Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

PPARs (Peroxisome Proliferator-activated Receptors) and Their Agonists in Alzheimer's Disease

Author(s): Mohit Kumar, Anita Ashok Sharma, Ashok Kumar Datusalia and Gopal L. Khatik*

Volume 20, Issue 8, 2024

Published on: 09 May, 2024

Page: [781 - 798] Pages: 18

DOI: 10.2174/0115734064295063240422100615

Price: $65

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease leading to dementia because of complex phathomechanisms like amyloid β (Aβ) aggregation, tau aggregates, and neurofibrillary tangles. Peroxisome proliferator-activated receptor (PPAR) agonists have been reported recently with neuroprotective and anti-inflammatory properties. PPARs belong to the superfamily of nuclear hormone receptors and function as ligand-activated transcription factors. These have emerged as crucial players in the pathogenesis of AD. This review presented the potential of PPARs and their agonists in treating neurodegenerative diseases like AD.

PPARs regulate the expression of specific genes vital for synaptic function and neurotransmitter release. PPAR agonists play a critical role in increasing the clearance of Aβ peptides by lowdensity lipoprotein receptor-related protein 1 (LRP1) in the microvascular endothelial cells of the human brain. Studies have shown that PPAR agonists reduce the level of APoE-mRNA, contributing to the accumulation of Aβ plaques and up-regulation of PPAR. A knockout of miR-128 has been found to inhibit AD-like cognitive decline, amyloid precursor protein (APP) amyloidogenic processing, and inflammatory responses in AD.

PPARs are involved in the pathomechanism of AD, and therefore, PPAR agonists could be viable options for controlling the neurodegenerative symptoms and may be useful in treating AD.

[1]
Risner, M.E.; Saunders, A.M.; Altman, J F B.; Ormandy, G.C.; Craft, S.; Foley, I.M.; Zvartau-Hind, M.E.; Hosford, D.A.; Roses, A.D. Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer’s disease. Pharmacogenomics J., 2006, 6(4), 246-254.
[http://dx.doi.org/10.1038/sj.tpj.6500369] [PMID: 16446752]
[2]
Hippius, H.; Neundörfer, G. The discovery of Alzheimer’s disease. Dialogues Clin. Neurosci., 2003, 5(1), 101-108.
[http://dx.doi.org/10.31887/DCNS.2003.5.1/hhippius] [PMID: 22034141]
[3]
Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab., 2005, 1(6), 361-370.
[http://dx.doi.org/10.1016/j.cmet.2005.05.004] [PMID: 16054085]
[4]
Borel, V.; Gallot, D.; Marceau, G.; Sapin, V.; Blanchon, L. Placental implications of peroxisome proliferator-activated receptors in gestation and parturition. PPAR Res., 2008, 2008, 1-9.
[http://dx.doi.org/10.1155/2008/758562] [PMID: 18288292]
[5]
Handschuh, K.; Guibourdenche, J.; Cocquebert, M.; Tsatsaris, V.; Vidaud, M.; Evain-Brion, D.; Fournier, T. Expression and regulation by PPARgamma of hCG alpha and beta-subunits: Comparison between villous and invasive extravillous trophoblastic cells. Placenta, 2009, 30(12), 1016-1022.
[http://dx.doi.org/10.1016/j.placenta.2009.09.006] [PMID: 19846218]
[6]
O’Brien, R.J.; Wong, P.C. Amyloid precursor protein processing and Alzheimer’s disease. Annu. Rev. Neurosci., 2011, 34(1), 185-204.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113613] [PMID: 21456963]
[7]
de la Monte, S.M.; Wands, J.R. Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer’s disease. J. Alzheimers Dis., 2006, 9(2), 167-181.
[http://dx.doi.org/10.3233/JAD-2006-9209] [PMID: 16873964]
[8]
Scarpulla, R.C. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(7), 1269-1278.
[http://dx.doi.org/10.1016/j.bbamcr.2010.09.019] [PMID: 20933024]
[9]
Kumar, A.; Singh, A. Ekavali, A review on Alzheimer’s disease pathophysiology and its management: An update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[10]
Fu, W.Y.; Wang, X.; Ip, N.Y. Targeting neuroinflammation as a therapeutic strategy for alzheimer’s disease: Mechanisms, drug candidates, and new opportunities. ACS Chem. Neurosci., 2019, 10(2), 872-879.
[http://dx.doi.org/10.1021/acschemneuro.8b00402] [PMID: 30221933]
[11]
Berger, J.; Moller, D.E. The mechanisms of action of PPARs. Annu. Rev. Med., 2002, 53(1), 409-435.
[http://dx.doi.org/10.1146/annurev.med.53.082901.104018] [PMID: 11818483]
[12]
Kersten, S.; Seydoux, J.; Peters, J.M.; Gonzalez, F.J.; Desvergne, B.; Wahli, W. Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting. J. Clin. Invest., 1999, 103(11), 1489-1498.
[http://dx.doi.org/10.1172/JCI6223] [PMID: 10359558]
[13]
Jia, Y.; Qi, C.; Kashireddi, P.; Surapureddi, S.; Zhu, Y.J.; Rao, M.S.; Le Roith, D.; Chambon, P.; Gonzalez, F.J.; Reddy, J.K. Transcription coactivator PBP, the peroxisome proliferator-activated receptor (PPAR)-binding protein, is required for PPARalpha-regulated gene expression in liver. J. Biol. Chem., 2004, 279(23), 24427-24434.
[http://dx.doi.org/10.1074/jbc.M402391200] [PMID: 15150259]
[14]
Cai, W.; Yang, T.; Liu, H.; Han, L.; Zhang, K.; Hu, X.; Zhang, X.; Yin, K.J.; Gao, Y.; Bennett, M.V.L.; Leak, R.K.; Chen, J. Peroxisome proliferator-activated receptor γ (PPARγ): A master gatekeeper in CNS injury and repair. Prog. Neurobiol., 2018, 163-164, 27-58.
[http://dx.doi.org/10.1016/j.pneurobio.2017.10.002] [PMID: 29032144]
[15]
d’Angelo, M.; Castelli, V.; Catanesi, M.; Antonosante, A.; Dominguez-Benot, R.; Ippoliti, R.; Benedetti, E.; Cimini, A. PPARγ and cognitive performance. Int. J. Mol. Sci., 2019, 20.
[16]
Kempuraj, D.; Thangavel, R.; Natteru, P.A.; Selvakumar, G.P.; Saeed, D.; Zahoor, H.; Zaheer, S.; Iyer, S.S.; Zaheer, A. Neuroinflammation induces neurodegeneration. J. Neurol. Neurosurg.Spine., 2016, 1(1), 1003.
[17]
Villapol, S. Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell. Mol. Neurobiol., 2018, 38(1), 121-132.
[http://dx.doi.org/10.1007/s10571-017-0554-5] [PMID: 28975471]
[18]
Pérez-Segura, I.; Santiago-Balmaseda, A.; Rodríguez-Hernández, L.D.; Morales-Martínez, A.; Martínez-Becerril, H.A.; Martínez-Gómez, P.A.; Delgado-Minjares, K.M.; Salinas-Lara, C.; Martínez-Dávila, I.A.; Guerra-Crespo, M.; Pérez-Severiano, F.; Soto-Rojas, L.O. PPARs and their neuroprotective effects in parkinson’s disease: A novel therapeutic approach in α-synucleinopathy? Int. J. Mol. Sci., 2023, 24(4), 3264.
[http://dx.doi.org/10.3390/ijms24043264] [PMID: 36834679]
[19]
D’Angelo, M.; Antonosante, A.; Castelli, V.; Catanesi, M.; Moorthy, N.; Iannotta, D.; Cimini, A.; Benedetti, E. PPARs and energy metabolism adaptation during neurogenesis and neuronal maturation. Int. J. Mol. Sci., 2018, 19(7), 1869.
[http://dx.doi.org/10.3390/ijms19071869] [PMID: 29949869]
[20]
Michalik, L.; Desvergne, B.; Dreyer, C.; Gavillet, M.; Laurini, R.N.; Wahli, W. PPAR expression and function during vertebrate development. Int. J. Dev. Biol., 2002, 46(1), 105-114.
[PMID: 11902671]
[21]
Tyagi, S.; Sharma, S.; Gupta, P.; Saini, A.S.; Kaushal, C. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J. Adv. Pharm. Technol. Res., 2011, 2(4), 236-240.
[http://dx.doi.org/10.4103/2231-4040.90879] [PMID: 22247890]
[22]
Pfeiffer, B.; Meyermann, R.; Hamprecht, B. Immunohistochemical co-localization of glycogen phosphorylase with the astroglial markers glial fibrillary acidic protein and S-100 protein in rat brain sections. Histochemistry, 1992, 97(5), 405-412.
[http://dx.doi.org/10.1007/BF00270387] [PMID: 1500296]
[23]
Sertznig, P.; Reichrath, J. Peroxisome proliferator-activated receptors (PPARs) in dermatology. Dermatoendocrinol, 2011, 3(3), 130-135.
[http://dx.doi.org/10.4161/derm.15025] [PMID: 22110772]
[24]
McGranahan, T.M.; Patzlaff, N.E.; Grady, S.R.; Heinemann, S.F.; Booker, T.K. α4β2 nicotinic acetylcholine receptors on dopaminergic neurons mediate nicotine reward and anxiety relief. J. Neurosci., 2011, 31(30), 10891-10902.
[http://dx.doi.org/10.1523/JNEUROSCI.0937-11.2011] [PMID: 21795541]
[25]
Cheng, Q.; Yakel, J.L. Activation of α7 nicotinic acetylcholine receptors increases intracellular cAMP levels via activation of AC1 in hippocampal neurons. Neuropharmacology, 2015, 95, 405-414.
[http://dx.doi.org/10.1016/j.neuropharm.2015.04.016] [PMID: 25937212]
[26]
Wójtowicz, S.; Strosznajder, A.K.; Jeżyna, M.; Strosznajder, J.B. The novel role of PPAR alpha in the brain: Promising target in therapy of alzheimer’s disease and other neurodegenerative disorders. Neurochem. Res., 2020, 45(5), 972-988.
[http://dx.doi.org/10.1007/s11064-020-02993-5] [PMID: 32170673]
[27]
Raha, S.; Ghosh, A.; Dutta, D.; Patel, D.R.; Pahan, K. Activation of PPARα enhances astroglial uptake and degradation of β-amyloid. Sci. Signal., 2021, 14(706), eabg4747.
[http://dx.doi.org/10.1126/scisignal.abg4747] [PMID: 34699252]
[28]
Kim, K.; Lee, S.G.; Kegelman, T.P.; Su, Z.Z.; Das, S.K.; Dash, R.; Dasgupta, S.; Barral, P.M.; Hedvat, M.; Diaz, P.; Reed, J.C.; Stebbins, J.L.; Pellecchia, M.; Sarkar, D.; Fisher, P.B. Role of excitatory amino acid transporter‐2 (EAAT2) and glutamate in neurodegeneration: Opportunities for developing novel therapeutics. J. Cell. Physiol., 2011, 226(10), 2484-2493.
[http://dx.doi.org/10.1002/jcp.22609] [PMID: 21792905]
[29]
Ota, Y.; Zanetti, A.T.; Hallock, R.M. The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neural Plast., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/185463] [PMID: 24369508]
[30]
Magi, S.; Piccirillo, S.; Amoroso, S.; Lariccia, V. Excitatory amino acid transporters (EAATs): Glutamate transport and beyond. Int. J. Mol. Sci., 2019, 20(22), 5674.
[http://dx.doi.org/10.3390/ijms20225674] [PMID: 31766111]
[31]
Robinson, M.B. Review article the family of sodium-dependent glutamate transporters: A focus on the GLT-1/EAAT2 subtype. Neurochem. Int., 1998, 33(6), 479-491.
[http://dx.doi.org/10.1016/S0197-0186(98)00055-2] [PMID: 10098717]
[32]
Huang, H.T.; Liao, C.K.; Chiu, W.T.; Tzeng, S.F. Ligands of peroxisome proliferator-activated receptor-alpha promote glutamate transporter-1 endocytosis in astrocytes. Int. J. Biochem. Cell Biol., 2017, 86, 42-53.
[http://dx.doi.org/10.1016/j.biocel.2017.03.008] [PMID: 28323206]
[33]
Jhamandas, K.H.; Boegman, R.J.; Beninger, R.J.; Miranda, A.F.; Lipic, K.A. Excitotoxicity of quinolinic acid: Modulation by endogenous antagonists. Neurotox. Res., 2000, 2(2-3), 139-155.
[http://dx.doi.org/10.1007/BF03033790] [PMID: 16787837]
[34]
Fujigaki, H.; Yamamoto, Y.; Saito, K. L-Tryptophan-kynurenine pathway enzymes are therapeutic target for neuropsychiatric diseases: Focus on cell type differences. Neuropharmacology, 2017, 112(Pt B), 264-274.
[http://dx.doi.org/10.1016/j.neuropharm.2016.01.011] [PMID: 26767951]
[35]
Badawy, A.A.B. Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int. J. Tryptophan Res., 2017, 10.
[http://dx.doi.org/10.1177/1178646917691938] [PMID: 28469468]
[36]
Gulaj, E.; Pawlak, K.; Bien, B.; Pawlak, D. Kynurenine and its metabolites in Alzheimer’s disease patients. Adv. Med. Sci., 2010, 55(2), 204-211.
[http://dx.doi.org/10.2478/v10039-010-0023-6] [PMID: 20639188]
[37]
Strosznajder, A.K.; Wójtowicz, S.; Jeżyna, M.J.; Sun, G.Y.; Strosznajder, J.B. Recent insights on the role of PPAR-β/δ in neuroinflammation and neurodegeneration, and its potential target for therapy. Neuromolecular Med., 2021, 23(1), 86-98.
[http://dx.doi.org/10.1007/s12017-020-08629-9] [PMID: 33210212]
[38]
Warden, A.; Truitt, J.; Merriman, M.; Ponomareva, O.; Jameson, K.; Ferguson, L.B.; Mayfield, R.D.; Harris, R.A. Localization of PPAR isotypes in the adult mouse and human brain. Sci. Rep., 2016, 6(1), 27618.
[http://dx.doi.org/10.1038/srep27618] [PMID: 27283430]
[39]
Ji, J.; Xue, T.F.; Guo, X.D.; Yang, J.; Guo, R.B.; Wang, J.; Huang, J.Y.; Zhao, X.J.; Sun, X.L. Antagonizing peroxisome proliferator‐activated receptor γ facilitates M1‐to‐M2 shift of microglia by enhancing autophagy via the LKB 1- AMPK signaling pathway. Aging Cell, 2018, 17(4), e12774.
[http://dx.doi.org/10.1111/acel.12774] [PMID: 29740932]
[40]
Cai, Y.; Liu, J.; Wang, B.; Sun, M.; Yang, H. Microglia in the neuroinflammatory pathogenesis of alzheimer’s disease and related therapeutic targets. Front. Immunol., 2022, 13, 856376.
[http://dx.doi.org/10.3389/fimmu.2022.856376] [PMID: 35558075]
[41]
Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol., 2009, 1(4), a000034.
[http://dx.doi.org/10.1101/cshperspect.a000034] [PMID: 20066092]
[42]
Batista, C.R.A.; Gomes, G.F.; Candelario-Jalil, E.; Fiebich, B.L.; de Oliveira, A.C.P. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int. J. Mol. Sci., 2019, 20(9), 2293.
[http://dx.doi.org/10.3390/ijms20092293] [PMID: 31075861]
[43]
Heneka, M.T.; Sastre, M.; Dumitrescu-Ozimek, L.; Hanke, A.; Dewachter, I.; Kuiperi, C.; O’Banion, K.; Klockgether, T.; Van Leuven, F.; Landreth, G.E. Acute treatment with the PPARγ agonist pioglitazone and ibuprofen reduces glial inflammation and Aβ1-42 levels in APPV717I transgenic mice. Brain, 2005, 128(6), 1442-1453.
[http://dx.doi.org/10.1093/brain/awh452] [PMID: 15817521]
[44]
Szanto, A.; Narkar, V.; Shen, Q.; Uray, I.P.; Davies, P.J.A.; Nagy, L. Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ., 2004, 11((S2)(2)), S126-S143.
[http://dx.doi.org/10.1038/sj.cdd.4401533] [PMID: 15608692]
[45]
Wagner, E.R.; He, B.C.; Chen, L.; Zuo, G.W.; Zhang, W.; Shi, Q.; Luo, Q.; Luo, X.; Liu, B.; Luo, J.; Rastegar, F.; He, C.J.; Hu, Y.; Boody, B.; Luu, H.H.; He, T.C.; Deng, Z.L.; Haydon, R.C. Therapeutic implications of PPARγ in human osteosarcoma. PPAR Res., 2010, 2010, 1-16.
[http://dx.doi.org/10.1155/2010/956427] [PMID: 20182546]
[46]
Kaupang, Å.; Paulsen, S.M.; Steindal, C.C.; Ravna, A.W.; Sylte, I.; Halvorsen, T.G.; Thoresen, G.H.; Hansen, T.V. Synthesis, biological evaluation and molecular modeling studies of the PPARβ/δ antagonist CC618. Eur. J. Med. Chem., 2015, 94, 229-236.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.006] [PMID: 25768705]
[47]
Youssef, J.; Badr, M. Peroxisome proliferator-activated receptors features, functions, and future. Nucl. Receptor Res., 2015, 2015, 2.
[48]
Cawthorn, W.P.; Sethi, J.K. TNF‐α and adipocyte biology. FEBS Lett., 2008, 582(1), 117-131.
[http://dx.doi.org/10.1016/j.febslet.2007.11.051] [PMID: 18037376]
[49]
Chandra, V.; Huang, P.; Hamuro, Y.; Raghuram, S.; Wang, Y.; Burris, T.P.; Rastinejad, F. Structure of the intact PPAR-γ-RXR-α nuclear receptor complex on DNA. Nature, 2008, 456(7220), 350-356.
[http://dx.doi.org/10.1038/nature07413] [PMID: 19043829]
[50]
Dawson, M.I.; Xia, Z. The retinoid X receptors and their ligands. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2012, 1821(1), 21-56.
[http://dx.doi.org/10.1016/j.bbalip.2011.09.014] [PMID: 22020178]
[51]
Evans, R.M.; Barish, G.D.; Wang, Y.X. PPARs and the complex journey to obesity. Nat. Med., 2004, 10(4), 355-361.
[http://dx.doi.org/10.1038/nm1025] [PMID: 15057233]
[52]
Grygiel-Górniak, B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications a review. Nutr. J., 2014, 13(1), 17.
[http://dx.doi.org/10.1186/1475-2891-13-17] [PMID: 24524207]
[53]
Lehrke, M.; Lazar, M.A. The many faces of PPARgamma. Cell, 2005, 123(6), 993-999.
[http://dx.doi.org/10.1016/j.cell.2005.11.026] [PMID: 16360030]
[54]
Murphy, M.P.; LeVine, H., III Alzheimer’s disease and the amyloid-beta peptide. J. Alzheimers Dis., 2010, 19(1), 311-323.
[http://dx.doi.org/10.3233/JAD-2010-1221] [PMID: 20061647]
[55]
Bernardo, A.; Levi, G.; Minghetti, L. Role of the peroxisome proliferator‐activated receptor‐γ (PPAR‐γ) and its natural ligand 15‐deoxy‐Δ 12,14 ‐prostaglandin J 2 in the regulation of microglial functions. Eur. J. Neurosci., 2000, 12(7), 2215-2223.
[http://dx.doi.org/10.1046/j.1460-9568.2000.00110.x] [PMID: 10947800]
[56]
Lee, H.K.; Takamiya, K.; Han, J.S.; Man, H.; Kim, C.H.; Rumbaugh, G.; Yu, S.; Ding, L.; He, C.; Petralia, R.S.; Wenthold, R.J.; Gallagher, M.; Huganir, R.L. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell, 2003, 112(5), 631-643.
[http://dx.doi.org/10.1016/S0092-8674(03)00122-3] [PMID: 12628184]
[57]
Sakimura, K.; Kutsuwada, T.; Ito, I.; Manabe, T.; Takayama, C.; Kushiya, E.; Yagi, T.; Aizawa, S.; Inoue, Y.; Sugiyama, H.; Mishina, M. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor ε1 subunit. Nature, 1995, 373(6510), 151-155.
[http://dx.doi.org/10.1038/373151a0] [PMID: 7816096]
[58]
Roy, A.; Jana, M.; Corbett, G.T.; Ramaswamy, S.; Kordower, J.H.; Gonzalez, F.J.; Pahan, K. Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor α. Cell Rep., 2013, 4(4), 724-737.
[http://dx.doi.org/10.1016/j.celrep.2013.07.028] [PMID: 23972989]
[59]
Wang, X.; Wang, Y.; Hu, J.P.; Yu, S.; Li, B.K.; Cui, Y.; Ren, L.; Zhang, L.D. Astragaloside IV, a natural pparγ agonist, reduces aβ production in alzheimer’s disease through inhibition of BACE1. Mol. Neurobiol., 2017, 54(4), 2939-2949.
[http://dx.doi.org/10.1007/s12035-016-9874-6] [PMID: 27023226]
[60]
Chang, C.P.; Liu, Y.F.; Lin, H.J.; Hsu, C.C.; Cheng, B.C.; Liu, W.P.; Lin, M.T.; Hsu, S.F.; Chang, L.S.; Lin, K.C. Beneficial effect of astragaloside on alzheimer’s disease condition using cultured primary cortical cells under β-amyloid exposure. Mol. Neurobiol., 2016, 53(10), 7329-7340.
[http://dx.doi.org/10.1007/s12035-015-9623-2] [PMID: 26696494]
[61]
Wang, Y.L.; Chio, C.C.; Kuo, S.C.; Yeh, C.H.; Ma, J.T.; Liu, W.P.; Lin, M.T.; Lin, K.C.; Chang, C.P. Exercise rehabilitation and/or astragaloside attenuate amyloid-beta pathology by reversing BDNF/TrkB signaling deficits and mitochondrial dysfunction. Mol. Neurobiol., 2022, 59(5), 3091-3109.
[http://dx.doi.org/10.1007/s12035-022-02728-3] [PMID: 35262870]
[62]
Quan, Q.; Qian, Y.; Li, X.; Li, M. Pioglitazone reduces β amyloid levels via inhibition of pparγ phosphorylation in a neuronal model of alzheimer’s disease. Front. Aging Neurosci., 2019, 11, 178.
[http://dx.doi.org/10.3389/fnagi.2019.00178] [PMID: 31379559]
[63]
Chiarelli, F.; Di Marzio, D. Peroxisome proliferator-activated receptor-gamma agonists and diabetes: current evidence and future perspectives. Vasc. Health Risk Manag., 2008, 4(2), 297-304.
[PMID: 18561505]
[64]
Cheng, H.S.; Tan, W.R.; Low, Z.S.; Marvalim, C.; Lee, J.Y.H.; Tan, N.S. Exploration and development of ppar modulators in health and disease: An update of clinical evidence. Int. J. Mol. Sci., 2019, 20(20), 5055.
[http://dx.doi.org/10.3390/ijms20205055] [PMID: 31614690]
[65]
Geldmacher, D.S.; Fritsch, T.; McClendon, M.J.; Landreth, G. A randomized pilot clinical trial of the safety of pioglitazone in treatment of patients with Alzheimer disease. Arch. Neurol., 2011, 68(1), 45-50.
[http://dx.doi.org/10.1001/archneurol.2010.229] [PMID: 20837824]
[66]
Lincoff, A.M.; Wolski, K.; Nicholls, S.J.; Nissen, S.E. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: A meta-analysis of randomized trials. JAMA, 2007, 298(10), 1180-1188.
[http://dx.doi.org/10.1001/jama.298.10.1180] [PMID: 17848652]
[67]
Gold, M.; Alderton, C.; Zvartau-Hind, M.; Egginton, S.; Saunders, A.M.; Irizarry, M.; Craft, S.; Landreth, G.; Linnamägi, Ü.; Sawchak, S. Rosiglitazone monotherapy in mild-to-moderate Alzheimer’s disease: results from a randomized, double-blind, placebo-controlled phase III study. Dement. Geriatr. Cogn. Disord., 2010, 30(2), 131-146.
[http://dx.doi.org/10.1159/000318845] [PMID: 20733306]
[68]
Cummings, J. The role of biomarkers in alzheimer’s disease drug development. Adv. Exp. Med. Biol., 2019, 1118, 29-61.
[http://dx.doi.org/10.1007/978-3-030-05542-4_2] [PMID: 30747416]
[69]
Aggarwal, R.; Ranganathan, P. Study designs: Part 4: Interventional studies. Perspect. Clin. Res., 2019, 10(3), 137-139.
[http://dx.doi.org/10.4103/picr.PICR_91_19] [PMID: 31404185]
[70]
Duro-Castano, A.; Borrás, C.; Herranz-Pérez, V.; Blanco-Gandía, M.C.; Conejos-Sánchez, I.; Armiñán, A.; Mas-Bargues, C.; Inglés, M.; Miñarro, J.; Rodríguez-Arias, M.; García-Verdugo, J.M.; Viña, J.; Vicent, M.J. Targeting Alzheimer’s disease with multimodal polypeptide-based nanoconjugates. Sci. Adv., 2021, 7(13), eabf9180.
[http://dx.doi.org/10.1126/sciadv.abf9180] [PMID: 33771874]
[71]
Li, Z.; Jo, J.; Jia, J.M.; Lo, S.C.; Whitcomb, D.J.; Jiao, S.; Cho, K.; Sheng, M. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell, 2010, 141(5), 859-871.
[http://dx.doi.org/10.1016/j.cell.2010.03.053] [PMID: 20510932]
[72]
Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci., 2015, 6(6), 1164-1178.
[http://dx.doi.org/10.5114/aoms.2015.56342] [PMID: 26788077]
[73]
Williams, J.M.; Thompson, V.L.; Mason-Parker, S.E.; Abraham, W.C.; Tate, W.P. Synaptic activity-dependent modulation of mitochondrial gene expression in the rat hippocampus. Brain Res. Mol. Brain Res., 1998, 60(1), 50-56.
[http://dx.doi.org/10.1016/S0169-328X(98)00165-X] [PMID: 9748499]
[74]
Tran, T.T.; Chowanadisai, W.; Crinella, F.M.; Chicz-DeMet, A.; Lönnerdal, B. Effect of high dietary manganese intake of neonatal rats on tissue mineral accumulation, striatal dopamine levels, and neurodevelopmental status. Neurotoxicology, 2002, 23(4-5), 635-643.
[http://dx.doi.org/10.1016/S0161-813X(02)00091-8] [PMID: 12428735]
[75]
Cordoba, J. Hepatic encephalopathy: From the pathogenesis to the new treatments. ISRN Hepatol., 2014, 2014, 1-16.
[http://dx.doi.org/10.1155/2014/236268] [PMID: 27335836]
[76]
Rius-Pérez, S.; Torres-Cuevas, I.; Millán, I.; Ortega, Á.L.; Pérez, S. PGC-1 α, inflammation, and oxidative stress: An integrative view in metabolism. Oxid. Med. Cell. Longev., 2020, 2020, 1-20.
[http://dx.doi.org/10.1155/2020/1452696] [PMID: 32215168]
[77]
Finck, B.N.; Kelly, D.P. PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. J. Clin. Invest., 2006, 116(3), 615-622.
[http://dx.doi.org/10.1172/JCI27794] [PMID: 16511594]
[78]
Zhang, C.; Browne, A.; Kim, D.; Tanzi, R. Familial Alzheimer’s disease mutations in presenilin 1 do not alter levels of the secreted amyloid-beta protein precursor generated by beta-secretase cleavage. Curr. Alzheimer Res., 2010, 7(1), 21-26.
[http://dx.doi.org/10.2174/156720510790274428] [PMID: 20205669]
[79]
Wang, R.; Li, J.J.; Diao, S.; Kwak, Y.D.; Liu, L.; Zhi, L.; Büeler, H.; Bhat, N.R.; Williams, R.W.; Park, E.A.; Liao, F.F. Metabolic stress modulates Alzheimer’s β-secretase gene transcription via SIRT1-PPARγ-PGC-1 in neurons. Cell Metab., 2013, 17(5), 685-694.
[http://dx.doi.org/10.1016/j.cmet.2013.03.016] [PMID: 23663737]
[80]
Selkoe, D.J.; Schenk, D. Alzheimer’s disease: Molecular understanding predicts amyloid-based therapeutics. Annu. Rev. Pharmacol. Toxicol., 2003, 43(1), 545-584.
[http://dx.doi.org/10.1146/annurev.pharmtox.43.100901.140248] [PMID: 12415125]
[81]
Qiang, L.; Wang, L.; Kon, N.; Zhao, W.; Lee, S.; Zhang, Y.; Rosenbaum, M.; Zhao, Y.; Gu, W.; Farmer, S.R.; Accili, D. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell, 2012, 150(3), 620-632.
[http://dx.doi.org/10.1016/j.cell.2012.06.027] [PMID: 22863012]
[82]
Vallée, A.; Lecarpentier, Y. Alzheimer Disease: Crosstalk between the Canonical Wnt/Beta-Catenin Pathway and PPARs Alpha and Gamma. Front. Neurosci., 2016, 10, 459.
[http://dx.doi.org/10.3389/fnins.2016.00459] [PMID: 27807401]
[83]
Zhang, H.; Gao, Y.; Qiao, P.; Zhao, F.; Yan, Y. PPAR-α agonist regulates amyloid-β generation via inhibiting BACE-1 activity in human neuroblastoma SH-SY5Y cells transfected with APPswe gene. Mol. Cell. Biochem., 2015, 408(1-2), 37-46.
[http://dx.doi.org/10.1007/s11010-015-2480-5] [PMID: 26092426]
[84]
Kummer, M.P.; Schwarzenberger, R.; Sayah-Jeanne, S.; Dubernet, M.; Walczak, R.; Hum, D.W.; Schwartz, S.; Axt, D.; Heneka, M.T. Pan-PPAR modulation effectively protects APP/PS1 mice from amyloid deposition and cognitive deficits. Mol. Neurobiol., 2015, 51(2), 661-671.
[http://dx.doi.org/10.1007/s12035-014-8743-4] [PMID: 24838579]
[85]
Cheng, A.; Wan, R.; Yang, J.L.; Kamimura, N.; Son, T.G.; Ouyang, X.; Luo, Y.; Okun, E.; Mattson, M.P. Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines. Nat. Commun., 2012, 3(1), 1250.
[http://dx.doi.org/10.1038/ncomms2238] [PMID: 23212379]
[86]
Brune, S.; Kölsch, H.; Ptok, U.; Majores, M.; Schulz, A.; Schlosser, R.; Rao, M.L.; Maier, W.; Heun, R. Polymorphism in the peroxisome proliferator-activated receptor α gene influences the risk for Alzheimer’s disease. J. Neural Transm. (Vienna), 2003, 110(9), 1041-1050.
[http://dx.doi.org/10.1007/s00702-003-0018-6] [PMID: 12938026]
[87]
Qin, W.; Haroutunian, V.; Katsel, P.; Cardozo, C.P.; Ho, L.; Buxbaum, J.D.; Pasinetti, G.M. PGC-1α expression decreases in the Alzheimer disease brain as a function of dementia. Arch. Neurol., 2009, 66(3), 352-361.
[http://dx.doi.org/10.1001/archneurol.2008.588] [PMID: 19273754]
[88]
Wenz, T. Mitochondria and PGC-1α in aging and age-associated diseases. J. Aging Res., 2011, 2011, 810619.
[http://dx.doi.org/10.4061/2011/810619]
[89]
Lamichane, S.; Dahal Lamichane, B.; Kwon, S.M. Pivotal roles of peroxisome proliferator-activated receptors (PPARs) and their signal cascade for cellular and whole-body energy homeostasis. Int. J. Mol. Sci., 2018, 19(4), 949.
[http://dx.doi.org/10.3390/ijms19040949] [PMID: 29565812]
[90]
Tachibana, K.; Takeuchi, K.; Inada, H.; Yamasaki, D.; Ishimoto, K.; Tanaka, T.; Hamakubo, T.; Sakai, J.; Kodama, T.; Doi, T. Regulation of the human SLC25A20 expression by peroxisome proliferator-activated receptor alpha in human hepatoblastoma cells. Biochem. Biophys. Res. Commun., 2009, 389(3), 501-505.
[http://dx.doi.org/10.1016/j.bbrc.2009.09.018] [PMID: 19748481]
[91]
Green, S.; Wahli, W. Peroxisome proliferator-activated receptors: Finding the orphan a home. Mol. Cell. Endocrinol., 1994, 100(1-2), 149-153.
[http://dx.doi.org/10.1016/0303-7207(94)90294-1] [PMID: 8056148]
[92]
Pedersen, W.A.; McMillan, P.J.; Kulstad, J.J.; Leverenz, J.B.; Craft, S.; Haynatzki, G.R. Rosiglitazone attenuates learning and memory deficits in Tg2576 Alzheimer mice. Exp. Neurol., 2006, 199(2), 265-273.
[http://dx.doi.org/10.1016/j.expneurol.2006.01.018] [PMID: 16515786]
[93]
Song, G.J.; Nam, Y.; Jo, M.; Jung, M.; Koo, J.Y.; Cho, W.; Koh, M.; Park, S.B.; Suk, K. A novel small-molecule agonist of PPAR-γ potentiates an anti-inflammatory M2 glial phenotype. Neuropharmacology, 2016, 109, 159-169.
[http://dx.doi.org/10.1016/j.neuropharm.2016.06.009] [PMID: 27288982]
[94]
Chawla, A.; Barak, Y.; Nagy, L.; Liao, D.; Tontonoz, P.; Evans, R.M. PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat. Med., 2001, 7(1), 48-52.
[http://dx.doi.org/10.1038/83336] [PMID: 11135615]
[95]
Heneka, M.T.; Carson, M.J.; Khoury, J.E.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; Herrup, K.; Frautschy, S.A.; Finsen, B.; Brown, G.C.; Verkhratsky, A.; Yamanaka, K.; Koistinaho, J.; Latz, E.; Halle, A.; Petzold, G.C.; Town, T.; Morgan, D.; Shinohara, M.L.; Perry, V.H.; Holmes, C.; Bazan, N.G.; Brooks, D.J.; Hunot, S.; Joseph, B.; Deigendesch, N.; Garaschuk, O.; Boddeke, E.; Dinarello, C.A.; Breitner, J.C.; Cole, G.M.; Golenbock, D.T.; Kummer, M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol., 2015, 14(4), 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[96]
Palomer, X.; Barroso, E.; Pizarro-Delgado, J.; Peña, L.; Botteri, G.; Zarei, M.; Aguilar, D.; Montori-Grau, M.; Vázquez-Carrera, M. PPARβ/δ: A key therapeutic target in metabolic disorders. Int. J. Mol. Sci., 2018, 19(3), 913.
[http://dx.doi.org/10.3390/ijms19030913] [PMID: 29558390]
[97]
Dineley, K.T.; Jahrling, J.B.; Denner, L. Insulin resistance in Alzheimer’s disease. Neurobiol. Dis., 2014, 72(Pt A), 92-103.
[http://dx.doi.org/10.1016/j.nbd.2014.09.001] [PMID: 25237037]
[98]
Tong, M.; Dominguez, C. Targeting alzheimer’s disease neurometabolic dysfunction with a small molecule nuclear receptor agonist (T3D-959) reverses disease pathologies. J. Alzheimer’s Dis. Park., 2016, 1-6.
[99]
Tong, M.; Deochand, C.; Didsbury, J.; de la Monte, S.M. T3D-959: A multi-faceted disease remedial drug candidate for the treatment of alzheimer’s disease. J. Alzheimers Dis., 2016, 51(1), 123-138.
[http://dx.doi.org/10.3233/JAD-151013] [PMID: 26836193]
[100]
Goto, T.; Nakayama, R.; Yamanaka, M.; Takata, M.; Takazawa, T.; Watanabe, K.; Maruta, K.; Nagata, R.; Nagamine, J.; Tsuchida, A.; Kato, H. Effects of DSP-8658, a novel selective peroxisome proliferator-activated receptors a/γ modulator, on adipogenesis and glucose metabolism in diabetic obese mice. Exp. Clin. Endocrinol. Diabetes, 2015, 123(8), 492-499.
[http://dx.doi.org/10.1055/s-0035-1549965] [PMID: 26011171]
[101]
Andoh, M.; Ikegaya, Y.; Koyama, R. Chapter nine: Microglia as possible therapeutic targets for autism spectrum disorders. Progress in Molecular Biology and Translational Science, Elsevier Inc., 2019, 167, 223-245.
[102]
Yamanaka, M.; Ishikawa, T.; Griep, A.; Axt, D.; Kummer, M.P.; Heneka, M.T. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J. Neurosci., 2012, 32(48), 17321-17331.
[http://dx.doi.org/10.1523/JNEUROSCI.1569-12.2012] [PMID: 23197723]
[103]
Konttinen, H.; Gureviciene, I.; Oksanen, M.; Grubman, A.; Loppi, S.; Huuskonen, M.T.; Korhonen, P.; Lampinen, R.; Keuters, M.; Belaya, I.; Tanila, H.; Kanninen, K.M.; Goldsteins, G.; Landreth, G.; Koistinaho, J.; Malm, T. PPARβ/δ‐agonist GW0742 ameliorates dysfunction in fatty acid oxidation in PSEN1ΔE9 astrocytes. Glia, 2019, 67(1), 146-159.
[http://dx.doi.org/10.1002/glia.23534] [PMID: 30453390]
[104]
Chehaibi, K.; le Maire, L.; Bradoni, S.; Escola, J.C.; Blanco-Vaca, F.; Slimane, M.N. Effect of PPAR-β/δ agonist GW0742 treatment in the acute phase response and blood-brain barrier permeability following brain injury. Transl. Res., 2017, 182, 27-48.
[http://dx.doi.org/10.1016/j.trsl.2016.10.004] [PMID: 27818230]
[105]
An, Y.Q.; Zhang, C.T.; Du, Y.; Zhang, M.; Tang, S.S.; Hu, M.; Long, Y.; Sun, H.B.; Hong, H. PPARδ agonist GW0742 ameliorates Aβ1-42-induced hippocampal neurotoxicity in mice. Metab. Brain Dis., 2016, 31(3), 663-671.
[http://dx.doi.org/10.1007/s11011-016-9800-7] [PMID: 26864581]
[106]
Pathan, A.R.; Viswanad, B.; Sonkusare, S.K.; Ramarao, P. Chronic administration of pioglitazone attenuates intracerebroventricular streptozotocin induced-memory impairment in rats. Life Sci., 2006, 79(23), 2209-2216.
[http://dx.doi.org/10.1016/j.lfs.2006.07.018] [PMID: 16904700]
[107]
Jiang, Q.; Heneka, M.; Landreth, G.E. The role of peroxisome proliferator-activated receptor-gamma (PPARgamma) in Alzheimer’s disease: therapeutic implications. CNS Drugs, 2008, 22(1), 1-14.
[http://dx.doi.org/10.2165/00023210-200822010-00001] [PMID: 18072811]
[108]
Galimberti, D.; Scarpini, E. Pioglitazone for the treatment of Alzheimer’s disease. Expert Opin. Investig. Drugs, 2017, 26(1), 97-101.
[http://dx.doi.org/10.1080/13543784.2017.1265504] [PMID: 27885860]
[109]
Mahindroo, N.; Huang, C.F.; Peng, Y.H.; Wang, C.C.; Liao, C.C.; Lien, T.W.; Chittimalla, S.K.; Huang, W.J.; Chai, C.H.; Prakash, E.; Chen, C.P.; Hsu, T.A.; Peng, C.H.; Lu, I.L.; Lee, L.H.; Chang, Y.W.; Chen, W.C.; Chou, Y.C.; Chen, C.T.; Goparaju, C.M.V.; Chen, Y.S.; Lan, S.J.; Yu, M.C.; Chen, X.; Chao, Y.S.; Wu, S.Y.; Hsieh, H.P. Novel indole-based peroxisome proliferator-activated receptor agonists: Design, SAR, structural biology, and biological activities. J. Med. Chem., 2005, 48(26), 8194-8208.
[http://dx.doi.org/10.1021/jm0506930] [PMID: 16366601]
[110]
Khanna, S.; Bahal, R.; Bharatam, P.V. In silico studies on PPARγ agonistic heterocyclic systems. Top. Heterocycl. Chem., 2006, 3, 149-180.
[http://dx.doi.org/10.1007/7081_036]
[111]
Willson, T.M.; Lambert, M.H.; Kliewer, S.A. Peroxisome proliferator-activated receptor γ and metabolic disease. Annu. Rev. Biochem., 2001, 70(1), 341-367.
[http://dx.doi.org/10.1146/annurev.biochem.70.1.341] [PMID: 11395411]
[112]
Dixit, V.A.; Bharatam, P.V. SAR and computer-aided drug design approaches in the discovery of peroxisome proliferator-activated receptorγ activators: A perspective. J. Comput. Med., 2013, 2013, 1-38.
[http://dx.doi.org/10.1155/2013/406049]
[113]
Wang, L.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Blunder, M.; Liu, X.; Malainer, C.; Blazevic, T.; Schwaiger, S.; Rollinger, J.M.; Heiss, E.H.; Schuster, D.; Kopp, B.; Bauer, R.; Stuppner, H.; Dirsch, V.M.; Atanasov, A.G. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review. Biochem. Pharmacol., 2014, 92(1), 73-89.
[http://dx.doi.org/10.1016/j.bcp.2014.07.018] [PMID: 25083916]
[114]
Qureshi, A.A.; Sami, S.A.; Salser, W.A.; Khan, F.A. Dose-dependent suppression of serum cholesterol by tocotrienol-rich fraction (TRF25) of rice bran in hypercholesterolemic humans. Atherosclerosis, 2002, 161(1), 199-207.
[http://dx.doi.org/10.1016/S0021-9150(01)00619-0] [PMID: 11882333]
[115]
Colonna, M.; Butovsky, O. Microglia function in the central nervous system during health and neurodegeneration. Annu. Rev. Immunol., 2017, 35(1), 441-468.
[http://dx.doi.org/10.1146/annurev-immunol-051116-052358] [PMID: 28226226]
[116]
Kettenmann, H.; Kirchhoff, F.; Verkhratsky, A. Microglia: New roles for the synaptic stripper. Neuron, 2013, 77(1), 10-18.
[http://dx.doi.org/10.1016/j.neuron.2012.12.023] [PMID: 23312512]
[117]
El-Din, S.S.; Abd Elwahab, S.; Rashed, L.; Fayez, S.; Aboulhoda, B.E.; Heikal, O.A.; Galal, A.F.; Nour, Z.A. Possible role of rice bran extract in microglial modulation through PPAR-gamma receptors in alzheimer’s disease mice model. Metab. Brain Dis., 2021, 36(7), 1903-1915.
[http://dx.doi.org/10.1007/s11011-021-00741-4] [PMID: 34043126]
[118]
Castellani, R.J.; Plascencia-Villa, G.; Perry, G. The amyloid cascade and Alzheimer’s disease therapeutics: Theory versus observation. Lab. Invest., 2019, 99(7), 958-970.
[http://dx.doi.org/10.1038/s41374-019-0231-z] [PMID: 30760863]
[119]
Mandrekar-Colucci, S.; Landreth, G.E. Microglia and inflammation in alzheimer’s disease. Curr. Drug Targets CNS Neurol. Disord., 2010, 9, 156-167.
[http://dx.doi.org/10.2174/187152710791012071]
[120]
Chinetti-Gbaguidi, G.; Baron, M.; Bouhlel, M.A.; Vanhoutte, J.; Copin, C.; Sebti, Y.; Derudas, B.; Mayi, T.; Bories, G.; Tailleux, A.; Haulon, S.; Zawadzki, C.; Jude, B.; Staels, B. Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways. Circ. Res., 2011, 108(8), 985-995.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.233775] [PMID: 21350215]
[121]
Kim, M.; Kim, S.H.; Yang, W. Mechanisms of action of phytochemicals from medicinal herbs in the treatment of Alzheimer’s disease. Planta Med., 2014, 80(15), 1249-1258.
[http://dx.doi.org/10.1055/s-0034-1383038] [PMID: 25210998]
[122]
Quan, Q.; Li, X.; Feng, J.; Hou, J.; Li, M.; Zhang, B. Ginsenoside Rg1 reduces β amyloid levels by inhibiting CDΚ5 induced PPAR&γ; phosphorylation in a neuron model of Alzheimer’s disease. Mol. Med. Rep., 2020, 22(4), 3277-3288.
[PMID: 32945455]
[123]
Liu, C.; Zhai, X.; Zhao, B.; Wang, Y.; Xu, Z. Cyclin I-like (CCNI2) is a cyclin-dependent kinase 5 (CDK5) activator and is involved in cell cycle regulation. Sci. Rep., 2017, 7(1), 40979.
[http://dx.doi.org/10.1038/srep40979] [PMID: 28112194]
[124]
Wilkaniec, A.; Czapski, G.A.; Adamczyk, A. Cdk5 at crossroads of protein oligomerization in neurodegenerative diseases: Facts and hypotheses. J. Neurochem., 2016, 136(2), 222-233.
[http://dx.doi.org/10.1111/jnc.13365] [PMID: 26376455]
[125]
Houseknecht, K.L.; Cole, B.M.; Steele, P.J. Peroxisome proliferator-activated receptor gamma (PPARγ) and its ligands: A review. Domest. Anim. Endocrinol., 2002, 22(1), 1-23.
[http://dx.doi.org/10.1016/S0739-7240(01)00117-5] [PMID: 11900961]
[126]
Echeverría, F.; Valenzuela, R.; Catalina Hernandez-Rodas, M.; Valenzuela, A. Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources. Prostaglandins Leukot. Essent. Fatty Acids, 2017, 124, 1-10.
[http://dx.doi.org/10.1016/j.plefa.2017.08.001] [PMID: 28870371]
[127]
Echeverría, F.; Ortiz, M.; Valenzuela, R.; Videla, L.A. Long-chain polyunsaturated fatty acids regulation of PPARs, signaling: Relationship to tissue development and aging. Prostaglandins Leukot. Essent. Fatty Acids, 2016, 114, 28-34.
[http://dx.doi.org/10.1016/j.plefa.2016.10.001] [PMID: 27926461]
[128]
Chen, L.; Lin, Z.; Zhu, Y.; Lin, N.; Zhang, J.; Pan, X.; Chen, X. Ginsenoside Rg1 attenuates β-amyloid generation via suppressing PPARγ-regulated BACE1 activity in N2a-APP695 cells. Eur. J. Pharmacol., 2012, 675(1-3), 15-21.
[http://dx.doi.org/10.1016/j.ejphar.2011.11.039] [PMID: 22166376]
[129]
Quan, Q.; Wang, J.; Li, X.; Wang, Y. Ginsenoside Rg1 decreases Aβ(1-42) level by upregulating PPARγ and IDE expression in the hippocampus of a rat model of Alzheimer’s disease. PLoS One, 2013, 8(3), e59155.
[http://dx.doi.org/10.1371/journal.pone.0059155] [PMID: 23520555]
[130]
Yao, M.; Zhang, L.; Wang, L.; Astragaloside, I.V.; Astragaloside, I.V. A promising natural neuroprotective agent for neurological disorders. Biomed. Pharmacother., 2023, 159, 114229.
[http://dx.doi.org/10.1016/j.biopha.2023.114229] [PMID: 36652731]
[131]
Sanjay; Shin, J.H.; Park, M.; Lee, H.J. Cyanidin-3-O-glucoside regulates the M1/M2 polarization of microglia via PPARγ and Aβ42 phagocytosis through TREM2 in an Alzheimer’s Disease Model. Mol. Neurobiol., 2022, 59(8), 5135-5148.
[http://dx.doi.org/10.1007/s12035-022-02873-9] [PMID: 35670898]
[132]
Rebelo, S.P.; Pinto, C.; Martins, T.R.; Harrer, N.; Estrada, M.F.; Loza-Alvarez, P.; Cabeçadas, J.; Alves, P.M.; Gualda, E.J.; Sommergruber, W.; Brito, C. III 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment. Biomaterials, 2018, 163, 185-197.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.030] [PMID: 29477032]
[133]
Tarique, A.A.; Logan, J.; Thomas, E.; Holt, P.G.; Sly, P.D.; Fantino, E. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am. J. Respir. Cell Mol. Biol., 2015, 53(5), 676-688.
[http://dx.doi.org/10.1165/rcmb.2015-0012OC] [PMID: 25870903]
[134]
Ma, Y.; Wang, J.; Wang, Y.; Yang, G.Y. The biphasic function of microglia in ischemic stroke. Prog. Neurobiol., 2017, 157, 247-272.
[http://dx.doi.org/10.1016/j.pneurobio.2016.01.005] [PMID: 26851161]
[135]
Zhao, S.; Liu, W.; Wang, J.; Shi, J.; Sun, Y.; Wang, W.; Ning, G.; Liu, R.; Hong, J. Akkermansia muciniphila improves metabolic profiles by reducing inflammation in chow diet-fed mice. J. Mol. Endocrinol., 2017, 58(1), 1-14.
[http://dx.doi.org/10.1530/JME-16-0054] [PMID: 27821438]
[136]
Liu, F.; Zhao, F.; Wang, W.; Sang, J.; Jia, L.; Li, L.; Lu, F. Cyanidin-3- O -glucoside inhibits Aβ40 fibrillogenesis, disintegrates preformed fibrils, and reduces amyloid cytotoxicity. Food Funct., 2020, 11(3), 2573-2587.
[http://dx.doi.org/10.1039/C9FO00316A] [PMID: 32154523]
[137]
Seino, S.; Shibasaki, T.; Minami, K. Pancreatic. BETA.-cell signaling: Toward better understanding of diabetes and its treatment. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2010, 86(6), 563-577.
[http://dx.doi.org/10.2183/pjab.86.563] [PMID: 20551594]
[138]
Reich, D.; Gallucci, G.; Tong, M.; de la Monte, S.M. Therapeutic advantages of dual targeting of PPAR-δ and PPAR-γ in an experimental model of sporadic alzheimer’s disease. J. Parkinsons Dis. Alzheimers Dis., 2018, 5(1), 01-08.
[http://dx.doi.org/10.13188/2376-922X.1000025] [PMID: 30705969]
[139]
de la Monte, S.M.; Tong, M.; Lester-Coll, N.; Plater, M., Jr; Wands, J.R. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: Relevance to Alzheimer’s disease. J. Alzheimers Dis., 2006, 10(1), 89-109.
[http://dx.doi.org/10.3233/JAD-2006-10113] [PMID: 16988486]
[140]
Searcy, J.L.; Phelps, J.T.; Pancani, T.; Kadish, I.; Popovic, J.; Anderson, K.L.; Beckett, T.L.; Murphy, M.P.; Chen, K.C.; Blalock, E.M.; Landfield, P.W.; Porter, N.M.; Thibault, O. Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2012, 30(4), 943-961.
[http://dx.doi.org/10.3233/JAD-2012-111661] [PMID: 22495349]
[141]
Rea Martinez, J.; Šelo, G.; Fernández-Arche, M.Á.; Bermudez, B.; García-Giménez, M.D. Dual role of phenyl amides from hempseed on BACE 1, PPARγ, and PGC-1α in N2a-APP Cells. J. Nat. Prod., 2021, 84(9), 2447-2453.
[http://dx.doi.org/10.1021/acs.jnatprod.1c00435] [PMID: 34460260]
[142]
Austin, S.; St-Pierre, J. PGC1α and mitochondrial metabolism emerging concepts and relevance in ageing and neurodegenerative disorders. J. Cell Sci., 2012, 125(21), 4963-4971.
[http://dx.doi.org/10.1242/jcs.113662] [PMID: 23277535]
[143]
Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med., 2016, 8(6), 595-608.
[http://dx.doi.org/10.15252/emmm.201606210] [PMID: 27025652]
[144]
Katsouri, L.; Parr, C.; Bogdanovic, N.; Willem, M.; Sastre, M. PPARγ co-activator-1α (PGC-1α) reduces amyloid-β generation through a PPARγ-dependent mechanism. J. Alzheimers Dis., 2011, 25(1), 151-162.
[http://dx.doi.org/10.3233/JAD-2011-101356] [PMID: 21358044]
[145]
Sastre, M.; Dewachter, I.; Rossner, S.; Bogdanovic, N.; Rosen, E.; Borghgraef, P.; Evert, B.O.; Dumitrescu-Ozimek, L.; Thal, D.R.; Landreth, G.; Walter, J.; Klockgether, T.; van Leuven, F.; Heneka, M.T. Nonsteroidal anti-inflammatory drugs repress β-secretase gene promoter activity by the activation of PPARγ. Proc. Natl. Acad. Sci., 2006, 103(2), 443-448.
[http://dx.doi.org/10.1073/pnas.0503839103] [PMID: 16407166]
[146]
D’Errico, I.; Salvatore, L.; Murzilli, S.; Lo Sasso, G.; Latorre, D.; Martelli, N.; Egorova, A.V.; Polishuck, R.; Madeyski-Bengtson, K.; Lelliott, C.; Vidal-Puig, A.J.; Seibel, P.; Villani, G.; Moschetta, A. Peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α) is a metabolic regulator of intestinal epithelial cell fate. Proc. Natl. Acad. Sci., 2011, 108(16), 6603-6608.
[http://dx.doi.org/10.1073/pnas.1016354108] [PMID: 21467224]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy