Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Fragment-based Drug Discovery Strategy and its Application to the Design of SARS-CoV-2 Main Protease Inhibitor

Author(s): Yu Jiang, Yingnan Wu, Jing Wang, Yuheng Ma, Hui Yu* and Zhanli Wang*

Volume 31, Issue 38, 2024

Published on: 25 March, 2024

Page: [6204 - 6226] Pages: 23

DOI: 10.2174/0109298673294251240229070740

Price: $65

Abstract

Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) emerged at the end of 2019, causing a highly infectious and pathogenic disease known as 2019 coronavirus disease. This disease poses a serious threat to human health and public safety. The SARS-CoV-2 main protease (Mpro) is a highly sought-after target for developing drugs against COVID-19 due to its exceptional specificity. Its crystal structure has been extensively documented. Numerous strategies have been employed in the investigation of Mpro inhibitors. This paper is primarily concerned with Fragment-based Drug Discovery (FBDD), which has emerged as an effective approach to drug design in recent times. Here, we summarize the research on the approach of FBDD and its application in developing inhibitors for SARS-CoV-2 Mpro.

[1]
World health organization. Number of COVID-19 cases reported to WHO. Available from: https://covid19.who.int/
[2]
Moshkovits, I.; Shepshelovich, D. Emergency use authorizations of COVID-19-related medical products. JAMA Intern. Med., 2022, 182(2), 228-229.
[http://dx.doi.org/10.1001/jamainternmed.2021.7257] [PMID: 34928303]
[3]
Nutho, B.; Mahalapbutr, P.; Hengphasatporn, K.; Pattaranggoon, N.C.; Simanon, N.; Shigeta, Y.; Hannongbua, S.; Rungrotmongkol, T. Why are lopinavir and ritonavir effective against the newly emerged coronavirus 2019? Atomistic insights into the inhibitory mechanisms. Biochemistry, 2020, 59(18), 1769-1779.
[http://dx.doi.org/10.1021/acs.biochem.0c00160] [PMID: 32293875]
[4]
Macías, J.; Pinilla, A.; Dominguez, L.F.A.; Corma, A.; Macias, C.E.; Serna, G.A.; Pizarraya, G.A.; Fuertes, F.M.; Verdugo, M.R.; Trigo, M.; Real, L.M.; Pineda, J.A. High rate of major drug-drug interactions of lopinavir-ritonavir for COVID-19 treatment. Sci. Rep., 2020, 10(1), 20958.
[http://dx.doi.org/10.1038/s41598-020-78029-3] [PMID: 33262433]
[5]
Bolcato, G.; Bissaro, M.; Pavan, M.; Sturlese, M.; Moro, S. Targeting the coronavirus SARS-CoV-2: Computational insights into the mechanism of action of the protease inhibitors lopinavir, ritonavir and nelfinavir. Sci. Rep., 2020, 10(1), 20927.
[http://dx.doi.org/10.1038/s41598-020-77700-z] [PMID: 33262359]
[6]
Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; Ray, A.S.; Cihlar, T.; Siegel, D.; Mackman, R.L.; Clarke, M.O.; Baric, R.S.; Denison, M.R. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 2018, 9(2), e00221-18.
[http://dx.doi.org/10.1128/mBio.00221-18] [PMID: 29511076]
[7]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[8]
Liu, X.; Li, Z.; Liu, S.; Sun, J.; Chen, Z.; Jiang, M.; Zhang, Q.; Wei, Y.; Wang, X.; Huang, Y.Y.; Shi, Y.; Xu, Y.; Xian, H.; Bai, F.; Ou, C.; Xiong, B.; Lew, A.M.; Cui, J.; Fang, R.; Huang, H.; Zhao, J.; Hong, X.; Zhang, Y.; Zhou, F.; Luo, H.B. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm. Sin. B, 2020, 10(7), 1205-1215.
[http://dx.doi.org/10.1016/j.apsb.2020.04.008] [PMID: 32318327]
[9]
Singh, R.; Vijayan, V. Chloroquine: A potential drug in the COVID-19 scenario. INAE Letters, 2020, 5(2), 399-410.
[http://dx.doi.org/10.1007/s41403-020-00114-w]
[10]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[11]
Patel, J.; Berezowski, I.; Abdelmonem, A.; Taylor, D.; Pourmand, A. Azithromycin for mild-to-moderate COVID-19. Lancet Respir. Med., 2021, 9(10), e99.
[http://dx.doi.org/10.1016/S2213-2600(21)00379-9] [PMID: 34509194]
[12]
Annane, D. Corticosteroids for COVID-19. J. Intensive Care Med., 2021, 1(1), 14-25.
[http://dx.doi.org/10.1016/j.jointm.2021.01.002] [PMID: 36943816]
[13]
Jin, Z.; Zhao, Y.; Sun, Y.; Zhang, B.; Wang, H.; Wu, Y.; Zhu, Y.; Zhu, C.; Hu, T.; Du, X.; Duan, Y.; Yu, J.; Yang, X.; Yang, X.; Yang, K.; Liu, X.; Guddat, L.W.; Xiao, G.; Zhang, L.; Yang, H.; Rao, Z. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat. Struct. Mol. Biol., 2020, 27(6), 529-532.
[http://dx.doi.org/10.1038/s41594-020-0440-6] [PMID: 32382072]
[14]
Wang, R.; Hu, Q.; Wang, H.; Zhu, G.; Wang, M.; Zhang, Q.; Zhao, Y.; Li, C.; Zhang, Y.; Ge, G.; Chen, H.; Chen, L. Identification of vitamin K3 and its analogues as covalent inhibitors of SARS-CoV-2 3CLpro. Int. J. Biol. Macromol., 2021, 183, 182-192.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.129] [PMID: 33901557]
[15]
Hu, Y.; Ma, C.; Szeto, T.; Hurst, B.; Tarbet, B.; Wang, J. Boceprevir, calpain inhibitors II and XII, and GC-376 have broad-spectrum antiviral activity against coronaviruses. ACS Infect. Dis., 2021, 7(3), 586-597.
[http://dx.doi.org/10.1021/acsinfecdis.0c00761] [PMID: 33645977]
[16]
Laplantine, E.; Chable-Bessia, C.; Oudin, A.; Swain, J.; Soria, A.; Merida, P.; Gourdelier, M.; Mestiri, S.; Besseghe, I.; Bremaud, E.; Neyret, A.; Lyonnais, S.; Favard, C.; Benaroch, P.; Hubert, M.; Schwartz, O.; Guerin, M.; Danckaert, A.; Del Nery, E.; Muriaux, D.; Weil, R. The FDA-approved drug Auranofin has a dual inhibitory effect on SARS-CoV-2 entry and NF-κB signaling. iScience, 2022, 25(10), 105066.
[http://dx.doi.org/10.1016/j.isci.2022.105066] [PMID: 36093378]
[17]
Teli, D.M.; Shah, M.B.; Chhabria, M.T. In silico screening of natural compounds as potential inhibitors of SARS-CoV-2 main protease and Spike RBD: Targets for COVID-19. Front. Mol. Biosci., 2021, 7, 599079.
[http://dx.doi.org/10.3389/fmolb.2020.599079] [PMID: 33542917]
[18]
Zhang, Z.; Shen, Q.; Chang, H. Vaccines for COVID-19: A systematic review of immunogenicity, current development, and future prospects. Front. Immunol., 2022, 13, 843928.
[http://dx.doi.org/10.3389/fimmu.2022.843928] [PMID: 35572592]
[19]
Zhang, J.; Zeng, H.; Gu, J.; Li, H.; Zheng, L.; Zou, Q. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines, 2020, 8(2), 153.
[http://dx.doi.org/10.3390/vaccines8020153] [PMID: 32235387]
[20]
Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; Sastre, G.A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468.
[http://dx.doi.org/10.1038/s41586-020-2286-9] [PMID: 32353859]
[21]
Ahmad, S.; Mirza, U.M.; Yean Kee, L.; Nazir, M.; Rahman, A.N.; Trant, J.F.; Abdullah, I. Fragment-based in silico design of SARS-CoV-2 main protease inhibitors. Chem. Biol. Drug Des., 2021, 98(4), 604-619.
[http://dx.doi.org/10.1111/cbdd.13914] [PMID: 34148292]
[22]
Parker, M.R.; Feng, D.; Chamuris, B.; Margolskee, R.F. Expression and nuclear translocation of glucocorticoid receptors in type 2 taste receptor cells. Neurosci. Lett., 2014, 571, 72-77.
[http://dx.doi.org/10.1016/j.neulet.2014.04.047] [PMID: 24814581]
[23]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[24]
Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[25]
Hasöksüz, M.; Kiliç, S.; Saraç, F. Coronaviruses and SARS-COV-2. Turk. J. Med. Sci., 2020, 50(SI-1), 549-556.
[http://dx.doi.org/10.3906/sag-2004-127] [PMID: 32293832]
[26]
Corman, V.M.; Muth, D.; Niemeyer, D.; Drosten, C. Hosts and sources of endemic human coronaviruses. Adv. Virus Res., 2018, 100, 163-188.
[http://dx.doi.org/10.1016/bs.aivir.2018.01.001] [PMID: 29551135]
[27]
Schirtzinger, E.E.; Kim, Y.; Davis, A.S. Improving human coronavirus OC43 (HCoV-OC43) research comparability in studies using HCoV-OC43 as a surrogate for SARS-CoV-2. J. Virol. Methods, 2022, 299, 114317.
[http://dx.doi.org/10.1016/j.jviromet.2021.114317] [PMID: 34634321]
[28]
Stadler, K.; Masignani, V.; Eickmann, M.; Becker, S.; Abrignani, S.; Klenk, H.D.; Rappuoli, R. SARS - beginning to understand a new virus. Nat. Rev. Microbiol., 2003, 1(3), 209-218.
[http://dx.doi.org/10.1038/nrmicro775] [PMID: 15035025]
[29]
Kesheh, M.M.; Hosseini, P.; Soltani, S.; Zandi, M. An overview on the seven pathogenic human coronaviruses. Rev. Med. Virol., 2022, 32(2), e2282.
[http://dx.doi.org/10.1002/rmv.2282] [PMID: 34339073]
[30]
Woo, P.C.Y.; Lau, S.K.P.; Chu, C.; Chan, K.; Tsoi, H.; Huang, Y.; Wong, B.H.L.; Poon, R.W.S.; Cai, J.J.; Luk, W.; Poon, L.L.M.; Wong, S.S.Y.; Guan, Y.; Peiris, J.S.M.; Yuen, K. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol., 2005, 79(2), 884-895.
[http://dx.doi.org/10.1128/JVI.79.2.884-895.2005] [PMID: 15613317]
[31]
Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820.
[http://dx.doi.org/10.1056/NEJMoa1211721] [PMID: 23075143]
[32]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. Author Correction: A new coronavirus associated with human respiratory disease in China. Nature, 2020, 580(7803), E7-E7.
[http://dx.doi.org/10.1038/s41586-020-2202-3] [PMID: 32296181]
[33]
Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; Penzar, D.; Perlman, S.; Poon, L.L.M.; Samborskiy, D.V.; Sidorov, I.A.; Sola, I.; Ziebuhr, J. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[34]
Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; Zhang, Q.; Wu, J. Coronavirus infections and immune responses. J. Med. Virol., 2020, 92(4), 424-432.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[35]
Graham, R.L.; Donaldson, E.F.; Baric, R.S. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol., 2013, 11(12), 836-848.
[http://dx.doi.org/10.1038/nrmicro3143] [PMID: 24217413]
[36]
Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[37]
Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.W.; Müller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.A.; Zaki, A.; Fouchier, R.A.M.; Thiel, V.; Drosten, C.; Rottier, P.J.M.; Osterhaus, A.D.M.E.; Bosch, B.J.; Haagmans, B.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495(7440), 251-254.
[http://dx.doi.org/10.1038/nature12005] [PMID: 23486063]
[38]
Huang, J.; Song, W.; Huang, H.; Sun, Q. Pharmacological therapeutics targeting RNA-dependent RNA polymerase, proteinase and Spike protein: From mechanistic studies to clinical trials for COVID-19. J. Clin. Med., 2020, 9(4), 1131.
[http://dx.doi.org/10.3390/jcm9041131] [PMID: 32326602]
[39]
Mirza, M.U.; Froeyen, M. Structural elucidation of SARS- CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J. Pharm. Anal., 2020, 10(4), 320-328.
[http://dx.doi.org/10.1016/j.jpha.2020.04.008] [PMID: 32346490]
[40]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[41]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[42]
Hussain, S.; Pan, J.; Chen, Y.; Yang, Y.; Xu, J.; Peng, Y.; Wu, Y.; Li, Z.; Zhu, Y.; Tien, P.; Guo, D. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J. Virol., 2005, 79(9), 5288-5295.
[http://dx.doi.org/10.1128/JVI.79.9.5288-5295.2005] [PMID: 15827143]
[43]
Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol., 2015, 1282, 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1] [PMID: 25720466]
[44]
Xia, B.; Kang, X. Activation and maturation of SARS- CoV main protease. Protein Cell, 2011, 2(4), 282-290.
[http://dx.doi.org/10.1007/s13238-011-1034-1] [PMID: 21533772]
[45]
Alhayali, A.; Vuddanda, P.R.; Velaga, S. Silodosin oral films: Development, physico-mechanical properties and in vitro dissolution studies in simulated saliva. J. Drug Deliv. Sci. Technol., 2019, 53, 101122.
[http://dx.doi.org/10.1016/j.jddst.2019.06.019]
[46]
Goyal, B.; Goyal, D. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Comb. Sci., 2020, 22(6), 297-305.
[http://dx.doi.org/10.1021/acscombsci.0c00058] [PMID: 32402186]
[47]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[48]
Fu, L.; Ye, F.; Feng, Y.; Yu, F.; Wang, Q.; Wu, Y.; Zhao, C.; Sun, H.; Huang, B.; Niu, P.; Song, H.; Shi, Y.; Li, X.; Tan, W.; Qi, J.; Gao, G.F. Both boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat. Commun., 2020, 11(1), 4417.
[http://dx.doi.org/10.1038/s41467-020-18233-x] [PMID: 32887884]
[49]
Su, H.; Yao, S.; Zhao, W.; Li, M.; Liu, J.; Shang, W.; Xie, H.; Ke, C.; Hu, H.; Gao, M.; Yu, K.; Liu, H.; Shen, J.; Tang, W.; Zhang, L.; Xiao, G.; Ni, L.; Wang, D.; Zuo, J.; Jiang, H.; Bai, F.; Wu, Y.; Ye, Y.; Xu, Y. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin., 2020, 41(9), 1167-1177.
[http://dx.doi.org/10.1038/s41401-020-0483-6] [PMID: 32737471]
[50]
Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science, 2003, 300(5626), 1763-1767.
[http://dx.doi.org/10.1126/science.1085658] [PMID: 12746549]
[51]
Fan, K.; Ma, L.; Han, X.; Liang, H.; Wei, P.; Liu, Y.; Lai, L. The substrate specificity of SARS coronavirus 3C-like proteinase. Biochem. Biophys. Res. Commun., 2005, 329(3), 934-940.
[http://dx.doi.org/10.1016/j.bbrc.2005.02.061] [PMID: 15752746]
[52]
Ramajayam, R.; Tan, K.P.; Liang, P.H. Recent development of 3C and 3CL protease inhibitors for anti-coronavirus and anti-picornavirus drug discovery. Biochem. Soc. Trans., 2011, 39(5), 1371-1375.
[http://dx.doi.org/10.1042/BST0391371] [PMID: 21936817]
[53]
Berry, M.; Fielding, B.; Gamieldien, J. Potential broad spectrum inhibitors of the coronavirus 3CLpro: A virtual screening and structure-based drug design study. Viruses, 2015, 7(12), 6642-6660.
[http://dx.doi.org/10.3390/v7122963] [PMID: 26694449]
[54]
Xiong, M.; Su, H.; Zhao, W.; Xie, H.; Shao, Q.; Xu, Y. What coronavirus 3C-like protease tells us: From structure, substrate selectivity, to inhibitor design. Med. Res. Rev., 2021, 41(4), 1965-1998.
[http://dx.doi.org/10.1002/med.21783] [PMID: 33460213]
[55]
Cui, W.; Yang, K.; Yang, H. Recent progress in the drug development targeting SARS-CoV-2 main protease as treatment for COVID-19. Front. Mol. Biosci., 2020, 7, 616341.
[http://dx.doi.org/10.3389/fmolb.2020.616341] [PMID: 33344509]
[56]
Wildes, J.E.; Marcus, M.D. Weight suppression as a predictor of weight gain and response to intensive behavioral treatment in patients with anorexia nervosa. Behav. Res. Ther., 2012, 50(4), 266-274.
[http://dx.doi.org/10.1016/j.brat.2012.02.006] [PMID: 22398152]
[57]
Fattori, D. Molecular recognition: The fragment approach in lead generation. Drug Discov. Today, 2004, 9(5), 229-238.
[http://dx.doi.org/10.1016/S1359-6446(03)03007-1] [PMID: 14980541]
[58]
Hajduk, P.J.; Greer, J. A decade of fragment-based drug design: Strategic advances and lessons learned. Nat. Rev. Drug Discov., 2007, 6(3), 211-219.
[http://dx.doi.org/10.1038/nrd2220] [PMID: 17290284]
[59]
Loging, W.; Harland, L.; Jones, W.B. High-throughput electronic biology: mining information for drug discovery. Nat. Rev. Drug Discov., 2007, 6(3), 220-230.
[http://dx.doi.org/10.1038/nrd2265] [PMID: 17330071]
[60]
Orita, M.; Ohno, K.; Niimi, T. Two ‘Golden Ratio’ indices in fragment-based drug discovery. Drug Discov. Today, 2009, 14(5-6), 321-328.
[http://dx.doi.org/10.1016/j.drudis.2008.10.006] [PMID: 19028598]
[61]
Scott, D.E.; Coyne, A.G.; Hudson, S.A.; Abell, C. Fragment-based approaches in drug discovery and chemical biology. Biochemistry, 2012, 51(25), 4990-5003.
[http://dx.doi.org/10.1021/bi3005126] [PMID: 22697260]
[62]
Hall, R.J.; Mortenson, P.N.; Murray, C.W. Efficient exploration of chemical space by fragment-based screening. Prog. Biophys. Mol. Biol., 2014, 116(2-3), 82-91.
[http://dx.doi.org/10.1016/j.pbiomolbio.2014.09.007] [PMID: 25268064]
[63]
Joseph-McCarthy, D.; Campbell, A.J.; Kern, G.; Moustakas, D. Fragment-based lead discovery and design. J. Chem. Inf. Model., 2014, 54(3), 693-704.
[http://dx.doi.org/10.1021/ci400731w] [PMID: 24490951]
[64]
Congreve, M.; Carr, R.; Murray, C.; Jhoti, H. A ‘Rule of Three’ for fragment-based lead discovery? Drug Discov. Today, 2003, 8(19), 876-877.
[http://dx.doi.org/10.1016/S1359-6446(03)02831-9] [PMID: 14554012]
[65]
Erlanson, D.A.; Fesik, S.W.; Hubbard, R.E.; Jahnke, W.; Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov., 2016, 15(9), 605-619.
[http://dx.doi.org/10.1038/nrd.2016.109] [PMID: 27417849]
[66]
Leach, A.R.; Hann, M.M.; Burrows, J.N.; Griffen, E.J. Fragment screening: An introduction. Mol. Biosyst., 2006, 2(9), 429.
[http://dx.doi.org/10.1039/b610069b] [PMID: 17153140]
[67]
Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[68]
Morley, A.D.; Pugliese, A.; Birchall, K.; Bower, J.; Brennan, P.; Brown, N.; Chapman, T.; Drysdale, M.; Gilbert, I.H.; Hoelder, S.; Jordan, A.; Ley, S.V.; Merritt, A.; Miller, D.; Swarbrick, M.E.; Wyatt, P.G. Fragment-based hit identification: Thinking in 3D. Drug Discov. Today, 2013, 18(23-24), 1221-1227.
[http://dx.doi.org/10.1016/j.drudis.2013.07.011] [PMID: 23906694]
[69]
Over, B.; Wetzel, S.; Grütter, C.; Nakai, Y.; Renner, S.; Rauh, D.; Waldmann, H. Natural-product-derived fragments for fragment-based ligand discovery. Nat. Chem., 2013, 5(1), 21-28.
[http://dx.doi.org/10.1038/nchem.1506] [PMID: 23247173]
[70]
Vulpetti, A.; Dalvit, C. Design and generation of highly diverse fluorinated fragment libraries and their efficient screening with improved (19) F NMR methodology. ChemMedChem, 2013, 8(12), 2057-2069.
[http://dx.doi.org/10.1002/cmdc.201300351] [PMID: 24127294]
[71]
Shuker, S.B.; Hajduk, P.J.; Meadows, R.P.; Fesik, S.W. Discovering high-affinity ligands for proteins: SAR by NMR. Science, 1996, 274(5292), 1531-1534.
[http://dx.doi.org/10.1126/science.274.5292.1531] [PMID: 8929414]
[72]
Jhoti, H.; Cleasby, A.; Verdonk, M.; Williams, G. Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr. Opin. Chem. Biol., 2007, 11(5), 485-493.
[http://dx.doi.org/10.1016/j.cbpa.2007.07.010] [PMID: 17851109]
[73]
Lepre, C.A. Practical aspects of NMR-based fragment screening. In: Methods in Enzymology; Elsevier, 2011; 493, pp. 219-239.
[74]
Stockman, B.J.; Dalvit, C. NMR screening techniques in drug discovery and drug design. Prog. Nucl. Magn. Reson. Spectrosc., 2002, 41(3-4), 187-231.
[http://dx.doi.org/10.1016/S0079-6565(02)00049-3]
[75]
Haselhorst, T.; Lamerz, A.C.; Itzstein, M. v. Saturation transfer difference NMR spectroscopy as a technique to investigate protein-carbohydrate interactions in solution. Methods Mol Biol, 2009, 534, 375-386.
[76]
Dalvit, C.; Fogliatto, G.; Stewart, A.; Veronesi, M.; Stockman, B. WaterLOGSY as a method for primary NMR screening: Practical aspects and range of applicability. J. Biomol. NMR, 2001, 21(4), 349-359.
[http://dx.doi.org/10.1023/A:1013302231549] [PMID: 11824754]
[77]
Dalvit, C.; Fagerness, P.E.; Hadden, D.T.A.; Sarver, R.W.; Stockman, B.J. Fluorine-NMR experiments for high-throughput screening: Theoretical aspects, practical considerations, and range of applicability. J. Am. Chem. Soc., 2003, 125(25), 7696-7703.
[http://dx.doi.org/10.1021/ja034646d] [PMID: 12812511]
[78]
Cala, O.; Krimm, I. Ligand-orientation based fragment selection in STD NMR screening. J. Med. Chem., 2015, 58(21), 8739-8742.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01114] [PMID: 26492576]
[79]
Berg, H.; Wirtz Martin, M.A.; Altincekic, N.; Alshamleh, I.; Kaur Bains, J.; Blechar, J.; Ceylan, B.; de Jesus, V.; Dhamotharan, K.; Fuks, C.; Gande, S.L.; Hargittay, B.; Hohmann, K.F.; Hutchison, M.T.; Marianne Korn, S.; Krishnathas, R.; Kutz, F.; Linhard, V.; Matzel, T.; Meiser, N.; Niesteruk, A.; Pyper, D.J.; Schulte, L.; Trucks, S.; Azzaoui, K.; Blommers, M.J.J.; Gadiya, Y.; Karki, R.; Zaliani, A.; Gribbon, P.; da Silva Almeida, M.; Dinis Anobom, C.; Bula, A.L.; Bütikofer, M.; Caruso, P.Í.; Felli, C.I.; Da Poian, A.T.; de Amorim, C.G.; Fourkiotis, N.K.; Gallo, A.; Ghosh, D.; Neto, G.F.; Gorbatyuk, O.; Hao, B.; Kurauskas, V.; Lecoq, L.; Li, Y.; Antunes, C.M.N.; Mompeán, M.; Martins, C.N.T.; Pedrosa, N.M.; Pinheiro, A.S.; Pontoriero, L.; Pustovalova, Y.; Riek, R.; Robertson, A.J.; Saad, J.A.M.; Treviño, M.Á.; Tsika, A.C.; Almeida, F.C.L.; Bax, A.; Wildman, H.K.; Hoch, J.C.; Jaudzems, K.; Laurents, D.V.; Orts, J.; Pierattelli, R.; Spyroulias, G.A.; Ferner, D.E.; Ferner, J.; Fürtig, B.; Hengesbach, M.; Löhr, F.; Qureshi, N.; Richter, C.; Saxena, K.; Schlundt, A.; Sreeramulu, S.; Wacker, A.; Weigand, J.E.; Bartoschek, W.J.; Wöhnert, J.; Schwalbe, H. Comprehensive fragment screening of the SARS-CoV-2 proteome explores novel chemical space for drug development. Angew. Chem. Int. Ed., 2022, 61(46), e202205858.
[http://dx.doi.org/10.1002/anie.202205858]
[80]
Geschwindner, S.; Carlsson, J.F.; Knecht, W. Application of optical biosensors in small-molecule screening activities. Sensors, 2012, 12(4), 4311-4323.
[http://dx.doi.org/10.3390/s120404311] [PMID: 22666031]
[81]
Nylander, C.; Liedberg, B.; Lind, T. Gas detection by means of surface plasmon resonance. Sens. Actuators, 1982, 3, 79-88.
[http://dx.doi.org/10.1016/0250-6874(82)80008-5]
[82]
Liedberg, B.; Nylander, C.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators, 1983, 4, 299-304.
[http://dx.doi.org/10.1016/0250-6874(83)85036-7]
[83]
Neumann, T.; Junker, H-D.; Schmidt, K.; Sekul, R. SPR-based fragment screening: Advantages and applications. Curr. Top. Med. Chem., 2007, 7(16), 1630-1642.
[http://dx.doi.org/10.2174/156802607782341073] [PMID: 17979772]
[84]
Danielson, U.H. Integrating surface plasmon resonance biosensor-based interaction kinetic analyses into the lead discovery and optimization process. Future Med. Chem., 2009, 1(8), 1399-1414.
[http://dx.doi.org/10.4155/fmc.09.100] [PMID: 21426056]
[85]
Giannetti, A.M. From experimental design to validated hits: A comprehensive walk-through of fragment lead identification using surface plasmon resonance. In: Methods in Enzymology; Elsevier, 2011; 493, pp. 169-218.
[86]
Löfås, S.; Malmqvist, M.; Rönnberg, I.; Stenberg, E.; Liedberg, B.; Lundström, I. Bioanalysis with surface plasmon resonance. Sens. Actuators B Chem., 1991, 5(1-4), 79-84.
[http://dx.doi.org/10.1016/0925-4005(91)80224-8]
[87]
Day, Y.S.N.; Baird, C.L.; Rich, R.L.; Myszka, D.G. Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface- and solution-based biophysical methods. Protein Sci., 2002, 11(5), 1017-1025.
[http://dx.doi.org/10.1110/ps.4330102] [PMID: 11967359]
[88]
Albert, J.; Blomberg, N.; Breeze, A.; Brown, A.; Burrows, J.; Edwards, P.; Folmer, R.; Geschwindner, S.; Griffen, E.; Kenny, P.; Nowak, T.; Olsson, L.L.; Sanganee, H.; Shapiro, A. An integrated approach to fragment-based lead generation: Philosophy, strategy and case studies from Astra Zeneca’s drug discovery programmes. Curr. Top. Med. Chem., 2007, 7(16), 1600-1629.
[http://dx.doi.org/10.2174/156802607782341091] [PMID: 17979771]
[89]
Nienaber, V.L.; Richardson, P.L.; Klighofer, V.; Bouska, J.J.; Giranda, V.L.; Greer, J. Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat. Biotechnol., 2000, 18(10), 1105-1108.
[http://dx.doi.org/10.1038/80319] [PMID: 11017052]
[90]
Hartshorn, M.J.; Murray, C.W.; Cleasby, A.; Frederickson, M.; Tickle, I.J.; Jhoti, H. Fragment-based lead discovery using X-ray crystallography. J. Med. Chem., 2005, 48(2), 403-413.
[http://dx.doi.org/10.1021/jm0495778] [PMID: 15658854]
[91]
Davies, T.G.; Wixted, W.E.; Coyle, J.E.; Jones, G.C.; Hearn, K.; McMenamin, R.; Norton, D.; Rich, S.J.; Richardson, C.; Saxty, G.; Willems, H.M.G.; Woolford, A.J.A.; Cottom, J.E.; Kou, J.P.; Yonchuk, J.G.; Feldser, H.G.; Sanchez, Y.; Foley, J.P.; Bolognese, B.J.; Logan, G.; Podolin, P.L.; Yan, H.; Callahan, J.F.; Heightman, T.D.; Kerns, J.K. Monoacidic inhibitors of the Kelch-like ECH-associated protein 1: Nuclear factor erythroid 2-related factor 2 (KEAP1: NRF2) protein–protein interaction with high cell potency identified by fragment-based discovery. J. Med. Chem., 2016, 59(8), 3991-4006.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00228] [PMID: 27031670]
[92]
Skarzynski, T.; Thorpe, J. Industrial perspective on X-ray data collection and analysis. Acta Crystallogr. D Biol. Crystallogr., 2006, 62(1), 102-107.
[http://dx.doi.org/10.1107/S0907444905034281] [PMID: 16369099]
[93]
Lo, M.C.; Aulabaugh, A.; Jin, G.; Cowling, R.; Bard, J.; Malamas, M.; Ellestad, G. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal. Biochem., 2004, 332(1), 153-159.
[http://dx.doi.org/10.1016/j.ab.2004.04.031] [PMID: 15301960]
[94]
Vedadi, M.; Niesen, F.H.; Hassani, A.A.; Fedorov, O.Y.; Finerty, P.J., Jr; Wasney, G.A.; Yeung, R.; Arrowsmith, C.; Ball, L.J.; Berglund, H.; Hui, R.; Marsden, B.D.; Nordlund, P.; Sundstrom, M.; Weigelt, J.; Edwards, A.M. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc. Natl. Acad. Sci., 2006, 103(43), 15835-15840.
[http://dx.doi.org/10.1073/pnas.0605224103] [PMID: 17035505]
[95]
Mashalidis, E.H.; Śledź, P.; Lang, S.; Abell, C. A three-stage biophysical screening cascade for fragment-based drug discovery. Nat. Protoc., 2013, 8(11), 2309-2324.
[http://dx.doi.org/10.1038/nprot.2013.130] [PMID: 24157549]
[96]
Willemsen, J.M.; Wienken, C.J.; Braun, D.; Baaske, P.; Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol., 2011, 9(4), 342-353.
[http://dx.doi.org/10.1089/adt.2011.0380] [PMID: 21812660]
[97]
Meiby, E.; Simmonite, H.; le Strat, L.; Davis, B.; Matassova, N.; Moore, J.D.; Mrosek, M.; Murray, J.; Hubbard, R.E.; Ohlson, S. Fragment screening by weak affinity chromatography: Comparison with established techniques for screening against HSP90. Anal. Chem., 2013, 85(14), 6756-6766.
[http://dx.doi.org/10.1021/ac400715t] [PMID: 23806099]
[98]
Sheng, C.; Zhang, W. Fragment informatics and computational fragment-based drug design: An overview and update. Med. Res. Rev., 2013, 33(3), 554-598.
[http://dx.doi.org/10.1002/med.21255] [PMID: 22430881]
[99]
Wielens, J.; Headey, S.J.; Rhodes, D.I.; Mulder, R.J.; Dolezal, O.; Deadman, J.J.; Newman, J.; Chalmers, D.K.; Parker, M.W.; Peat, T.S.; Scanlon, M.J. Parallel screening of low molecular weight fragment libraries: Do differences in methodology affect hit identification? SLAS Discov., 2013, 18(2), 147-159.
[http://dx.doi.org/10.1177/1087057112465979] [PMID: 23139382]
[100]
Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A.J. Recent developments in fragment-based drug discovery. J. Med. Chem., 2008, 51(13), 3661-3680.
[http://dx.doi.org/10.1021/jm8000373] [PMID: 18457385]
[101]
Howard, N.; Abell, C.; Blakemore, W.; Chessari, G.; Congreve, M.; Howard, S.; Jhoti, H.; Murray, C.W.; Seavers, L.C.A.; van Montfort, R.L.M. Application of fragment screening and fragment linking to the discovery of novel thrombin inhibitors. J. Med. Chem., 2006, 49(4), 1346-1355.
[http://dx.doi.org/10.1021/jm050850v] [PMID: 16480269]
[102]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[103]
Potter, A.; Oldfield, V.; Nunns, C.; Fromont, C.; Ray, S.; Northfield, C.J.; Bryant, C.J.; Scrace, S.F.; Robinson, D.; Matossova, N.; Baker, L.; Dokurno, P.; Surgenor, A.E.; Davis, B.; Richardson, C.M.; Murray, J.B.; Moore, J.D. Discovery of cell-active phenyl-imidazole Pin1 inhibitors by structure-guided fragment evolution. Bioorg. Med. Chem. Lett., 2010, 20(22), 6483-6488.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.063] [PMID: 20932746]
[104]
Erlanson, D.A. Introduction to fragment-based drug discovery. Top. Curr. Chem., 2012, 317, 1-32.
[PMID: 21695633]
[105]
Lewis, W.G.; Green, L.G.; Grynszpan, F.; Radić, Z.; Carlier, P.R.; Taylor, P.; Finn, M.G.; Sharpless, K.B. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Ed., 2002, 41(6), 1053-1057.
[http://dx.doi.org/10.1002/1521-3773(20020315)41:6<1053::AID-ANIE1053>3.0.CO;2-4] [PMID: 12491310]
[106]
Bourne, Y.; Kolb, H.C.; Radić, Z.; Sharpless, K.B.; Taylor, P.; Marchot, P. Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation. Proc. Natl. Acad. Sci., 2004, 101(6), 1449-1454.
[http://dx.doi.org/10.1073/pnas.0308206100] [PMID: 14757816]
[107]
Edink, E.; Rucktooa, P.; Retra, K.; Akdemir, A.; Nahar, T.; Zuiderveld, O.; van Elk, R.; Janssen, E.; van Nierop, P.; van Koezen, M.J.; Smit, A.B.; Sixma, T.K.; Leurs, R.; de Esch, I.J.P. Fragment growing induces conformational changes in acetylcholine-binding protein: A structural and thermodynamic analysis. J. Am. Chem. Soc., 2011, 133(14), 5363-5371.
[http://dx.doi.org/10.1021/ja110571r] [PMID: 21322593]
[108]
Wang, Z.Z.; Shi, X.X.; Huang, G.Y.; Hao, G.F.; Yang, G.F. Fragment-based drug design facilitates selective kinase inhibitor discovery. Trends Pharmacol. Sci., 2021, 42(7), 551-565.
[http://dx.doi.org/10.1016/j.tips.2021.04.001] [PMID: 33958239]
[109]
Guillon, R.; Rahimova, R.; Preeti; Egron, D.; Rouanet, S.; Dumontet, C.; Aghajari, N.; Jordheim, L.P.; Chaloin, L.; Peyrottes, S. Lead optimization and biological evaluation of fragment-based cN-II inhibitors. Eur. J. Med. Chem., 2019, 168, 28-44.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.040] [PMID: 30798051]
[110]
Shi, X.X.; Li, J.Y.; Chen, Q.; Zhu, X.L.; Hao, G.F.; Yang, G.F. Development of a web-based laboratory class to reduce the challenges in teaching fragment-based drug design. J. Chem. Educ., 2020, 97(2), 427-436.
[http://dx.doi.org/10.1021/acs.jchemed.9b00198]
[111]
Mannhold, R.; Kubinyi, H.; Folkers, G. Fragment-based drug discovery: lessons and outlook; John Wiley & Sons, 2015.
[112]
Bollag, G.; Tsai, J.; Zhang, J.; Zhang, C.; Ibrahim, P.; Nolop, K.; Hirth, P. Vemurafenib: The first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov., 2012, 11(11), 873-886.
[http://dx.doi.org/10.1038/nrd3847] [PMID: 23060265]
[113]
Deeks, E.D. Venetoclax: First global approval. Drugs, 2016, 76(9), 979-987.
[http://dx.doi.org/10.1007/s40265-016-0596-x] [PMID: 27260335]
[114]
Markham, A. Erdafitinib: First global approval. Drugs, 2019, 79(9), 1017-1021.
[http://dx.doi.org/10.1007/s40265-019-01142-9] [PMID: 31161538]
[115]
Li, X.; Song, Y. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Eur. J. Med. Chem., 2023, 260, 115772.
[http://dx.doi.org/10.1016/j.ejmech.2023.115772] [PMID: 37659195]
[116]
Alamri, M.A.; Qamar, T.M.; Mirza, M.U.; Alqahtani, S.M.; Froeyen, M.; Chen, L.L. Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches. J. Pharm. Anal., 2020, 10(6), 546-559.
[http://dx.doi.org/10.1016/j.jpha.2020.08.012] [PMID: 32874702]
[117]
Ikram, N.; Mirza, M.U.; Vanmeert, M.; Froeyen, M.; Salo-Ahen, O.M.H.; Tahir, M.; Qazi, A.; Ahmad, S. Inhibition of oncogenic kinases: An in vitro validated computational approach identified potential multi-target anticancer compounds. Biomolecules, 2019, 9(4), 124.
[http://dx.doi.org/10.3390/biom9040124] [PMID: 30925835]
[118]
Khalid, H.; Landry, K.B.; Ijaz, B.; Ashfaq, U.A.; Ahmed, M.; Kanwal, A.; Froeyen, M.; Mirza, M.U. Discovery of novel hepatitis C virus inhibitor targeting multiple allosteric sites of NS5B polymerase. Infect. Genet. Evol., 2020, 84, 104371.
[http://dx.doi.org/10.1016/j.meegid.2020.104371] [PMID: 32485331]
[119]
Mirza, M.; Ikram, N. Integrated computational approach for virtual hit identification against ebola viral proteins VP35 and VP40. Int. J. Mol. Sci., 2016, 17(11), 1748.
[http://dx.doi.org/10.3390/ijms17111748] [PMID: 27792169]
[120]
Salo-Ahen, O.M.H.; Alanko, I.; Bhadane, R.; Bonvin, A.M.J.J.; Honorato, R.V.; Hossain, S.; Juffer, A.H.; Kabedev, A.; Kakkonen, L.M.; Larsen, A.S.; Lescrinier, E.; Marimuthu, P.; Mirza, M.U.; Mustafa, G.; Nunes-Alves, A.; Pantsar, T.; Saadabadi, A.; Singaravelu, K.; Vanmeert, M. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes, 2020, 9(1), 71.
[http://dx.doi.org/10.3390/pr9010071]
[121]
Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. An updated review of computer-aided drug design and its application to COVID-19. BioMed Res. Int., 2021, 2021, 1-18.
[http://dx.doi.org/10.1155/2021/8853056] [PMID: 34258282]
[122]
Choudhury, C. Fragment tailoring strategy to design novel chemical entities as potential binders of novel corona virus main protease. J. Biomol. Struct. Dyn., 2021, 39(10), 3733-3746.
[http://dx.doi.org/10.1080/07391102.2020.1771424] [PMID: 32452282]
[123]
Hatada, R.; Okuwaki, K.; Mochizuki, Y.; Handa, Y.; Fukuzawa, K.; Komeiji, Y.; Okiyama, Y.; Tanaka, S. Fragment molecular orbital based interaction analyses on COVID-19 main protease-inhibitor N3 complex (PDB ID: 6LU7). J. Chem. Inf. Model., 2020, 60(7), 3593-3602.
[http://dx.doi.org/10.1021/acs.jcim.0c00283] [PMID: 32539372]
[124]
Coutard, B.; Decroly, E.; Li, C.; Sharff, A.; Lescar, J.; Bricogne, G.; Barral, K. Assessment of dengue virus helicase and methyltransferase as targets for fragment-based drug discovery. Antiviral Res., 2014, 106, 61-70.
[http://dx.doi.org/10.1016/j.antiviral.2014.03.013] [PMID: 24704437]
[125]
Hoffer, L.; Renaud, J.P.; Horvath, D. Fragment-based drug design: Computational & experimental state of the art. Comb. Chem. High Throughput Screen., 2011, 14(6), 500-520.
[http://dx.doi.org/10.2174/138620711795767884] [PMID: 21521152]
[126]
Loving, K.; Alberts, I.; Sherman, W. Computational approaches for fragment-based and de novo design. Curr. Top. Med. Chem., 2010, 10(1), 14-32.
[http://dx.doi.org/10.2174/156802610790232305] [PMID: 19929832]
[127]
Kanakaveti, V.; Shanmugam, A.; Ramakrishnan, C.; Anoosha, P.; Sakthivel, R.; Rayala, S.K.; Gromiha, M.M. Computational approaches for identifying potential inhibitors on targeting protein interactions in drug discovery. Adv. Protein Chem. Struct. Biol., 2020, 121, 25-47.
[http://dx.doi.org/10.1016/bs.apcsb.2019.11.013] [PMID: 32312424]
[128]
Bung, N.; Krishnan, S.R.; Bulusu, G.; Roy, A. De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence. Future Med. Chem., 2021, 13(6), 575-585.
[http://dx.doi.org/10.4155/fmc-2020-0262] [PMID: 33590764]
[129]
Khan, R.J.; Jha, R.K.; Amera, G.M.; Jain, M.; Singh, E.; Pathak, A.; Singh, R.P.; Muthukumaran, J.; Singh, A.K. Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. J. Biomol. Struct. Dyn., 2021, 39(8), 2679-2692.
[http://dx.doi.org/10.1080/07391102.2020.1753577] [PMID: 32266873]
[130]
Pant, S.; Singh, M.; Ravichandiran, V.; Murty, U.S.N.; Srivastava, H.K. Peptide-like and small-molecule inhibitors against Covid-19. J. Biomol. Struct. Dyn., 2021, 39(8), 2904-2913.
[http://dx.doi.org/10.1080/07391102.2020.1757510] [PMID: 32306822]
[131]
Aanouz, I.; Belhassan, A.; El-Khatabi, K.; Lakhlifi, T.; El-ldrissi, M.; Bouachrine, M. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J. Biomol. Struct. Dyn., 2021, 39(8), 2971-2979.
[http://dx.doi.org/10.1080/07391102.2020.1758790] [PMID: 32306860]
[132]
Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn., 2021, 39(9), 3092-3098.
[PMID: 32329419]
[133]
Islam, R.; Parves, M.R.; Paul, A.S.; Uddin, N.; Rahman, M.S.; Mamun, A.A.; Hossain, M.N.; Ali, M.A.; Halim, M.A. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 39(9), 3213-3224.
[PMID: 32340562]
[134]
Kiss, R.; Sandor, M.; Szalai, F.A. A public web service for drug discovery. J. Cheminform., 2012, 4(1), 1-1.
[PMID: 22236646]
[135]
Schrödinger, L. Schrödinger release 2018-4: Desmond molecular dynamics system. In: Maestro-Desmond Interoperability Tools; DE Shaw Research: New York, NY, 2018.
[136]
Singh, N.; Pydi, S.P.; Upadhyaya, J.; Chelikani, P. Structural basis of activation of bitter taste receptor T2R1 and comparison with Class A G-protein-coupled receptors (GPCRs). J. Biol. Chem., 2011, 286(41), 36032-36041.
[http://dx.doi.org/10.1074/jbc.M111.246983] [PMID: 21852241]
[137]
Di Pizio, A.; Niv, M.Y. Promiscuity and selectivity of bitter molecules and their receptors. Bioorg. Med. Chem., 2015, 23(14), 4082-4091.
[http://dx.doi.org/10.1016/j.bmc.2015.04.025] [PMID: 25934224]
[138]
Pydi, S.P.; Jaggupilli, A.; Nelson, K.M.; Abrams, S.R.; Bhullar, R.P.; Loewen, M.C.; Chelikani, P. Abscisic acid acts as a blocker of the bitter taste G protein-coupled receptor T2R4. Biochemistry, 2015, 54(16), 2622-2631.
[http://dx.doi.org/10.1021/acs.biochem.5b00265] [PMID: 25844797]
[139]
Floriano, W.B.; Hall, S.; Vaidehi, N.; Kim, U.; Drayna, D.; Goddard, W.A., III Modeling the human PTC bitter-taste receptor interactions with bitter tastants. J. Mol. Model., 2006, 12(6), 931-941.
[http://dx.doi.org/10.1007/s00894-006-0102-6] [PMID: 16607493]
[140]
Biarnés, X.; Marchiori, A.; Giorgetti, A.; Lanzara, C.; Gasparini, P.; Carloni, P.; Born, S.; Brockhoff, A.; Behrens, M.; Meyerhof, W. Insights into the binding of Phenyltiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS One, 2010, 5(8), e12394.
[http://dx.doi.org/10.1371/journal.pone.0012394] [PMID: 20811630]
[141]
Miguet, L.; Zhang, Z.; Grigorov, M.G. Computational studies of ligand-receptor interactions in bitter taste receptors. J. Recept. Signal Transduct. Res., 2006, 26(5-6), 611-630.
[http://dx.doi.org/10.1080/10799890600928210] [PMID: 17118801]
[142]
Tan, J.; Abrol, R.; Trzaskowski, B.; Goddard, W.A., III 3D structure prediction of TAS2R38 bitter receptors bound to agonists phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP). J. Chem. Inf. Model., 2012, 52(7), 1875-1885.
[http://dx.doi.org/10.1021/ci300133a] [PMID: 22656649]
[143]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[144]
Andola, P.; Pagag, J.; Laxman, D.; Guruprasad, L. Fragment-based inhibitor design for SARS-CoV2 main protease. Struct. Chem., 2022, 33(5), 1467-1487.
[http://dx.doi.org/10.1007/s11224-022-01995-z] [PMID: 35811782]
[145]
Kumari, R.; Kumar, R.; Lynn, A.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[146]
Bakan, A.; Meireles, L.M.; Bahar, I. ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics, 2011, 27(11), 1575-1577.
[http://dx.doi.org/10.1093/bioinformatics/btr168] [PMID: 21471012]
[147]
Eyal, E.; Yang, L.W.; Bahar, I. Anisotropic network model: Systematic evaluation and a new web interface. Bioinformatics, 2006, 22(21), 2619-2627.
[http://dx.doi.org/10.1093/bioinformatics/btl448] [PMID: 16928735]
[148]
Ross, C.; Nizami, B.; Glenister, M.; Amamuddy, S.O.; Atilgan, A.R.; Atilgan, C.; Bishop, T.Ö. MODE-TASK: Large-scale protein motion tools. Bioinformatics, 2018, 34(21), 3759-3763.
[http://dx.doi.org/10.1093/bioinformatics/bty427] [PMID: 29850770]
[149]
Hubbard, R.E. Fragment approaches in structure-based drug discovery. J. Synchrotron Radiat., 2008, 15(3), 227-230.
[http://dx.doi.org/10.1107/S090904950705666X] [PMID: 18421145]
[150]
Palmer, N.; Peakman, T.M.; Norton, D.; Rees, D.C. Design and synthesis of dihydroisoquinolones for fragment-based drug discovery (FBDD). Org. Biomol. Chem., 2016, 14(5), 1599-1610.
[http://dx.doi.org/10.1039/C5OB02461G] [PMID: 26741115]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy