environ. Res. Public Health, 2020, 17(22), 8501.
[http://dx.doi.org/10.3390/ijerph17228501] [PMID: 33212778]
[62]
Pham, V.H.; Gargiulo Isacco, C.; Nguyen, K.C.D.; Le, S.H.; Tran, D.K.; Nguyen, Q.V.; Pham, H.T.; Aityan, S.; Pham, S.T.; Cantore, S.; Inchingolo, A.M.; Inchingolo, A.D.; Dipalma, G.; Ballini, A.; Inchingolo, F. Rapid and sensitive diagnostic procedure for multiple detection of pandemic Coronaviridae family members SARS-CoV-2, SARS-CoV, MERS-CoV and HCoV: a translational research and cooperation between the Phan Chau Trinh University in Vietnam and University of Bari “Aldo Moro” in Italy. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(12), 7173-7191.
[http://dx.doi.org/10.26355/eurrev_202006_21713] [PMID: 32633414]
[63]
Rittié, L.; Monboisse, J.C.; Gorisse, M.C.; Gillery, P. Malondialdehyde binding to proteins dramatically alters fibroblast functions. J. Cell. Physiol., 2002, 191(2), 227-236.
[http://dx.doi.org/10.1002/jcp.10093] [PMID: 12064466]
[64]
Żukowski, P.; Maciejczyk, M.; Waszkiel, D. Sources of free radicals and oxidative stress in the oral cavity. Arch. Oral Biol., 2018, 92, 8-17.
[http://dx.doi.org/10.1016/j.archoralbio.2018.04.018] [PMID: 29729478]
[65]
Sam, C.H.; Lu, H.K. The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease. J. Dent. Sci., 2009, 4(2), 45-54.
[http://dx.doi.org/10.1016/S1991-7902(09)60008-8]
[66]
Morgan, M.J.; Liu, Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103-115.
[http://dx.doi.org/10.1038/cr.2010.178] [PMID: 21187859]
[67]
Souza, J.A.C.; Junior, C.R.; Garlet, G.P.; Nogueira, A.V.B.; Cirelli, J.A. Modulation of host cell signaling pathways as a therapeutic approach in periodontal disease. J. Appl. Oral Sci., 2012, 20(2), 128-138.
[http://dx.doi.org/10.1590/S1678-77572012000200002] [PMID: 22666826]
[68]
Nakano, H.; Nakajima, A.; Sakon-Komazawa, S.; Piao, J-H.; Xue, X.; Okumura, K. Reactive oxygen species mediate crosstalk between NF-κB and JNK. Cell Death Differ., 2006, 13(5), 730-737.
[http://dx.doi.org/10.1038/sj.cdd.4401830] [PMID: 16341124]
[69]
Kang, S.W.; Park, H.J.; Ban, J.Y.; Chung, J.H.; Chun, G.S.; Cho, J.O. Effects of nicotine on apoptosis in human gingival fibroblasts. Arch. Oral Biol., 2011, 56(10), 1091-1097.
[http://dx.doi.org/10.1016/j.archoralbio.2011.03.016] [PMID: 21497792]
[70]
Oben, K.Z.; Alhakeem, S.S.; McKenna, M.K.; Brandon, J.A.; Mani, R.; Noothi, S.K.; Jinpeng, L.; Akunuru, S.; Dhar, S.K.; Singh, I.P.; Liang, Y.; Wang, C.; Abdel-Latif, A.; Stills, H.F., Jr; St Clair, D.K.; Geiger, H.; Muthusamy, N.; Tohyama, K.; Gupta, R.C.; Bondada, S. Oxidative stress-induced JNK/AP-1 signaling is a major pathway involved in selective apoptosis of myelodysplastic syndrome cells by Withaferin-A. Oncotarget, 2017, 8(44), 77436-77452.
[http://dx.doi.org/10.18632/oncotarget.20497] [PMID: 29100399]
[71]
Guo, H.; Callaway, J.B.; Ting, J.P.Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med., 2015, 21(7), 677-687.
[http://dx.doi.org/10.1038/nm.3893] [PMID: 26121197]
[72]
Ding, P.H.; Yang, M.X.; Wang, N.N.; Jin, L.J.; Dong, Y.; Cai, X.; Chen, L.L. Porphyromonas gingivalis-induced NLRP3 inflammasome activation and its downstream interleukin-1β release depend on caspase-4. Front. Microbiol., 2020, 11, 1881.
[http://dx.doi.org/10.3389/fmicb.2020.01881] [PMID: 32903638]
[73]
Marchesan, J.T.; Girnary, M.S.; Moss, K.; Monaghan, E.T.; Egnatz, G.J.; Jiao, Y.; Zhang, S.; Beck, J.; Swanson, K.V. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics. Periodontol. 2000, 2020, 82(1), 93-114.
[http://dx.doi.org/10.1111/prd.12269] [PMID: 31850638]
[74]
Niture, S.K.; Khatri, R.; Jaiswal, A.K. Regulation of Nrf2-an update. Free Radic. Biol. Med., 2014, 66, 36-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.008] [PMID: 23434765]
[75]
Yamaguchi, Y.; Kurita-Ochiai, T.; Kobayashi, R.; Suzuki, T.; Ando, T. Regulation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated periodontal disease. Inflamm. Res., 2017, 66(1), 59-65.
[http://dx.doi.org/10.1007/s00011-016-0992-4] [PMID: 27665233]
[76]
Franchi, L.; Eigenbrod, T.; Muñoz-Planillo, R.; Nuñez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol., 2009, 10(3), 241-247.
[http://dx.doi.org/10.1038/ni.1703] [PMID: 19221555]
[77]
Sima, C.; Aboodi, G.M.; Lakschevitz, F.S.; Sun, C.; Goldberg, M.B.; Glogauer, M. Nuclear Factor Erythroid 2-Related Factor 2 Down-Regulation in oral neutrophils is associated with periodontal oxidative damage and severe chronic periodontitis. Am. J. Pathol., 2016, 186(6), 1417-1426.
[http://dx.doi.org/10.1016/j.ajpath.2016.01.013] [PMID: 27070823]
[78]
Hyeon, S.; Lee, H.; Yang, Y.; Jeong, W. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radic. Biol. Med., 2013, 65, 789-799.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.08.005] [PMID: 23954472]
[79]
Kataoka, K.; Ekuni, D.; Tomofuji, T.; Irie, K.; Kunitomo, M.; Uchida, Y.; Fukuhara, D.; Morita, M. Visualization of oxidative stress induced by experimental periodontitis in Keap1-dependent oxidative stress detector- luciferase mice. Int. J. Mol. Sci., 2016, 17(11), 1907.
[http://dx.doi.org/10.3390/ijms17111907] [PMID: 27854327]
[80]
Ahmadi-Motamayel, F.; Goodarzi, M.T.; Jamshidi, Z.; Kebriaei, R. Evaluation of salivary and serum antioxidant and oxidative stress statuses in patients with chronic periodontitis: A case-control study. Front. Physiol., 2017, 8, 189.
[http://dx.doi.org/10.3389/fphys.2017.00189] [PMID: 28408887]
[81]
Yagi, K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem. Med., 1976, 15(2), 212-216.
[http://dx.doi.org/10.1016/0006-2944(76)90049-1] [PMID: 962904]
[82]
Panjamurthy, K.; Manoharan, S.; Ramachandran, C.R. Lipid peroxidation and antioxidant status in patients with periodontitis. Cell. Mol. Biol. Lett., 2005, 10(2), 255-264.
[PMID: 16010291]
[83]
Tonguç, M.Ö.; Öztürk, Ö.; Sütçü, R.; Ceyhan, B.M.; Kılınç, G.; Sönmez, Y.; Yetkin Ay, Z.; Şahin, Ü.; Baltacıoğlu, E.; Kırzıoğlu, F.Y. The impact of smoking status on antioxidant enzyme activity and malondialdehyde levels in chronic periodontitis. J. Periodontol., 2011, 82(9), 1320-1328.
[http://dx.doi.org/10.1902/jop.2011.100618] [PMID: 21219099]
[84]
Ghallab, N.A.; Hamdy, E.; Shaker, O.G. Malondialdehyde, superoxide, dismutase and melatonin levels in GFC of aggressive and chronic periodontitis patients. Aust. Dent. J., 2016, 61, 53-61.
[http://dx.doi.org/10.1111/adj.12294] [PMID: 25581300]
[85]
Dakovic, D. Malondialdehyde as an indicator of local oxidative cell damage in periodontitis patients. Master's thesis, Military Medical Academy, Sofia, Bulgaria, 2005.
[86]
Wei, D.; Zhang, X-L.; Wang, Y-Z.; Yang, C-X.; Chen, G. Lipid peroxidation levels, total oxidant status and superoxide dismutase in serum, saliva and gingival crevicular fluid in chronic periodontitis patients before and after periodontal therapy. Aust. Dent. J., 2010, 55(1), 70-78.
[http://dx.doi.org/10.1111/j.1834-7819.2009.01123.x] [PMID: 20415915]
[87]
Petersen, D.R.; Doorn, J.A. Reactions of 4-hydroxynonenal with proteins and cellular targets. Free Radic. Biol. Med., 2004, 37(7), 937-945.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.06.012] [PMID: 15336309]
[88]
Altıngöz, S.M.; Kurgan, Ş.; Önder, C.; Serdar, M.A.; Ünlütürk, U.; Uyanık, M.; Başkal, N.; Tatakis, D.N.; Günhan, M. Salivary and serum oxidative stress biomarkers and advanced glycation end products in periodontitis patients with or without diabetes: A cross-sectional study. J. Periodontol., 2021, 92(9), 1274-1285.
[http://dx.doi.org/10.1002/JPER.20-0406] [PMID: 33277933]
[89]
Roberts, L.J., II; Morrow, J.D. Products of the isoprostane pathway: unique bioactive compounds and markers of lipid peroxidation. Cell. Mol. Life Sci., 2002, 59(5), 808-820.
[http://dx.doi.org/10.1007/s00018-002-8469-8] [PMID: 12088281]
[90]
Su, H.; Gornitsky, M.; Velly, A.M.; Yu, H.; Benarroch, M.; Schipper, H.M. Salivary DNA, lipid, and protein oxidation in nonsmokers with periodontal disease. Free Radic. Biol. Med., 2009, 46(7), 914-921.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.01.008] [PMID: 19280702]
[91]
Pradeep, A.R.; Rao, N.S.; Bajaj, P.; Agarwal, E. 8-Isoprostane: A lipid peroxidation product in gingival crevicular fluid in healthy, gingivitis and chronic periodontitis subjects. Arch. Oral Biol., 2013, 58(5), 500-504.
[http://dx.doi.org/10.1016/j.archoralbio.2013.01.011] [PMID: 23453083]
[92]
Nguyen, T.T.; Ngo, L.Q.; Promsudthi, A.; Surarit, R. Salivary oxidative stress biomarkers in chronic periodontitis and acute coronary syndrome. Clin. Oral Investig., 2017, 21(7), 2345-2353.
[http://dx.doi.org/10.1007/s00784-016-2029-3] [PMID: 27987039]
[93]
Halliwell, B. Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come? Am. J. Clin. Nutr., 2000, 72(5), 1082-1087.
[http://dx.doi.org/10.1093/ajcn/72.5.1082] [PMID: 11063432]
[94]
Ekuni, D.; Tomofuji, T.; Tamaki, N.; Sanbe, T.; Azuma, T.; Yamanaka, R.; Yamamoto, T.; Watanabe, T. Mechanical stimulation of gingiva reduces plasma 8-OHdG level in rat periodontitis. Arch. Oral Biol., 2008, 53(4), 324-329.
[http://dx.doi.org/10.1016/j.archoralbio.2007.10.005] [PMID: 18031711]
[95]
Yang, X.; Li, C.; Pan, Y. The influences of periodontal status and periodontal pathogen quantity on salivary 8-hydroxydeoxyguanosine and interleukin-17 levels. J. Periodontol., 2016, 87(5), 591-600.
[http://dx.doi.org/10.1902/jop.2015.150390] [PMID: 26654345]
[96]
Önder, C.; Kurgan, Ş.; Altıngöz, S.M.; Bağış, N.; Uyanık, M.; Serdar, M.A.; Kantarcı, A.; Günhan, M. Impact of non-surgical periodontal therapy on saliva and serum levels of markers of oxidative stress. Clin. Oral Investig., 2017, 21(6), 1961-1969.
[http://dx.doi.org/10.1007/s00784-016-1984-z] [PMID: 27807715]
[97]
Zamora-Perez, A.L.; Ortiz-García, Y.M.; Lazalde-Ramos, B.P.; Guerrero-Velázquez, C.; Gómez-Meda, B.C.; Ramírez-Aguilar, M.Á.; Zúñiga-González, G.M. Increased micronuclei and nuclear abnormalities in buccal mucosa and oxidative damage in saliva from patients with chronic and aggressive periodontal diseases. J. Periodontal Res., 2015, 50(1), 28-36.
[http://dx.doi.org/10.1111/jre.12175] [PMID: 24666368]
[98]
Çanakçı, C.F.; Tatar, A.; Çanakçı, V.; Cicek, Y.; Oztas, S.; Orbak, R. New evidence of premature oxidative DNA damage: mitochondrial DNA deletion in gingival tissue of patients with periodontitis. J. Periodontol., 2006, 77(11), 1894-1900.
[http://dx.doi.org/10.1902/jop.2006.060108] [PMID: 17076616]
[99]
Masi, S.; Salpea, K.D.; Li, K.; Parkar, M.; Nibali, L.; Donos, N.; Patel, K.; Taddei, S.; Deanfield, J.E.; D’Aiuto, F.; Humphries, S.E. Oxidative stress, chronic inflammation, and telomere length in patients with periodontitis. Free Radic. Biol. Med., 2011, 50(6), 730-735.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.12.031] [PMID: 21195167]
[100]
Vo, T.T.T.; Chu, P.M.; Tuan, V.P.; Te, J.S.L.; Lee, I.T. The promising role of antioxidant phytochemicals in the prevention and preatment of periodontal disease via the inhibition of oxidative stress pathways: updated insights. Antioxidants, 2020, 9(12), 1211.
[http://dx.doi.org/10.3390/antiox9121211] [PMID: 33271934]
[101]
Bouayed, J.; Bohn, T. Exogenous antioxidants-double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev., 2010, 3(4), 228-237.
[http://dx.doi.org/10.4161/oxim.3.4.12858] [PMID: 20972369]
[102]
J Mbah, C.; Orabueze, I.; H Okorie, N. Antioxidants properties of natural and synthetic chemical compounds: Therapeutic effects on biological system. Acta Scientific Pharmaceutical Sciences, 2019, 3(6), 28-42.
[http://dx.doi.org/10.31080/ASPS.2019.03.0273]
[103]
Jindal, M.; Tripathi, P.; Blaggana, V.; Upadhyay, P.; Gupta, S.; Nishat, S. Antioxidant therapy (lycopene and green tea extract) in periodontal disease: A promising paradigm. J. Indian Soc. Periodontol., 2019, 23(1), 25-30.
[http://dx.doi.org/10.4103/jisp.jisp_277_18] [PMID: 30692739]
[104]
Kaur, G.; Kathariya, R.; Bansal, S.; Singh, A.; Shahakar, D. Dietary antioxidants and their indispensable role in periodontal health. J. Food Drug Anal., 2016, 24(2), 239-246.
[http://dx.doi.org/10.1016/j.jfda.2015.11.003] [PMID: 28911576]
[105]
Toraman, A.; Arabaci, T.; Aytekin, Z.; Albayrak, M.; Bayir, Y. Effects of vitamin C local application on ligature-induced periodontitis in diabetic rats. J. Appl. Oral Sci., 2020, 28, e20200444.
[http://dx.doi.org/10.1590/1678-7757-2020-0444] [PMID: 33263670]
[106]
Li, L.; Zhang, Y.L.; Liu, X.Y.; Meng, X.; Zhao, R.Q.; Ou, L.L.; Li, B.Z.; Xing, T. Periodontitis exacerbates and promotes the progression of chronic kidney disease through oral flora, cytokines, and oxidative stress. Front. Microbiol., 2021, 12, 656372.
[http://dx.doi.org/10.3389/fmicb.2021.656372] [PMID: 34211440]
[107]
Permuy, M.; López-Peña, M.; González-Cantalapiedra, A.; Muñoz, F. Melatonin: A review of its potential functions and effects on dental disease. Int. J. Mol. Sci., 2017, 18(4), 865.
[http://dx.doi.org/10.3390/ijms18040865] [PMID: 28422058]
[108]
Ramesh, A.; Varghese, S.; Doraiswamy, J.; Malaiappan, S. Herbs as an antioxidant arsenal for periodontal diseases. J. Intercult. Ethnopharmacol., 2016, 5(1), 92-96.
[http://dx.doi.org/10.5455/jice.20160122065556] [PMID: 27069730]
[109]
Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Aspects Med., 2003, 24(6), 345-351.
[http://dx.doi.org/10.1016/S0098-2997(03)00030-X] [PMID: 14585305]
[110]
Kajiura, Y.; Nishikawa, Y.; Lew, J.H.; Kido, J.; Nagata, T.; Naruishi, K. β-carotene suppresses Porphyromonas gingivalis lipopolysaccharide-mediated cytokine production in THP-1 monocytes cultured with high glucose condition. Cell Biol. Int., 2018, 42(1), 105-111.
[http://dx.doi.org/10.1002/cbin.10873] [PMID: 28906038]
[111]
Young, A.J.; Lowe, G.M. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys., 2001, 385(1), 20-27.
[http://dx.doi.org/10.1006/abbi.2000.2149] [PMID: 11361018]
[112]
Nishigaki, M.; Yamamoto, T.; Ichioka, H.; Honjo, K.; Yamamoto, K.; Oseko, F.; Kita, M.; Mazda, O.; Kanamura, N. β-cryptoxanthin regulates bone resorption related-cytokine production in human periodontal ligament cells. Arch. Oral Biol., 2013, 58(7), 880-886.
[http://dx.doi.org/10.1016/j.archoralbio.2013.01.005] [PMID: 23452546]
[113]
Balci Yuce, H.; Lektemur Alpan, A.; Gevrek, F.; Toker, H. Investigation of the effect of astaxanthin on alveolar bone loss in experimental periodontitis. J. Periodontal Res., 2018, 53(1), 131-138.
[http://dx.doi.org/10.1111/jre.12497] [PMID: 29044575]
[114]
Martillanes, S.; Rocha-Pimienta, J.; Delgado-Adamez, J. Agrifood by-products as a source of phytochemical compounds. In: Descriptive food science; intechopen, 2018.
[115]
Vuolo, M.M.; Lima, V.S.; Junior, M.R.M. Bioactive Compounds: Health Benefits and Potential Applications; Woodhead Publishing: Cambridge, UK, 2019, pp. 33-50.
[http://dx.doi.org/10.1016/B978-0-12-814774-0.00002-5]
[116]
Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. (Amst.), 2019, 24, e00370.
[http://dx.doi.org/10.1016/j.btre.2019.e00370] [PMID: 31516850]
[117]
Nugala, B.; Namasi, A.; Emmadi, P.; Krishna, P.M. Role of green tea as an antioxidant in periodontal disease: The Asian paradox. J. Indian Soc. Periodontol., 2012, 16(3), 313-316.
[http://dx.doi.org/10.4103/0972-124X.100902] [PMID: 23162321]
[118]
Cai, Y.; Chen, Z.; Liu, H.; Xuan, Y.; Wang, X.; Luan, Q. Green tea epigallocatechin-3-gallate alleviates Porphyromonas gingivalis -induced periodontitis in mice. Int. Immunopharmacol., 2015, 29(2), 839-845.
[http://dx.doi.org/10.1016/j.intimp.2015.08.033] [PMID: 26359545]
[119]
Hrishi, T.S.; Kundapur, P.P.; Naha, A.; Thomas, B.S.; Kamath, S.; Bhat, G.S. Effect of adjunctive use of green tea dentifrice in periodontitis patients – A Randomized Controlled Pilot Study. Int. J. Dent. Hyg., 2016, 14(3), 178-183.
[http://dx.doi.org/10.1111/idh.12131] [PMID: 25690541]
[120]
Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 2013, 51, 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021] [PMID: 23017782]
[121]
Gutiérrez-Venegas, G.; Kawasaki-Cárdenas, P.; Rita Arroyo-Cruz, S.; Maldonado-Frías, S. Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts. Eur. J. Pharmacol., 2006, 541(1-2), 95-105.
[http://dx.doi.org/10.1016/j.ejphar.2006.03.069] [PMID: 16762341]
[122]
Ben Lagha, A.; Dudonné, S.; Desjardins, Y.; Grenier, D. Wild blueberry (Vaccinium angustifolium Ait.) polyphenols target Fisobacterium nucleatum and the host inflammatory response: Potential innovative molecules for treating periodontal disease. J. Agric. Food Chem., 2015, 63(31), 6999-7008.
[http://dx.doi.org/10.1021/acs.jafc.5b01525] [PMID: 26207764]
[123]
Ben Lagha, A.; Haas, B.; Grenier, D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Sci. Rep., 2017, 7(1), 44815.
[http://dx.doi.org/10.1038/srep44815] [PMID: 28322293]
[124]
Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: characterization and QSAR (quantitative structure activity relationship) models. Front. Microbiol., 2019, 10, 829.
[http://dx.doi.org/10.3389/fmicb.2019.00829] [PMID: 31057527]
[125]
Batchu, S.N.; Chaudhary, K.R.; Wiebe, G.J.; Seubert, J.M. Bioactive compounds in heart disease. In: Bioactive Food as Dietary Interventions for Cardiovascular Disease; Watson, R.R.; Preedy, V.R., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 431-442.
[http://dx.doi.org/10.1016/B978-0-12-396485-4.00026-8]
[126]
Chan, J.Y.Y.; Yuen, A.C.Y.; Chan, R.Y.K.; Chan, S.W. A review of the cardiovascular benefits and antioxidant properties of allicin. Phytother. Res., 2013, 27(5), 637-646.
[http://dx.doi.org/10.1002/ptr.4796] [PMID: 22888009]
[127]
Provinciali, M.; Pierpaoli, E.; Piacenza, F.; Giacconi, R.; Costarelli, L.; Basso, A.; Recchioni, R.; Marcheselli, F.; Bray, D.; Benlhassan, K. Nutritional modulators of cellular senescence in vitro. In: Molecular Basis of Nutrition and Aging; Academic Press.: London, UK., 2016.
[http://dx.doi.org/10.1016/B978-0-12-801816-3.00022-4]
[128]
Shahzad, M.; Millhouse, E.; Culshaw, S.; Edwards, C.A.; Ramage, G.; Combet, E. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct., 2015, 6(3), 719-729.
[http://dx.doi.org/10.1039/C4FO01087F] [PMID: 25585200]
[129]
Elburki, M.S.; Moore, D.D.; Terezakis, N.G.; Zhang, Y.; Lee, H.M.; Johnson, F.; Golub, L.M. A novel chemically modified curcumin reduces inflammation-mediated connective tissue breakdown in a rat model of diabetes: periodontal and systemic effects. J. Periodontal Res., 2017, 52(2), 186-200.
[http://dx.doi.org/10.1111/jre.12381] [PMID: 27038334]
[130]
Guimarães, M.R.; Coimbra, L.S.; de Aquino, S.G.; Spolidorio, L.C.; Kirkwood, K.L.; Rossa, C., Jr. Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo. J. Periodontal Res., 2011, 46(2), 269-279.
[http://dx.doi.org/10.1111/j.1600-0765.2010.01342.x] [PMID: 21306385]
[131]
Elburki, M.S.; Rossa, C., Jr; Guimarães-Stabili, M.R.; Lee, H.M.; Curylofo-Zotti, F.A.; Johnson, F.; Golub, L.M. A chemically modified curcumin (CMC 2.24) inhibits nuclear factor kappaB activation and inflammatory bone loss in murine models of LPS-induced experimental periodontitis and diabetes-associated natural periodontitis. Inflammation, 2017, 40(4), 1436-1449.
[http://dx.doi.org/10.1007/s10753-017-0587-4] [PMID: 28534138]
[132]
Guru, S.; Kothiwale, S.; Saroch, N.; Guru, R. Comparative evaluation of inhibitory effect of curcumin and doxycycline on matrix metalloproteinase-9 activity in chronic periodontitis. Indian J. Dent. Res., 2017, 28(5), 560-565.
[http://dx.doi.org/10.4103/ijdr.IJDR_461_16] [PMID: 29072221]
[133]
Martins, C.A.; Leyhausen, G.; Volk, J.; Geurtsen, W. Curcumin in combination with piperine suppresses osteoclastogenesis in vitro. J. Endod., 2015, 41(10), 1638-1645.
[http://dx.doi.org/10.1016/j.joen.2015.05.009] [PMID: 26300429]
[134]
de Almeida Brandão, D.; Spolidorio, L.C.; Johnson, F.; Golub, L.M.; Guimarães-Stabili, M.R.; Rossa, C., Jr Dose-response assessment of chemically modified curcumin in experimental periodontitis. J. Periodontol., 2019, 90(5), 535-545.
[http://dx.doi.org/10.1002/JPER.18-0392] [PMID: 30394523]
[135]
Guimarães, M.R.; de Aquino, S.G.; Coimbra, L.S.; Spolidorio, L.C.; Kirkwood, K.L.; Rossa, C., Jr. Curcumin modulates the immune response associated with LPS-induced periodontal disease in rats. Innate Immun., 2012, 18(1), 155-163.
[http://dx.doi.org/10.1177/1753425910392935] [PMID: 21242275]
[136]
Curylofo-Zotti, F.A.; Elburki, M.S.; Oliveira, P.A.; Cerri, P.S.; Santos, L.A.; Lee, H.M.; Johnson, F.; Golub, L.M.; Rossa, C.; Guimarães-Stabili, M.R. Differential effects of natural Curcumin and chemically modified curcumin on inflammation and bone resorption in model of experimental periodontitis. Arch. Oral Biol., 2018, 91, 42-50.
[http://dx.doi.org/10.1016/j.archoralbio.2018.04.007] [PMID: 29669267]
[137]
Zambrano, L.M.G.; Brandao, D.A.; Rocha, F.R.G.; Marsiglio, R.P.; Longo, I.B.; Primo, F.L.; Tedesco, A.C.; Guimaraes-Stabili, M.R.; Rossa Junior, C. Local administration of curcumin-loaded nanoparticles effectively inhibits inflammation and bone resorption associated with experimental periodontal disease. Sci. Rep., 2018, 8(1), 6652.
[http://dx.doi.org/10.1038/s41598-018-24866-2] [PMID: 29703905]
[138]
Mazzarino, L.; Borsali, R.; Lemos-Senna, E. Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release. J. Pharm. Sci., 2014, 103(11), 3764-3771.
[http://dx.doi.org/10.1002/jps.24142] [PMID: 25187001]
[139]
Carbinatto, F.M.; Ribeiro, T.S.; Colnago, L.A.; Evangelista, R.C.; Cury, B.S.F. Preparation and characterization of amylose inclusion complexes for drug delivery applications. J. Pharm. Sci., 2016, 105(1), 231-241.
[http://dx.doi.org/10.1002/jps.24702] [PMID: 26579874]
[140]
Nasra, M.M.A.; Khiri, H.M.; Hazzah, H.A.; Abdallah, O.Y. Formulation, in-vitro characterization and clinical evaluation of curcumin in-situ gel for treatment of periodontitis. Drug Deliv., 2017, 24(1), 133-142.
[http://dx.doi.org/10.1080/10717544.2016.1233591] [PMID: 28156166]
[141]
Franck, F.C.; Benatti, B.B.; Andia, D.C.; Cirano, F.R.; Casarin, R.C.; Corrêa, M.G.; Ribeiro, F.V. Impact of resveratrol on bone repair in rats exposed to cigarette smoke inhalation: histomorphometric and bone-related gene expression analysis. Int. J. Oral Maxillofac. Surg., 2018, 47(4), 541-548.
[http://dx.doi.org/10.1016/j.ijom.2017.08.004] [PMID: 28927744]
[142]
Ikeda, E.; Ikeda, Y.; Wang, Y.; Fine, N.; Sheikh, Z.; Viniegra, A.; Barzilay, O.; Ganss, B.; Tenenbaum, H.C.; Glogauer, M. Resveratrol derivative-rich melinjo seed extract induces healing in a murine model of established periodontitis. J. Periodontol., 2018, 89(5), 586-595.
[http://dx.doi.org/10.1002/JPER.17-0352] [PMID: 29856488]
[143]
Orihuela-Campos, R.C.; Tamaki, N.; Mukai, R.; Fukui, M.; Miki, K.; Terao, J.; Ito, H.O. Biological impacts of resveratrol, quercetin, and N-acetylcysteine on oxidative stress in human gingival fibroblasts. J. Clin. Biochem. Nutr., 2015, 56(3), 220-227.
[http://dx.doi.org/10.3164/jcbn.14-129] [PMID: 26060353]
[144]
Bhattarai, G.; Poudel, S.B.; Kook, S.H.; Lee, J.C. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater., 2016, 29, 398-408.
[http://dx.doi.org/10.1016/j.actbio.2015.10.031] [PMID: 26497626]
[145]
Rizzo, A.; Bevilacqua, N.; Guida, L.; Annunziata, M.; Romano Carratelli, C.; Paolillo, R. Effect of resveratrol and modulation of cytokine production on human periodontal ligament cells. Cytokine, 2012, 60(1), 197-204.
[http://dx.doi.org/10.1016/j.cyto.2012.06.004] [PMID: 22749236]
[146]
Wadhwa, D.; Bey, A.; Hasija, M.; Moin, S.; Kumar, A.; Aman, S.; Sharma, V.K. Determination of levels of nitric oxide in smoker and nonsmoker patients with chronic periodontitis. J. Periodontal Implant Sci., 2013, 43(5), 215-220.
[http://dx.doi.org/10.5051/jpis.2013.43.5.215] [PMID: 24236243]
[147]
Casati, M.Z.; Algayer, C.; Cardoso da Cruz, G.; Ribeiro, F.V.; Casarin, R.C.V.; Pimentel, S.P.; Cirano, F.R. Resveratrol decreases periodontal breakdown and modulates local levels of cytokines during periodontitis in rats. J. Periodontol., 2013, 84(10), e58-e64.
[http://dx.doi.org/10.1902/jop.2013.120746] [PMID: 23489233]
[148]
Cirano, F.R.; Casarin, R.C.V.; Ribeiro, F.V.; Casati, M.Z.; Pimentel, S.P.; Taiete, T.; Bernardi, M.M. Effect of Resveratrol on periodontal pathogens during experimental periodontitis in rats. Braz. Oral Res., 2016, 30(1), e128.
[http://dx.doi.org/10.1590/1807-3107bor-2016.vol30.0128] [PMID: 27901209]
[149]
Ornstrup, M.J.; Harsløf, T.; Sørensen, L.; Stenkjær, L.; Langdahl, B.L.; Pedersen, S.B. Resveratrol increases osteoblast differentiation in vitro independently of inflammation. Calcif. Tissue Int., 2016, 99(2), 155-163.
[http://dx.doi.org/10.1007/s00223-016-0130-x] [PMID: 27000750]
[150]
Tamaki, N.; Cristina Orihuela-Campos, R.; Inagaki, Y.; Fukui, M.; Nagata, T.; Ito, H.O. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model. Free Radic. Biol. Med., 2014, 75, 222-229.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.07.034] [PMID: 25091897]
[151]
Ribeiro, I.M.; de Souza Barroso, M.E.; Kampke, E.H.; Braga, L.T.F.; Campagnaro, B.P.; Meyrelles, S.S. Infrared laser therapy decreases systemic oxidative stress and inflammation in hypercholesterolemic mice with periodontitis. Lipids Health Dis., 2023, 22(1), 171.
[http://dx.doi.org/10.1186/s12944-023-01934-9] [PMID: 37817126]
[152]
Bao, X.; Zhao, J.; Sun, J.; Hu, M.; Yang, X. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano, 2018, 12(9), 8882-8892.
[http://dx.doi.org/10.1021/acsnano.8b04022] [PMID: 30028940]
[153]
Higuchi, J.; Fortunato, G.; Woźniak, B.; Chodara, A.; Domaschke, S.; Męczyńska-Wielgosz, S.; Kruszewski, M.; Dommann, A.; Łojkowski, W. Polymer membranes sonocoated and electrosprayed with nano-hydroxyapatite for periodontal tissues regeneration. Nanomaterials (Basel), 2019, 9(11), 1625.
[http://dx.doi.org/10.3390/nano9111625] [PMID: 31731775]
[154]
Kahraman, E.; ÿzhan, G.; ÿzsoy, Y.; Güngör, S. Polymeric micellar nanocarriers of benzoyl peroxide as potential follicular targeting approach for acne treatment. Colloids Surf. B Biointerfaces, 2016, 146, 692-699.
[http://dx.doi.org/10.1016/j.colsurfb.2016.07.029] [PMID: 27434156]
[155]
Bhattarai, G.; Poudel, S.B.; Kook, S.H.; Lee, J.C. Anti-inflammatory, anti-osteoclastic, and antioxidant activities of genistein protect against alveolar bone loss and periodontal tissue degradation in a mouse model of periodontitis. J. Biomed. Mater. Res. A, 2017, 105(9), 2510-2521.
[http://dx.doi.org/10.1002/jbm.a.36109] [PMID: 28509410]
[156]
Murgia, D.; Angellotti, G.; D’Agostino, F.; De Caro, V. Bioadhesive matrix tablets loaded with lipophilic nanoparticles as vehicles for drugs for periodontitis treatment: development and characterization. Polymers (Basel), 2019, 11(11), 1801.
[http://dx.doi.org/10.3390/polym11111801] [PMID: 31684081]
[157]
Goyal, G.; Garg, T.; Rath, G.; Goyal, A.K. Current nanotechnological strategies for an effective delivery of drugs in treatment of periodontal disease. Crit. Rev. Ther. Drug Carrier Syst., 2014, 31(2), 89-119.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2014008117] [PMID: 24940625]
[158]
Shaheen, M.A.; Elmeadawy, S.H.; Bazeed, F.B.; Anees, M.M.; Saleh, N.M. Innovative coenzyme Q10-loaded nanoformulation as an adjunct approach for the management of moderate periodontitis: preparation, evaluation, and clinical study. Drug Deliv. Transl. Res., 2020, 10(2), 548-564.
[http://dx.doi.org/10.1007/s13346-019-00698-z] [PMID: 31953677]
[159]
Alvarez Echazú, M.I.; Olivetti, C.E.; Peralta, I.; Alonso, M.R.; Anesini, C.; Perez, C.J.; Alvarez, G.S.; Desimone, M.F. Development of pH-responsive biopolymer-silica composites loaded with Larrea divaricata Cav. extract with antioxidant activity. Colloids Surf. B Biointerfaces, 2018, 169, 82-91.
[http://dx.doi.org/10.1016/j.colsurfb.2018.05.015] [PMID: 29751344]
[160]
Saita, M.; Kaneko, J.; Sato, T.; Takahashi, S.; Wada-Takahashi, S.; Kawamata, R.; Sakurai, T.; Lee, M.C.; Hamada, N.; Kimoto, K.; Nagasaki, Y. Novel antioxidative nanotherapeutics in a rat periodontitis model: Reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption. Biomaterials, 2016, 76, 292-301.
[http://dx.doi.org/10.1016/j.biomaterials.2015.10.077] [PMID: 26559357]
[161]
Mills, M.P.; Rosen, P.S.; Chambrone, L.; Greenwell, H.; Kao, R.T.; Klokkevold, P.R.; McAllister, B.S.; Reynolds, M.A.; Romanos, G.E.; Wang, H.L. American Academy of Periodontology best evidence consensus statement on the efficacy of laser therapy used alone or as an adjunct to non-surgical and surgical treatment of periodontitis and peri-implant diseases. J. Periodontol., 2018, 89(7), 737-742.
[http://dx.doi.org/10.1002/JPER.17-0356] [PMID: 29693260]
[162]
Santos, M.A.F.M.; Silva, D.N.; Rovaris, K.; Sousa, F.B.; Dantas, E.L.A.; Loureiro, L.A.; Pereira, T.M.C.; Meyrelles, S.S.; Bertollo, R.M.; Vasquez, E.C. Optimal parameters of laser therapy to improve critical calvarial defects. Front. Physiol., 2022, 13, 841146.
[http://dx.doi.org/10.3389/fphys.2022.841146] [PMID: 35283760]
[163]
Marques, M.M.; Pereira, A.N.; Fujihara, N.A.; Nogueira, F.N.; Eduardo, C.P. Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg. Med., 2004, 34(3), 260-265.
[http://dx.doi.org/10.1002/lsm.20008] [PMID: 15022254]
[164]
R Hamblin, M. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys., 2017, 4(3), 337-361.
[http://dx.doi.org/10.3934/biophy.2017.3.337] [PMID: 28748217]
[165]
Karu, T.I. Low-power laser therapy. In: Biomedical Photonics Handbook, 1st ed; Vo-Dinh, T., Ed.; CRC Press: Boca Raton, FL, 2003; pp. 1-25.
[http://dx.doi.org/10.1201/9780203008997.ch48]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy