Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Mini-Review Article

Synthetic Protocols, Structural Activity Relationship, and Biological Activity of Piperazine and its Derivatives

Author(s): Md Faizan, Rajnish Kumar*, Avijit Mazumder, Salahuddin, Neelima Kukreti, Arvind Kumar and M.V.N.L. Chaitanya

Volume 20, Issue 8, 2024

Published on: 29 April, 2024

Page: [753 - 780] Pages: 28

DOI: 10.2174/0115734064304396240415110015

Price: $65

Abstract

The versatile basic structure of piperazine allows for the development and production of newer bioactive molecules that can be used to treat a wide range of diseases. Piperazine derivatives are unique and can easily be modified for the desired pharmacological activity. The two opposing nitrogen atoms in a six-membered piperazine ring offer a large polar surface area, relative structural rigidity, and more acceptors and donors of hydrogen bonds. These properties frequently result in greater water solubility, oral bioavailability, and ADME characteristics, as well as improved target affinity and specificity. Various synthetic protocols have been reported for piperazine and its derivatives. In this review, we focused on recently published synthetic protocols for the synthesis of the piperazine and its derivatives. The structure-activity relationship concerning different biological activities of various piperazine-containing drugs was also highlighted to provide a good understanding to researchers for future research on piperazines.

Next »
[1]
Goia, M.C.; Pop, M.M.; Simon, V. New solid state forms of antineoplastic 5-fluorouracil with anthelmintic piperazine. J. Mol. Struct., 2017, 1150, 37-43.
[http://dx.doi.org/10.1016/j.molstruc.2017.08.076]
[2]
Sharma, A.; Wakode, S.; Fayaz, F.; Khasimbi, S.; Pottoo, F.H.; Kaur, A. An overview of piperazine scaffold as promising nucleus for different therapeutic targets. Curr. Pharm. Des., 2020, 26(35), 4373-4385.
[http://dx.doi.org/10.2174/1381612826666200417154810] [PMID: 32303168]
[3]
Kumar, R.R.; Sahu, B.; Pathania, S.; Singh, P.K.; Akhtar, M.J.; Kumar, B. Piperazine, a key substructure for antidepressants: Its role in developments and structure‐activity relationships. ChemMedChem, 2021, 16(12), 1878-1901.
[http://dx.doi.org/10.1002/cmdc.202100045] [PMID: 33751807]
[4]
Bari, D.G.; Saravanan, K.; Ahmad, R. Antipsychotic evaluation of novel series of aryl piperazine congeners. Int. J. Pharmaceut. Res., 2021, 13(2)
[http://dx.doi.org/10.31838/ijpr/2021.13.02.235]
[5]
Al-Ghorbani, M.; Gouda, M.A.; Baashen, M.; Alharbi, O.; Almalki, F.A.; Ranganatha, L.V. Piperazine heterocycles as potential anticancer agents: A review. Pharm. Chem. J., 2022, 56(1), 29-37.
[http://dx.doi.org/10.1007/s11094-022-02597-z]
[6]
Sanad, S.M.H.; Mekky, A.E.M. Synthesis, in-vitro antibacterial and anticancer screening of novel nicotinonitrile-coumarin hybrids utilizing piperazine citrate. Synth. Commun., 2020, 50(10), 1468-1485.
[http://dx.doi.org/10.1080/00397911.2020.1743318]
[7]
Halimehjani, A.Z.; Dehghan, F.; Tafakori, V.; Amini, E.; Hooshmand, S.E.; Nosood, Y.L. Synthesis of novel antibacterial and antifungal dithiocarbamate-containing piperazine derivatives via re-engineering multicomponent approach. Heliyon, 2022, 8(6), e09564.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09564] [PMID: 35669544]
[8]
Yıldız, M. Design, synthesis, characterization, and antimicrobial activity of novel piperazine substituted 1,4-benzoquinones. J. Mol. Struct., 2020, 1203, 127422.
[http://dx.doi.org/10.1016/j.molstruc.2019.127422]
[9]
Nguyen, W.; Dans, M.G.; Ngo, A.; Gancheva, M.R.; Romeo, O.; Duffy, S.; de Koning-Ward, T.F.; Lowes, K.N.; Sabroux, H.J.; Avery, V.M.; Wilson, D.W.; Gilson, P.R.; Sleebs, B.E. Structure activity refinement of phenylsulfonyl piperazines as antimalarials that block erythrocytic invasion. Eur. J. Med. Chem., 2021, 214, 113253.
[http://dx.doi.org/10.1016/j.ejmech.2021.113253] [PMID: 33610028]
[10]
Jain, A.; Chaudhary, J.; Khaira, H.; Chopra, B.; Dhingra, A. Piperazine: A promising scaffold with analgesic and anti-inflammatory potential. Drug Res., 2021, 71(2), 62-72.
[http://dx.doi.org/10.1055/a-1323-2813] [PMID: 33336346]
[11]
Shaquiquzzaman, M.; Verma, G.; Marella, A.; Akhter, M.; Akhtar, W.; Khan, M.F.; Tasneem, S.; Alam, M.M. Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur. J. Med. Chem., 2015, 102, 487-529.
[http://dx.doi.org/10.1016/j.ejmech.2015.07.026] [PMID: 26310894]
[12]
Gettys, K.; Ye, Z.; Dai, M.; Zhang, T.; Vitaku, E.; Smith, D.; Njardarson, J.; Walker, M.; Vo, C.V.; Bode, J.; Ye, Z. Recent advances in piperazine synthesis. Synthesis, 2017, 49(12), 2589-2604.
[http://dx.doi.org/10.1055/s-0036-1589491]
[13]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[14]
Lorsbach, B.; Ruiz, J.M.; Sparks, T.C.; Sullenberger, M.T.; Morrison, I.M.; Webster, J.D. Webster, Dow AgroSciences LLC. U.S. Patent 13/676,381, 2013.
[15]
Baltzly, R.; Buck, J.S.; Lorz, E.; Schön, W. The preparation of N-mono-substituted and unsymmetrically disubstituted piperazines. J. Am. Chem. Soc., 1944, 66(2), 263-266.
[http://dx.doi.org/10.1021/ja01230a031]
[16]
Kant, R.; Maji, S. Recent advances in the synthesis of piperazine based ligands and metal complexes and their applications. Dalton Trans., 2021, 50(3), 785-800.
[http://dx.doi.org/10.1039/D0DT03569F] [PMID: 33416816]
[17]
Walker, M.A. Novel tactics for designing water-soluble molecules in drug discovery. Expert Opin. Drug Discov., 2014, 9(12), 1421-1433.
[http://dx.doi.org/10.1517/17460441.2014.960839] [PMID: 25226793]
[18]
Zou, J.; Gao, P.; Hao, X.; Xu, H.; Zhan, P.; Liu, X. Recent progress in the structural modification and pharmacological activities of ligustrazine derivatives. Eur. J. Med. Chem., 2018, 147, 150-162.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.097] [PMID: 29432947]
[19]
Chen, J.; Wang, W.; Wang, H.; Liu, X.; Guo, X. Combination treatment of ligustrazine piperazine derivate DLJ14 and adriamycin inhibits progression of resistant breast cancer through inhibition of the EGFR/PI3K/Akt survival pathway and induction of apoptosis. Drug Discov. Ther., 2014, 8(1), 33-41.
[http://dx.doi.org/10.5582/ddt.8.33] [PMID: 24647156]
[20]
Vo, C.V.T.; Bode, J.W. Synthesis of saturated N-heterocycles. J. Org. Chem., 2014, 79(7), 2809-2815.
[http://dx.doi.org/10.1021/jo5001252] [PMID: 24617516]
[21]
Liang, Z.; Hongjun, Y.; Jilong, W.; Yunfei, Z.; Laixing, L. Mycoplasma bovis inactivated vaccine and preparation method and application thereof. CN Patent 110420323B, 2023.
[22]
Yanping, L.; Zhuorong, L.; Zonggen, P.; Xinbei, J.; Yixuan, W.; Jianrui, L.; Jiali, T. Benzyl piperazine compound, preparation method thereof and application thereof in antivirus. CN Patent 110698432B, 2023.
[23]
Tingzhong, W. Novel ASK1 inhibitor and application thereof. CN Patent 110294746B, 2023.
[24]
Jinlei, B.; Zhiyu, L.; Xiaqiu, Q. Small molecule regulating agent targeting CDK9, and synthesis method and application thereof. CN Patent 111253371B, 2023.
[25]
Santora, V.J.; Chen, M.; Chun, D. Substituted benzoxazole and benzofuran compounds as PDE7 inhibitors. JP Patent 7213863, 2023.
[26]
Black, A.I.; Vannay, A. Use of sigma-1 receptor agonist compounds. CA Patent 2938928C 2023.
[27]
Cha, T.L.; Lai, T.W.; Tsai, Y.T.; Lin, S.C.; Yu, Y. Ammonium salt of 3-(3,5-dibromo-4-hydroxybenzylidene)-5-iodo-1,3- dihydroindol-2-one and use thereof. JP Patent 7201273B, 2023.
[28]
Zohdy, S.M.; Starkey, L.; Blagburn, B.L. Dirofilaria volatile organic compound signatures and uses thereof. US Patent 11549868B 2023.
[29]
Hinton, M.P.; Frederico, J.J. Marker compositions with nitrogen compounds, and methods for making and using same. US Patent 11542449B 2023.
[30]
Min, S.; Kim, J.; Kim, Y. 2,5-disubstituted pyrimidines and pharmaceutical composition comprising the same. KR Patent 102483492B 2023.
[31]
Fan, J.; Qian, Y.; He, W.; Liu, K. Substituted quinoline-8-carbonitrile derivatives with androgen receptor degradation activity and uses thereof. US Patent 11535606, 2022.
[32]
Patient, L.; Simpson, I.; Savory, E. Imidazo[4,5-C] pyridine derived SSAO inhibitors. US Patent 11530208B2 2022.
[33]
Qingmin, W.; Hongjian, S.; Lili, L.; Yuxiu, L.; Ziwen, W.; Yongqiang, L. Preparation of piperazinedione acylhydrazone derivatives and applications in preventing and controlling plant viruses, sterilizing and insecticidal. CN Patent 110759896B, 2022.
[34]
Bhamra, I.; Massison, M.; Donoghue, C.; Testar, R. n-Pyridinyl acetamide derivatives as inhibitors of the Wnt signaling pathway. KR Patent 102476667B, 2022.
[35]
Letnef; Tenor, H. Novel dual mode of action soluble guanylyl cyclase activators and phosphodiesterase inhibitors and uses. JP Patent 7182568B2, 2022.
[36]
Synthesis of omecamtivomecarbil. JP Patent 7181896B2, 2022.
[37]
Pelster, B.E.M.; BUCHGRABER, P.; Buchmuller, A.; Engel, K.; Geiss, V.; Goller, A.; Himmel, H.; Kast, R.; Knorr, A.; Lang, D.; Redlich, G.; Schmeck, C.; Tinel, H.; Wunder, F. Substituted piperidinyl-tetrahydroquinolines and their use as alpha-2c adrenoreceptor antagonists. CA Patent 2934108C, 2022.
[38]
Benny, B.A.; Andre, F.; Arne, M.; Heidi, L.D.; Rene, H.; Bruin, S.T.; Munch, R.R.; Jay, M.M.; Harold, R.M.; Jergen, B.; Molten, J.; Nicholas, M. 1-[2-(2,4-dimethylphenylsulfanyl)-phenyl] as a compound with combined serotonin reuptake, 5-HT3 and 5-HT1A activity for treating cognitive impairment piperazine. JP Patent 7179035-B2, 2022.
[39]
Liying, X.; Feifei, W.; Yongkui, J.; Meihui, Z.; Lin, W.; Yu, B.; Jinhua, D. Histone deacetylase inhibitors and their preparation and application. CN Patent 112707833B 2022.
[40]
Hübsch, W.; Köbberling, J.; Köhler, A.; Schwarz, H.G. Anthelmintic quinoline-3-carboxamide derivatives. US Patent 11505545B, 2022.
[41]
Kyrides, L.P. Manufacture of piperazine. US Patent 2,267,686,, 1941.
[42]
Schanen, V.; Riche, C.; Chiaroni, A.; Quirion, J.C.; Husson, H.P. Asymmetric synthesis. XXXI. Synthesis of 2-substituted piperazines from chiral non-racemic lactams. Tetrahedron Lett., 1994, 35(16), 2533-2536.
[http://dx.doi.org/10.1016/S0040-4039(00)77163-2]
[43]
Liu, Y.; Han, S.J.; Liu, W.B.; Stoltz, B.M. Catalytic enantioselective construction of quaternary stereocenters: Assembly of key building blocks for the synthesis of biologically active molecules. Acc. Chem. Res., 2015, 48(3), 740-751.
[http://dx.doi.org/10.1021/ar5004658] [PMID: 25715056]
[44]
Korch, K.M.; Eidamshaus, C.; Behenna, D.C.; Nam, S.; Horne, D.; Stoltz, B.M. Enantioselective synthesis of α-secondary and α-tertiary piperazin-2-ones and piperazines by catalytic asymmetric allylic alkylation. Angew. Chem. Int. Ed., 2015, 54(1), 179-183.
[http://dx.doi.org/10.1002/anie.201408609] [PMID: 25382664]
[45]
Cushman, M.; Castagnoli, N. Jr Synthesis of trans-3′-methylnicotine. J. Org. Chem., 1972, 37(8), 1268-1271.
[http://dx.doi.org/10.1021/jo00973a046]
[46]
Dar’in, D.; Bakulina, O.; Chizhova, M.; Krasavin, M. New heterocyclic product space for the Castagnoli–Cushman three-component reaction. Org. Lett., 2015, 17(15), 3930-3933.
[http://dx.doi.org/10.1021/acs.orglett.5b02014] [PMID: 26226189]
[47]
Montgomery, T.D.; Rawal, V.H. Palladium-catalyzed modular synthesis of substituted piperazines and related nitrogen heterocycles. Org. Lett., 2016, 18(4), 740-743.
[http://dx.doi.org/10.1021/acs.orglett.5b03708] [PMID: 26824482]
[48]
James, T.; Simpson, I.; Grant, J.A.; Sridharan, V.; Nelson, A. Modular, gold-catalyzed approach to the synthesis of lead-like piperazine scaffolds. Org. Lett., 2013, 15(23), 6094-6097.
[http://dx.doi.org/10.1021/ol402988s] [PMID: 24219794]
[49]
Yao, L.F.; Wang, Y.; Huang, K.W. Synthesis of morpholine or piperazine derivatives through gold-catalyzed cyclization reactions of alkynylamines or alkynylalcohols. Org. Chem. Front., 2015, 2(6), 721-725.
[http://dx.doi.org/10.1039/C5QO00060B]
[50]
Ciotonea, C.; Hammi, N.; Dhainaut, J.; Marinova, M.; Ungureanu, A.; El Kadib, A.; Michon, C.; Royer, S. Phyllosilicate‐derived nickel‐cobalt bimetallic nanoparticles for the catalytic hydrogenation of imines, oximes and N‐heteroarenes. ChemCatChem, 2020, 12(18), 4652-4663.
[http://dx.doi.org/10.1002/cctc.202000704]
[51]
Bagnoli, L.; Scarponi, C.; Rossi, M.G.; Testaferri, L.; Tiecco, M. Synthesis of enantiopure 1,4-dioxanes, morpholines, and piperazines from the reaction of chiral 1,2-diols, amino alcohols, and diamines with vinyl selenones. Chemistry, 2011, 17(3), 993-999.
[http://dx.doi.org/10.1002/chem.201002593] [PMID: 21226117]
[52]
Matlock, J.V.; Svejstrup, T.D.; Songara, P.; Overington, S.; McGarrigle, E.M.; Aggarwal, V.K. Synthesis of 6-and 7-membered N-heterocycles using α-phenylvinylsulfonium salts. Org. Lett., 2015, 17(20), 5044-5047.
[http://dx.doi.org/10.1021/acs.orglett.5b02516] [PMID: 26421884]
[53]
Luescher, M.U.; Geoghegan, K.; Nichols, P.L.; Bode, J.W. SnAP reagents for a cross-coupling approach to the one-step synthesis of saturated N-heterocycles. Aldrichim Acta, 2015, 48(2), 43-48.
[http://dx.doi.org/10.3929/ethz-b-000260575]
[54]
Moreno, A.; Bode, J.W. Modular Synthesis and Hydroalkylation of Vicinally Functionalized Ketopiperazines: A solution to the Piperazine Problem. Thesis; Central Washington University, 2015.
[55]
Geoghegan, K.; Bode, J.W. Bespoke SnAP reagents for the synthesis of C-substituted spirocyclic and bicyclic saturated N-heterocycles. Org. Lett., 2015, 17(8), 1934-1937.
[http://dx.doi.org/10.1021/acs.orglett.5b00618] [PMID: 25822736]
[56]
Hsieh, S.Y.; Bode, J.W. Silicon amine reagents for the photocatalytic synthesis of piperazines from aldehydes and ketones. Org. Lett., 2016, 18(9), 2098-2101.
[http://dx.doi.org/10.1021/acs.orglett.6b00722] [PMID: 27101157]
[57]
Durand, C.; Szostak, M. Recent advances in the synthesis of piperazines: Focus on C–H functionalization. Organics, 2021, 2(4), 337-347.
[http://dx.doi.org/10.3390/org2040018]
[58]
Gueret, R.; Pelinski, L.; Bousquet, T.; Sauthier, M.; Ferey, V.; Bigot, A. Visible-light-driven carboxylic amine protocol (CLAP) for the synthesis of 2-substituted piperazines under batch and flow conditions. Org. Lett., 2020, 22(13), 5157-5162.
[http://dx.doi.org/10.1021/acs.orglett.0c01759] [PMID: 32575988]
[59]
Pospelov, E.V.; Sukhorukov, A.Y. Building up a piperazine ring from a primary amino group via catalytic reductive cyclization of dioximes. Int. J. Mol. Sci., 2023, 24(14), 11794.
[http://dx.doi.org/10.3390/ijms241411794] [PMID: 37511552]
[60]
Pospelov, E.V.; Boyko, Y.D.; Ioffe, S.L.; Sukhorukov, A.Y. Synthesis of bis(β‐Oximinoalkyl)malonates and their catalytic reductive cyclization to piperidines. Adv. Synth. Catal., 2022, 364(15), 2557-2564.
[http://dx.doi.org/10.1002/adsc.202200424]
[61]
Kour, H.; Paul, S.; Singh, P.P.; Gupta, M.; Gupta, R. A simple one-pot method for the mercuric oxide mediated synthesis of piperazines via oxidative diamination of olefins. Tetrahedron Lett., 2013, 54(8), 761-764.
[http://dx.doi.org/10.1016/j.tetlet.2012.11.110]
[62]
Halimehjani, A.Z.; Badali, E. DABCO bond cleavage for the synthesis of piperazine derivatives. RSC Advances, 2019, 9(62), 36386-36409.
[http://dx.doi.org/10.1039/C9RA07870C] [PMID: 35540608]
[63]
Zhu, Q.; Yang, P.; Chen, M.; Hu, J.; Yang, L.; Borg, L.F.; Kanao, M.; Hashizume, T.; Ichikawa, Y.; Irie, K.; Isoda, S. A rapid method to aromatic aminoalkyl esters via the catalyst-free difunctionalization of C–N bonds. Synthesis, 2018, 50(13), 2587-2594.
[http://dx.doi.org/10.1055/s-0036-1591577]
[64]
Min, G.; Seo, J.; Ko, H.M. Three-component reactions of arynes, amines, and nucleophiles via a one-pot process. J. Org. Chem., 2018, 83(15), 8417-8425.
[http://dx.doi.org/10.1021/acs.joc.8b01058] [PMID: 29969034]
[65]
Bugaenko, D.I.; Yurovskaya, M.A.; Karchava, A.V. Quaternary N-(2-pyridyl)-DABCO salts: One-pot in situ formation from pyridine-N-oxides and reactions with nucleophiles: A mild and selective route to substituted N-(2-pyridyl)-N′-ethylpiperazines. J. Org. Chem., 2017, 82(4), 2136-2149.
[http://dx.doi.org/10.1021/acs.joc.6b02952] [PMID: 28107013]
[66]
Dong, H.R.; Chen, Z.B.; Li, R.S.; Dong, H.S.; Xie, Z.X. Convenient and efficient synthesis of disubstituted piperazine derivatives by catalyst-free, atom-economical and tricomponent domino reactions. RSC Advances, 2015, 5(14), 10768-10772.
[http://dx.doi.org/10.1039/C4RA14811H]
[67]
Fu, Y.; Xu, Q.S.; Li, Q.Z.; Li, M.P.; Shi, C.Z.; Du, Z. Sulfonylation of 1,4‐diazabicyclo[2.2.2]octane: Charge‐transfer complex triggered C−N bond cleavage. ChemistryOpen, 2019, 8(1), 127-131.
[http://dx.doi.org/10.1002/open.201800251] [PMID: 30723657]
[68]
Corma, A.; Navas, J.; Sabater, M.J. Advances in one-pot synthesis through borrowing hydrogen catalysis. Chem. Rev., 2018, 118(4), 1410-1459.
[http://dx.doi.org/10.1021/acs.chemrev.7b00340] [PMID: 29319294]
[69]
Marichev, K.O.; Takacs, J.M. Ruthenium-catalyzed amination of secondary alcohols using borrowing hydrogen methodology. ACS Catal., 2016, 6(4), 2205-2210.
[http://dx.doi.org/10.1021/acscatal.6b00175] [PMID: 28936364]
[70]
Suárez-Pantiga, S.; Colas, K.; Johansson, M.J.; Mendoza, A. Scalable synthesis of piperazines enabled by visible‐light irradiation and aluminum organometallics. Angew. Chem. Int. Ed., 2015, 54(47), 14094-14098.
[http://dx.doi.org/10.1002/anie.201505608] [PMID: 26337253]
[71]
Balalaie, S.; Kejani, R.R.; Ghabraie, E.; Darvish, F.; Rominger, F.; Hamdan, F.; Bijanzadeh, H.R. Diastereoselective synthesis of functionalized diketopiperazines through post-transformational reactions. J. Org. Chem., 2017, 82(23), 12141-12152.
[http://dx.doi.org/10.1021/acs.joc.7b01855] [PMID: 29048893]
[72]
Heravi, M.M.; Mohammadkhani, L. Synthesis of various N-heterocycles using the four-component Ugi reaction. Adv. Heterocycl. Chem., 2020, 131, 351-403.
[http://dx.doi.org/10.1016/bs.aihch.2019.04.001]
[73]
Zaręba, P.; Drabczyk, A.K.; Jaśkowska, J.; Satała, G. Chemical puzzles in the search for new, flexible derivatives of lurasidone as antipsychotic drugs. Bioorg. Med. Chem., 2020, 28(10), 115459.
[http://dx.doi.org/10.1016/j.bmc.2020.115459] [PMID: 32247749]
[74]
Gao, L.; Hao, C.; Ma, R.; Chen, J.; Zhang, G.; Chen, Y. Synthesis and biological evaluation of a new class of multi-target heterocycle piperazine derivatives as potential antipsychotics. RSC Advances, 2021, 11(28), 16931-16941.
[http://dx.doi.org/10.1039/D1RA02426D] [PMID: 35479681]
[75]
Chen, S.F.; Chien, Y.H.; Chen, P.C.; Wang, I.J. Association of age with risk of major depression among patients with chronic kidney disease over midlife: A nationwide cohort study in Taiwan. Int. Psychogeriatr., 2019, 31(8), 1171-1179.
[http://dx.doi.org/10.1017/S1041610218001576] [PMID: 30398134]
[76]
Gu, Z.S.; Wang, W.T.; Qian, H.; Zhou, A.N.; Sun, H.B.; Zhang, Q.W.; Li, J.Q. Synthesis and antidepressant effect of novel aralkyl piperazine and piperidine derivatives targeting SSRI/5-HT1A/5-HT7. Bioorg. Med. Chem. Lett., 2019, 29(23), 126703.
[http://dx.doi.org/10.1016/j.bmcl.2019.126703] [PMID: 31627993]
[77]
Ostrowska, K.; Grzeszczuk, D.; Głuch-Lutwin, M.; Gryboś, A.; Siwek, A.; Leśniak, A.; Sacharczuk, M.; Trzaskowski, B. 5-HT1A and 5-HT2A receptors affinity, docking studies and pharmacological evaluation of a series of 8-acetyl-7-hydroxy-4-methylcoumarin derivatives. Bioorg. Med. Chem., 2018, 26(2), 527-535.
[http://dx.doi.org/10.1016/j.bmc.2017.12.016] [PMID: 29269256]
[78]
Yadav, R.K.; Kumar, R.; Singh, H.; Mazumdar, A. Salahuddin; Chauhan, B.; Abdullah, M.M. Recent insights on synthetic methods and pharmacological potential in relation with structure of benzothiazoles. Med. Chem., 2023, 19(4), 325-360.
[http://dx.doi.org/10.2174/1573406418666220820110551] [PMID: 35993459]
[79]
Singh, M.; Jadhav, H.R.; Kumar, A. Design, synthesis and in vitro evaluation of piperazine incorporated novel anticancer agents. Lett. Drug Des. Discov., 2018, 15(8), 866-874.
[http://dx.doi.org/10.2174/1570180815666171211161501]
[80]
Özdemir, A.; Turanli, S.; Çalişkan, B.; Arka, M.; Banoglu, E. Evaluation of cytotoxic activity of new benzimidazole-piperazine hybrids against human MCF-7 and A549 cancer cells. Pharm. Chem. J., 2020, 53(11), 1036-1046.
[http://dx.doi.org/10.1007/s11094-020-02119-9]
[81]
Parsons, M.E.; Ganellin, C.R. Histamine and its receptors. Br. J. Pharmacol., 2006, 147(S1), S127-S135.
[http://dx.doi.org/10.1038/sj.bjp.0706440] [PMID: 16402096]
[82]
Szczepańska, K.; Karcz, T.; Mogilski, S.; Siwek, A.; Kuder, K.J.; Latacz, G.; Kubacka, M.; Hagenow, S.; Lubelska, A.; Olejarz, A.; Kotańska, M.; Sadek, B.; Stark, H.; Kononowicz, K.K. Synthesis and biological activity of novel tert-butyl and tert-pentylphenoxyalkyl piperazine derivatives as histamine H3R ligands. Eur. J. Med. Chem., 2018, 152, 223-234.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.043] [PMID: 29723785]
[83]
Corrêa, M.F.; Barbosa, Á.J.R.; Teixeira, L.B.; Duarte, D.A.; Simões, S.C.; Parreiras-e-Silva, L.T.; Balbino, A.M.; Landgraf, R.G.; Bouvier, M.; Costa-Neto, C.M.; Fernandes, J.P.S. Pharmacological characterization of 5-substituted 1-[(2,3-dihydro-1-benzofuran-2-yl)methyl]piperazines: Novel antagonists for the histamine H3 and H4 receptors with anti-inflammatory potential. Front. Pharmacol., 2017, 8, 825.
[http://dx.doi.org/10.3389/fphar.2017.00825] [PMID: 29184503]
[84]
Liu, Z.P.; Gong, C.D.; Xie, L.Y.; Du, X.L.; Li, Y.; Qin, J. Synthesis and in vivo anti-inflammatory evaluation of piperazine derivatives containing 1,4-benzodioxan moiety. Acta Chim. Slov., 2019, 66(2), 421-426.
[http://dx.doi.org/10.17344/acsi.2018.4887] [PMID: 33855503]
[85]
Perli, M.; Govindarajan, R. Piperazine Derivatives: A Review of Biological Activities. World J. Pharm. Res., 2020, 9(14), 194-204.
[http://dx.doi.org/10.20959/wjpr202014-19021]
[86]
Suryavanshi, H.R.; Rathore, M.M. Synthesis and biological activities of piperazine derivatives as antimicrobial and antifungal agents. Organic Communications, 2017, 10(3), 228-238.
[http://dx.doi.org/10.25135/acg.oc.23.17.05.026]
[87]
Patil, M.; Noonikara Poyil, A.; Joshi, S.D.; Patil, S.A.; Patil, S.A.; Bugarin, A. Design, synthesis, and molecular docking study of new piperazine derivative as potential antimicrobial agents. Bioorg. Chem., 2019, 92, 103217.
[http://dx.doi.org/10.1016/j.bioorg.2019.103217] [PMID: 31479986]
[88]
Rybka, S.; Obniska, J.; Żmudzki, P.; Koczurkiewicz, P.; Pszczoła, W.K.; Pękala, E.; Bryła, A.; Rapacz, A. Synthesis and determination of lipophilicity, anticonvulsant activity, and preliminary safety of 3‐substituted and 3‐unsubstituted N ‐[(4‐Arylpiperazin‐1‐yl)alkyl]pyrrolidine‐2,5‐dione derivatives. ChemMedChem, 2017, 12(22), 1848-1856.
[http://dx.doi.org/10.1002/cmdc.201700539] [PMID: 29045762]
[89]
Singh, K.; Shakya, A.K.; Alok, S.; Kushwaha, S.P.; Kumar, P. Design synthesis and pharmacological investigation of novel benzhydryl piperazine derivatives as a new class of anti-convulsant agents. Int. J. Pharm. Sci. Res., 2022, 13(6), 2476-2483.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.13(6).2476-83]
[90]
Gao, S.; Song, L.; Sylvester, K.; Mercorelli, B.; Loregian, A.; Toth, K.; Weiße, R.H.; Useini, A.; Sträter, N.; Yang, M.; Ye, B.; Tollefson, A.E.; Müller, C.E.; Liu, X.; Zhan, P. Design, synthesis, and biological evaluation of trisubstituted piperazine derivatives as noncovalent severe acute respiratory syndrome coronavirus 2 main protease inhibitors with improved antiviral activity and favorable druggability. J. Med. Chem., 2023, 66(23), 16426-16440.
[http://dx.doi.org/10.1021/acs.jmedchem.3c01876] [PMID: 37992202]
[91]
Nagalakshmamma, V.; Venkataswamy, M.; Pasala, C.; Umamaheswari, A.; Thyagaraju, K.; Nagaraju, C.; Chalapathi, P.V. Design, synthesis, anti-tobacco mosaic viral and molecule docking simulations of urea/thiourea derivatives of 2-(piperazine-1-yl)-pyrimidine and 1-(4-Fluoro/4-Chloro phenyl)-piperazine and 1-(4-Chloro phenyl)-piperazine – A study. Bioorg. Chem., 2020, 102, 104084.
[http://dx.doi.org/10.1016/j.bioorg.2020.104084] [PMID: 32693309]
[92]
Kalli, S.B.; Velmurugan, V. Design, synthesis and anti-diabetic activity of piperazine sulphonamide derivatives as dipeptidyl peptidase-4 inhibitors. Pharmacia, 2022, 69(4), 987-993.
[http://dx.doi.org/10.3897/pharmacia.69.e95096]
[93]
Taha, M.; Irshad, M.; Imran, S.; Chigurupati, S.; Selvaraj, M.; Rahim, F.; Ismail, N.H.; Nawaz, F.; Khan, K.M. Synthesis of piperazine sulfonamide analogs as diabetic-II inhibitors and their molecular docking study. Eur. J. Med. Chem., 2017, 141, 530-537.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.028] [PMID: 29102178]
[94]
Marvanova, P.; Padrtova, T.; Mokry, P. (Hetero)Aryloxyamino-propanols with N-phenylpiperazine structural fragment – review of cardiovascular activity. Mini Rev. Med. Chem., 2020, 20(17), 1719-1731.
[http://dx.doi.org/10.2174/1389557520666200624192859] [PMID: 32579495]
[95]
Xie, S.; Li, X.; Yu, H.; Zhang, P.; Wang, J.; Wang, C.; Xu, S.; Wu, Z.; Liu, J.; Zhu, Z.; Xu, J. Design, synthesis and biological evaluation of isochroman-4-one hybrids bearing piperazine moiety as antihypertensive agent candidates. Bioorg. Med. Chem., 2019, 27(13), 2764-2770.
[http://dx.doi.org/10.1016/j.bmc.2019.05.004] [PMID: 31078380]
[96]
Samura, I.B.; Grigorieva, L.V.; Romanenko, M.I. The study of antiarrhythmic activity of some derivatives of 7-alkyl-8-piperazine-3-methylxanthine. Biolog. Mark. Guided Ther., 2019, 6(1), 33-42.
[http://dx.doi.org/10.12988/bmgt.2019.913]
[97]
Srinivasarao, S.; Nandikolla, A.; Suresh, A.; Calster, K.V.; De Voogt, L.; Cappoen, D.; Ghosh, B.; Aggarwal, H.; Murugesan, S.; Chandra Sekhar, K.V.G. Seeking potent anti-tubercular agents: Design and synthesis of substituted- N -(6-(4-(pyrazine-2-carbonyl) piperazine/homopiperazine-1-yl)pyridin-3-yl)benzamide derivatives as anti-tubercular agents. RSC Advances, 2020, 10(21), 12272-12288.
[http://dx.doi.org/10.1039/D0RA01348J] [PMID: 35497605]
[98]
Wang, A.; Xu, S.; Chai, Y.; Xia, G.; Wang, B.; Lv, K.; Ma, C.; Wang, D.; Wang, A.; Qin, X.; Liu, M.; Lu, Y. Design, synthesis and biological activity of N-(amino)piperazine-containing benzothiazinones against Mycobacterium tuberculosis. Eur. J. Med. Chem., 2021, 218, 113398.
[http://dx.doi.org/10.1016/j.ejmech.2021.113398] [PMID: 33823392]
[99]
Moujalled, D.M.; Brown, F.C.; Chua, C.C.; Dengler, M.A.; Pomilio, G.; Anstee, N.S.; Litalien, V.; Thompson, E.; Morley, T.; MacRaild, S.; Tiong, I.S.; Morris, R.; Dun, K.; Zordan, A.; Shah, J.; Banquet, S.; Halilovic, E.; Morris, E.; Herold, M.J.; Lessene, G.; Adams, J.M.; Huang, D.C.S.; Roberts, A.W.; Blombery, P.; Wei, A.H. Acquired mutations in BAX confer resistance to BH3-mimetic therapy in acute myeloid leukemia. Blood, 2023, 141(6), 634-644.
[http://dx.doi.org/10.1182/blood.2022016090] [PMID: 36219880]
[100]
Katz, D.P.; Majrashi, M.; Ramesh, S.; Govindarajulu, M.; Bhattacharya, D.; Bhattacharya, S.; Shlghom, A.; Bradford, C.; Suppiramaniam, V.; Deruiter, J.; Clark, C.R.; Dhanasekaran, M. Comparing the dopaminergic neurotoxic effects of benzylpiperazine and benzoylpiperazine. Toxicol. Mech. Methods, 2018, 28(3), 177-186.
[http://dx.doi.org/10.1080/15376516.2017.1376024] [PMID: 28874085]
[101]
Tsujimoto, Y. Role of Bcl‐2 family proteins in apoptosis: apoptosomes or mitochondria? Genes Cells, 1998, 3(11), 697-707.
[http://dx.doi.org/10.1046/j.1365-2443.1998.00223.x] [PMID: 9990505]
[102]
Jiang, M.; Qi, L.; Li, L.; Li, Y. The caspase-3/GSDME signal pathway as a switch between apoptosis and pyroptosis in cancer. Cell Death Discov., 2020, 6(1), 112.
[http://dx.doi.org/10.1038/s41420-020-00349-0] [PMID: 33133646]
[103]
Nandi, A.; Yan, L.J.; Jana, C.K.; Das, N. Role of catalase in oxidative stress-and age-associated degenerative diseases. Oxid. Med. Cell. Longev., 2019, 2019, 1-19.
[http://dx.doi.org/10.1155/2019/9613090] [PMID: 31827713]
[104]
Mitra, S.; Leonard, W.J. Biology of IL-2 and its therapeutic modulation: Mechanisms and strategies. J. Leukoc. Biol., 2018, 103(4), 643-655.
[http://dx.doi.org/10.1002/JLB.2RI0717-278R] [PMID: 29522246]
[105]
Prasad, A.S. Lessons learned from experimental human model of zinc deficiency. J. Immunol. Res., 2020, 2020, 1-12.
[http://dx.doi.org/10.1155/2020/9207279] [PMID: 32411807]
[106]
Eleutherio, E.C.A.; Magalhães, S.R.S.; de Brasil, A.A.; Neto, M.J.R.; de Paranhos, H.L. SOD1, more than just an antioxidant. Arch. Biochem. Biophys., 2021, 697, 108701.
[http://dx.doi.org/10.1016/j.abb.2020.108701] [PMID: 33259795]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy