Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Recent Developments of Hybrid Fluorescence Techniques: Advances in Amyloid Detection Methods

Author(s): Miraclin Prasanna A. and Priyankar Sen*

Volume 25, Issue 9, 2024

Published on: 07 May, 2024

Page: [667 - 681] Pages: 15

DOI: 10.2174/0113892037291597240429094515

Price: $65

Abstract

Amyloid fibrils are formed from various pathological proteins. Monitoring their aggregation process is necessary for early detection and treatment. Among the available detection techniques, fluorescence is simple, intuitive, and convenient due to its sensitive and selective mode of detection. It has certain disadvantages like poor photothermal stability and detection state limitation. Research has focused on minimising the limitation by developing hybrid fluorescence techniques. This review focuses on the two ways fluorescence (intrinsic and extrinsic) has been used to monitor amyloid fibrils. In intrinsic/label free fluorescence: i) The fluorescence emission through aromatic amino acid residues like phenylalanine (F), tyrosine (Y) and tryptophan (W) is present in amyloidogenic peptides/protein sequence. And ii) The structural changes from alpha helix to cross-β-sheet structures during amyloid formation contribute to the fluorescence emission. The second method focuses on the use of extrinsic fluorophores to monitor amyloid fibrils i) organic dyes/small molecules, ii) fluorescent tagged proteins, iii) nanoparticles, iv) metal complexes and v) conjugated polymers. All these fluorophores have their own limitations. Developing them into hybrid fluorescence techniques and converting it into biosensors can contribute to early detection of disease.

Next »
Graphical Abstract

[1]
Lee, C.C.; Nayak, A.; Sethuraman, A.; Belfort, G.; McRae, G.J. A three-stage kinetic model of amyloid fibrillation. Biophys. J., 2007, 92(10), 3448-3458.
[http://dx.doi.org/10.1529/biophysj.106.098608] [PMID: 17325005]
[2]
Siddiqi, M.K.; Alam, P.; Chaturvedi, S.K.; Shahein, Y.E.; Khan, R.H. Mechanisms of protein aggregation and inhibition. Front. Biosci., 2017, 9(1), 1-20.
[PMID: 27814585]
[3]
Sulatsky, M.I.; Stepanenko, O.V.; Stepanenko, O.V.; Mikhailova, E.V.; Kuznetsova, I.M.; Turoverov, K.K.; Sulatskaya, A.I. Amyloid fibrils degradation: the pathway to recovery or aggravation of the disease? Front. Mol. Biosci., 2023, 10, 1208059.
[http://dx.doi.org/10.3389/fmolb.2023.1208059] [PMID: 37377863]
[4]
Makin, O.S.; Atkins, E.; Sikorski, P.; Johansson, J.; Serpell, L.C. Molecular basis for amyloid fibril formation and stability. Proc. Natl. Acad. Sci. USA, 2005, 102(2), 315-320.
[http://dx.doi.org/10.1073/pnas.0406847102] [PMID: 15630094]
[5]
Rambaran, R.N.; Serpell, L.C. Amyloid fibrils. Prion, 2008, 2(3), 112-117.
[http://dx.doi.org/10.4161/pri.2.3.7488] [PMID: 19158505]
[6]
Lee, J.C. Diagnosis of Alzheimer’s disease utilizing amyloid and tau as fluid biomarker. Exp. Mol. Med., 2019, 51, 1-10.
[http://dx.doi.org/10.1038/s12276-019-0299-y]
[7]
Castiglione, V.; Franzini, M.; Aimo, A.; Carecci, A.; Lombardi, C.M.; Passino, C.; Rapezzi, C.; Emdin, M.; Vergaro, G. Use of biomarkers to diagnose and manage cardiac amyloidosis. Eur. J. Heart Fail., 2021, 23(2), 217-230.
[http://dx.doi.org/10.1002/ejhf.2113] [PMID: 33527656]
[8]
Zheng, X.; Xu, Z.; Li, H.; Fu, H. A sensitive probe for amyloid fibril detection with strong fluorescence and early response. RSC Advances, 2018, 8(29), 15870-15875.
[http://dx.doi.org/10.1039/C8RA00751A] [PMID: 35542196]
[9]
Cliff, I. Stains and Indraneel Ghosh, When conjugated polymers meet amyloid fibrils. ASC Chem. Biol., 2007, 2(8), 525-528.
[10]
Ma, S.; Chen, G.; Xu, J.; Liu, Y.; Li, G.; Chen, T.; Li, Y.; James, T.D. Current strategies for the development of fluorescence-based molecular probes for visualizing the enzymes and proteins associated with Alzheimer’s disease. Coord. Chem. Rev., 2021, 427(213553), 213553.
[http://dx.doi.org/10.1016/j.ccr.2020.213553]
[11]
Ren, W.; Li, L.; Zhang, J.; Vaas, M.; Klohs, J.; Ripoll, J.; Wolf, M.; Ni, R.; Rudin, M. Non-invasive visualization of amyloid-beta deposits in Alzheimer amyloidosis mice using magnetic resonance imaging and fluorescence molecular tomography. Biomed. Opt. Express, 2022, 13(7), 3809-3822.
[http://dx.doi.org/10.1364/BOE.458290] [PMID: 35991935]
[12]
Zhou, J. Fluorescent diagnostic probes in neurodegenerative disease. Adv. Mater., 2020, 2001945, 1-43.
[13]
Schouw, HM Targeted optical fluorescence imaging: a meta-narrative review and future perspectives. Eur. J. Nucl. Med. Mol. Imaging., 2021, 48(13), 4272-4292.
[14]
Das, A.; Dutta, T.; Gadhe, L.; Koner, A.L.; Saraogi, I. Biocompatible fluorescent probe for the selective detection of amyloid fibrils. Anal. Chem., 2020, 92(15), 10336-10341.
[http://dx.doi.org/10.1021/acs.analchem.0c00379] [PMID: 32635722]
[15]
Diaz-Garcia , M.E.; Laino, R.B. Fluorescence Overview. Encyclo. Analyt. Sci., 2019, 3(3), 309-319.
[16]
dos Santos Rodrigues, F.H. Applications of fluorescence spectroscopy in protein conformational changes and intermolecular contacts. BBA Advances, 2023, 3, 1-13.
[17]
Bose, Aswathy Fluorescence spectroscopy and its applications: A Review. Int. J. Adv. Pharm. Anal., 2018, 8(1), 1-8.
[18]
Sharma, B.K. Instrumental methods of chemical analysis, 25th ed; Krishna Prakashan Media: Meerut, India, 2005.
[19]
Kakkar, Saloni Progress in fluorescence biosensing and food safety towards point-of-detection (PoD) system. Biosensors., 2023, 13(2), 249.
[20]
Jung, H.S.; Verwilst, P.; Kim, W.Y.; Kim, J.S. Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem. Soc. Rev., 2016, 45(5), 1242-1256.
[http://dx.doi.org/10.1039/C5CS00494B] [PMID: 26766615]
[21]
Zhang, X.; Hu, Y.; Yang, X.; Tang, Y.; Han, S.; Kang, A.; Deng, H.; Chi, Y.; Zhu, D.; Lu, Y. Förster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens. Bioelectron., 2019, 138, 111314.
[http://dx.doi.org/10.1016/j.bios.2019.05.019]
[22]
Challa, P.K.; Peter, Q.; Wright, M.A.; Zhang, Y.; Saar, K.L.; Carozza, J.A.; Benesch, J.L.P.; Knowles, T.P.J. Real-Time Intrinsic fluorescence visualization and sizing of proteins and protein complexes in microfluidic devices. Anal. Chem., 2018, 90(6), 3849-3855.
[http://dx.doi.org/10.1021/acs.analchem.7b04523] [PMID: 29451779]
[23]
Bekard, I.B.; Dunstan, D.E. Tyrosine autofluorescence as a measure of bovine insulin fibrillation. Biophys. J., 2009, 97(9), 2521-2531.
[http://dx.doi.org/10.1016/j.bpj.2009.07.064] [PMID: 19883595]
[24]
Zhuang, X.; Ha, T.; Kim, H.D.; Centner, T.; Labeit, S.; Chu, S. Fluorescence quenching: A tool for single-molecule protein-folding study. Proc. Natl. Acad. Sci. USA, 2000, 97(26), 14241-14244.
[http://dx.doi.org/10.1073/pnas.97.26.14241] [PMID: 11121030]
[25]
Lakowicz, J.R. Principles of Fluorescence Spectroscopy; Springer: New York, NY, 2006.
[26]
Marcelo, H. Gehlen, The centenary of the Stern-Volmer equation of fluorescence quenching: From the single line plot to the SV quenching map. J. Photochem. Photobiol. Photochem. Rev., 2020, 42, 1-14.
[27]
Kang, J.; Lemaire, H.G.; Unterbeck, A.; Salbaum, J.M.; Masters, C.L.; Grzeschik,, K.H.; Multhaup, G.; Beyreuther, K.; Hill, B.M The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature., 1987, 325(6106), 733-736.
[28]
Cerofolini, L.; Ravera, E.; Bologna, S.; Wiglenda, T.; Böddrich, A.; Purfürst, B.; Benilova, I.; Korsak, M.; Gallo, G.; Rizzo, D.; Gonnelli, L.; Fragai, M.; De Strooper, B.; Wanker, E.E.; Luchinat, C. Mixing Aβ(1–40) and Aβ(1–42) peptides generates unique amyloid fibrils. Chem. Commun. (Camb.), 2020, 56(62), 8830-8833.
[http://dx.doi.org/10.1039/D0CC02463E] [PMID: 32749391]
[29]
Greenberg, B.D.; Bencen, G.H.; Seilhamer, J.J.; Lewicki, J.A.; Fiddes, J.C. Nucleotide sequence of the gene encoding human atrial natriuretic factor precursor. Nature, 1984, 312(5995), 656-658.
[http://dx.doi.org/10.1038/312656a0] [PMID: 6095119]
[30]
Gibbs, R.A.; Weinstock, G.M.; Metzker, M.L.; Muzny, D.M.; Sodergren, E.J.; Scherer, S.; Scott, G.; Steffen, D.; Worley, K.C.; Burch, P.E.; Okwuonu, G.; Hines, S.; Lewis, L.; DeRamo, C.; Delgado, O.; Dugan-Rocha, S.; Miner, G.; Morgan, M.; Hawes, A.; Gill, R.; Holt, C.R.A.; Adams, M.D.; Amanatides, P.G.; Baden-Tillson, H.; Barnstead, M.; Chin, S.; Evans, C.A.; Ferriera, S.; Fosler, C.; Glodek, A.; Gu, Z.; Jennings, D.; Kraft, C.L.; Nguyen, T.; Pfannkoch, C.M.; Sitter, C.; Sutton, G.G.; Venter, J.C.; Woodage, T.; Smith, D.; Lee, H-M.; Gustafson, E.; Cahill, P.; Kana, A.; Doucette-Stamm, L.; Weinstock, K.; Fechtel, K.; Weiss, R.B.; Dunn, D.M.; Green, E.D.; Blakesley, R.W.; Bouffard, G.G.; de Jong, P.J.; Osoegawa, K.; Zhu, B.; Marra, M.; Schein, J.; Bosdet, I.; Fjell, C.; Jones, S.; Krzywinski, M.; Mathewson, C.; Siddiqui, A.; Wye, N.; McPherson, J.; Zhao, S.; Fraser, C.M.; Shetty, J.; Shatsman, S.; Geer, K.; Chen, Y.; Abramzon, S.; Nierman, W.C.; Gibbs, R.A.; Weinstock, G.M.; Havlak, P.H.; Chen, R.; James Durbin, K.; Simons, R.; Ren, Y.; Song, X-Z.; Li, B.; Liu, Y.; Qin, X.; Cawley, S.; Weinstock, G.M.; Worley, K.C.; Cooney, A.J.; Gibbs, R.A.; D’Souza, L.M.; Martin, K.; Qian Wu, J.; Gonzalez-Garay, M.L.; Jackson, A.R.; Kalafus, K.J.; McLeod, M.P.; Milosavljevic, A.; Virk, D.; Volkov, A.; Wheeler, D.A.; Zhang, Z.; Bailey, J.A.; Eichler, E.E.; Tuzun, E.; Birney, E.; Mongin, E.; Ureta-Vidal, A.; Woodwark, C.; Zdobnov, E.; Bork, P.; Suyama, M.; Torrents, D.; Alexandersson, M.; Trask, B.J.; Young, J.M.; Smith, D.; Huang, H.; Fechtel, K.; Wang, H.; Xing, H.; Weinstock, K.; Daniels, S.; Gietzen, D.; Schmidt, J.; Stevens, K.; Vitt, U.; Wingrove, J.; Camara, F.; Mar Albà, M.; Abril, J.F.; Guigo, R.; Smit, A.; Dubchak, I.; Rubin, E.M.; Couronne, O.; Poliakov, A.; Hübner, N.; Ganten, D.; Goesele, C.; Hummel, O.; Kreitler, T.; Lee, Y-A.; Monti, J.; Schulz, H.; Zimdahl, H.; Himmelbauer, H.; Lehrach, H.; Jacob, H.J.; Bromberg, S.; Gullings-Handley, J.; Jensen-Seaman, M.I.; Kwitek, A.E.; Lazar, J.; Pasko, D.; Tonellato, P.J.; Twigger, S.; Ponting, C.P.; Duarte, J.M.; Rice, S.; Goodstadt, L.; Beatson, S.A.; Emes, R.D.; Winter, E.E.; Webber, C.; Brandt, P.; Nyakatura, G.; Adetobi, M.; Chiaromonte, F.; Elnitski, L.; Eswara, P.; Hardison, R.C.; Hou, M.; Kolbe, D.; Makova, K.; Miller, W.; Nekrutenko, A.; Riemer, C.; Schwartz, S.; Taylor, J.; Yang, S.; Zhang, Y.; Lindpaintner, K.; Andrews, T.D.; Caccamo, M.; Clamp, M.; Clarke, L.; Curwen, V.; Durbin, R.; Eyras, E.; Searle, S.M.; Cooper, G.M.; Batzoglou, S.; Brudno, M.; Sidow, A.; Stone, E.A.; Craig Venter, J.; Payseur, B.A.; Bourque, G.; López-Otín, C.; Puente, X.S.; Chakrabarti, K.; Chatterji, S.; Dewey, C.; Pachter, L.; Bray, N.; Yap, V.B.; Caspi, A.; Tesler, G.; Pevzner, P.A.; Haussler, D.; Roskin, K.M.; Baertsch, R.; Clawson, H.; Furey, T.S.; Hinrichs, A.S.; Karolchik, D.; Kent, W.J.; Rosenbloom, K.R.; Trumbower, H.; Weirauch, M.; Cooper, D.N.; Stenson, P.D.; Ma, B.; Brent, M.; Arumugam, M.; Shteynberg, D.; Copley, R.R.; Taylor, M.S.; Riethman, H.; Mudunuri, U.; Peterson, J.; Guyer, M.; Felsenfeld, A.; Old, S.; Mockrin, S.; Collins, F. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature, 2004, 428(6982), 493-521.
[http://dx.doi.org/10.1038/nature02426] [PMID: 15057822]
[31]
Strausberg, R.L.; Feingold, E.A.; Grouse, L.H.; Derge, J.G.; Klausner, R.D.; Collins, F.S.; Wagner, L.; Shenmen, C.M.; Schuler, G.D.; Altschul, S.F.; Zeeberg, B.; Buetow, K.H.; Schaefer, C.F.; Bhat, N.K.; Hopkins, R.F.; Jordan, H.; Moore, T.; Max, S.I.; Wang, J.; Hsieh, F.; Diatchenko, L.; Marusina, K.; Farmer, A.A.; Rubin, G.M.; Hong, L.; Stapleton, M.; Soares, M.B.; Bonaldo, M.F.; Casavant, T.L.; Scheetz, T.E.; Brownstein, M.J.; Usdin, T.B.; Toshiyuki, S.; Carninci, P.; Prange, C.; Raha, S.S.; Loquellano, N.A.; Peters, G.J.; Abramson, R.D.; Mullahy, S.J.; Bosak, S.A.; McEwan, P.J.; McKernan, K.J.; Malek, J.A.; Gunaratne, P.H.; Richards, S.; Worley, K.C.; Hale, S.; Garcia, A.M.; Gay, L.J.; Hulyk, S.W.; Villalon, D.K.; Muzny, D.M.; Sodergren, E.J.; Lu, X.; Gibbs, R.A.; Fahey, J.; Helton, E.; Ketteman, M.; Madan, A.; Rodrigues, S.; Sanchez, A.; Whiting, M.; Madan, A.; Young, A.C.; Shevchenko, Y.; Bouffard, G.G.; Blakesley, R.W.; Touchman, J.W.; Green, E.D.; Dickson, M.C.; Rodriguez, A.C.; Grimwood, J.; Schmutz, J.; Myers, R.M.; Butterfield, Y.S.; Krzywinski, M.I.; Skalska, U.; Smailus, D.E.; Schnerch, A.; Schein, J.E.; Jones, S.J.; Marra, M.A. Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc. Natl. Acad. Sci. USA, 2002, 99(26), 16899-16903.
[http://dx.doi.org/10.1073/pnas.242603899] [PMID: 12477932]
[32]
Otelea, M.R. Prion protein gene (PRNP) polymorphism at the codon 185 in Braila County local sheep breed in Romania. Rom. Biotechnol. Lett., 2011, 16(4), 6419-6429.
[33]
Solomon, A.; Weiss, D.T.; Murphy, C. Primary amyloidosis associated with a novel heavy-chain fragment (AH amyloidosis). Am. J. Hematol., 1994, 45(2), 171-176.
[http://dx.doi.org/10.1002/ajh.2830450214] [PMID: 8141123]
[34]
Castoano, E.M.; Prelli, F.; Pras, M. J. Biol. Chem., 1995, 270(29), 17610-17615.
[http://dx.doi.org/10.1074/jbc.270.29.17610] [PMID: 7615568]
[35]
Mita, S.; Maeda, S.; Shimada, K.; Araki, S. Cloning and sequence analysis of cDNA for human prealbumin. Biochem. Biophys. Res. Commun., 1984, 124(2), 558-564.
[http://dx.doi.org/10.1016/0006-291X(84)91590-0] [PMID: 6093805]
[36]
Gustavsson, A.; Jahr, H.; Tobiassen, R.; Jacobson, D.R.; Sletten, K.; Westermark, P. Amyloid fibril composition and transthyretin gene structure in senile systemic amyloidosis. Lab. Invest., 1995, 73(5), 703-708.
[PMID: 7474944]
[37]
Güssow, D.; Rein, R.; Ginjaar, I.; Hochstenbach, F.; Seemann, G.; Kottman, A.; Ploegh, H.L. The human beta 2-microglobulin gene. Primary structure and definition of the transcriptional unit. J. Immunol., 1987, 139(9), 3132-3138.
[http://dx.doi.org/10.4049/jimmunol.139.9.3132] [PMID: 3312414]
[38]
Bellotti, V.; Stoppini, M.; Mangione, P.; Sunde, M.; Robinson, C.; Asti, L.; Brancaccio, D.; Ferri, G. β 2-microglobulin can be refolded into a native state from ex vivo amyloid fibrils. Eur. J. Biochem., 1998, 258(1), 61-67.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2580061.x] [PMID: 9851692]
[39]
Matsumoto, T.; Nakamura, A.M.; Takahashi, K.G. Cloning of cDNAs and hybridization analysis of lysozymes from two oyster species, Crassostrea gigas and Ostrea edulis. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2006, 145(3-4), 325-330.
[http://dx.doi.org/10.1016/j.cbpb.2006.08.003]
[40]
Pepys, M.B.; Hawkins, P.N.; Booth, D.R.; Vigushin, D.M.; Tennent, G.A.; Soutar, A.K.; Totty, N.; Nguyen, O.; Blake, C.C.F.; Terry, C.J.; Feest, T.G.; Zalin, A.M.; Hsuan, J.J. Human lysozyme gene mutations cause hereditary systemic amyloidosis. Nature, 1993, 362(6420), 553-557.
[http://dx.doi.org/10.1038/362553a0] [PMID: 8464497]
[41]
Nishi, M.; Chan, S.J.; Nagamatsu, S.; Bell, G.I.; Steiner, D.F. Conservation of the sequence of islet amyloid polypeptide in five mammals is consistent with its putative role as an islet hormone. Proc. Natl. Acad. Sci. USA, 1989, 86(15), 5738-5742.
[http://dx.doi.org/10.1073/pnas.86.15.5738] [PMID: 2668946]
[42]
Christmanson, L.; Rorsman, F.; Stenman, G.; Westermark, P.; Betsholtz, C. The human islet amyloid polypeptide (IAPP) gene. FEBS Lett., 1990, 267(1), 160-166.
[http://dx.doi.org/10.1016/0014-5793(90)80314-9] [PMID: 2365085]
[43]
Ghisaidoobe, A.; Chung, S. Intrinsic tryptophan fluorescence in the detection and analysis of proteins: A focus on Förster resonance energy transfer techniques. Int. J. Mol. Sci., 2014, 15(12), 22518-22538.
[http://dx.doi.org/10.3390/ijms151222518] [PMID: 25490136]
[44]
Toprakcioglu, Z.; Challa, P.; Xu, C.; Knowles, T.P.J. Label-free analysis of protein aggregation and phase behavior. ACS Nano, 2019, 13(12), 13940-13948.
[http://dx.doi.org/10.1021/acsnano.9b05552] [PMID: 31738513]
[45]
Chakraborty, H.; Chattopadhyay, A. Sensing tryptophan microenvironment of amyloid protein utilizing wavelength-selective fluorescence approach. J. Fluoresc., 2017, 27(6), 1995-2000.
[http://dx.doi.org/10.1007/s10895-017-2138-7] [PMID: 28687983]
[46]
Aran Terol, P.; Kumita, J.R.; Hook, S.C.; Dobson, C.M.; Esbjörner, E.K. Solvent exposure of Tyr10 as a probe of structural differences between monomeric and aggregated forms of the amyloid-β peptide. Biochem. Biophys. Res. Commun., 2015, 468(4), 696-701.
[http://dx.doi.org/10.1016/j.bbrc.2015.11.018] [PMID: 26551456]
[47]
Fiona, T.S. Structure-specific intrinsic fluorescence of protein amyloids used to study their kinetics of aggregation. Bio-nanoimaging; Academic Press, 2014.
[48]
Tikhonova, T.N.; Rovnyagina, N.R.; Zherebker, A.Y.; Sluchanko, N.N.; Rubekina, A.A.; Orekhov, A.S.; Nikolaev, E.N.; Fadeev, V.V.; Uversky, V.N.; Shirshin, E.A. Dissection of the deep-blue autofluorescence changes accompanying amyloid fibrillation. Arch. Biochem. Biophys., 2018, 651, 13-20.
[http://dx.doi.org/10.1016/j.abb.2018.05.019] [PMID: 29803394]
[49]
Sirangelo, I.; Borriello, M.; Irace, G.; Iannuzzi, C. Intrinsic blue-green fluorescence in amyloyd fibrils. AIMS Biophys., 2018, 5(2), 155-165.
[http://dx.doi.org/10.3934/biophy.2018.2.155]
[50]
Pinotsi, D.; Buell, A.K.; Dobson, C.M.; Kaminski, G.S. label-free, quantitative assay of amyloid fibril growth based on intrinsic fluorescence. Chem. Bio. Chem., 2013, 14, 846-850.
[51]
Del Mercato, L.L.; Pompa, P.P.; Maruccio, G.; Torre, A.D.; Sabella, S.; Tamburro, A.M.; Cingolani, R.; Rinaldi, R. Charge transport and intrinsic fluorescence in amyloid-like fibrils. Proc. Natl. Acad. Sci. USA, 2007, 104(46), 18019-18024.
[http://dx.doi.org/10.1073/pnas.0702843104] [PMID: 17984067]
[52]
Groenning, M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status. J. Chem. Biol., 2010, 3(1), 1-18.
[http://dx.doi.org/10.1007/s12154-009-0027-5] [PMID: 19693614]
[53]
Apter, B. Fluorescence phenomena in amyloid and amyloidogenic bionanostructures. Crystals, 2020, 10(8), 668.
[http://dx.doi.org/10.3390/cryst10080668]
[54]
Sulatskaya, A.I.; Maskevich, A.A.; Kuznetsova, I.M.; Uversky, V.N.; Turoverov, K.K. Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils. PLoS One, 2010, 5(10), e15385.
[http://dx.doi.org/10.1371/journal.pone.0015385] [PMID: 21048945]
[55]
Biancalana, M.; Koide, S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(7), 1405-1412.
[http://dx.doi.org/10.1016/j.bbapap.2010.04.001] [PMID: 20399286]
[56]
Volkova, K.D.; Kovalska, V.B.; Balanda, A.O.; Vermeij, R.J.; Subramaniam, V.; Slominskii, Y.L.; Yarmoluk, S.M. Cyanine dye–protein interactions: Looking for fluorescent probes for amyloid structures. J. Biochem. Biophys. Methods, 2007, 70(5), 727-733.
[http://dx.doi.org/10.1016/j.jbbm.2007.03.008] [PMID: 17467807]
[57]
Needham, L.M.; Weber, J.; Varela, J.A.; Fyfe, J.W.B.; Do, D.T.; Xu, C.K.; Tutton, L.; Cliffe, R.; Keenlyside, B.; Klenerman, D.; Dobson, C.M.; Hunter, C.A.; Müller, K.H.; O’Holleran, K.; Bohndiek, S.E.; Snaddon, T.N.; Lee, S.F. ThX – a next-generation probe for the early detection of amyloid aggregates. Chem. Sci. (Camb.), 2020, 11(18), 4578-4583.
[http://dx.doi.org/10.1039/C9SC04730A] [PMID: 34122915]
[58]
Sulatsky, M.I.; Sulatskaya, A.I.; Povarova, O.I.; Antifeeva, I.A.; Kuznetsova, I.M.; Turoverov, K.K. Effect of the fluorescent probes ThT and ANS on the mature amyloid fibrils. Prion, 2020, 14(1), 67-75.
[http://dx.doi.org/10.1080/19336896.2020.1720487] [PMID: 32008441]
[59]
Wolfe, L.S.; Calabrese, M.F.; Nath, A.; Blaho, D.V.; Miranker, A.D.; Xiong, Y. Protein-induced photophysical changes to the amyloid indicator dye thioflavin T. Proc. Natl. Acad. Sci. USA, 2010, 107(39), 16863-16868.
[http://dx.doi.org/10.1073/pnas.1002867107] [PMID: 20826442]
[60]
Klunk, W.E.; Wang, Y.; Huang, G.; Debnath, M.L.; Holt, D.P.; Mathis, C.A. Uncharged thioflavin-T derivatives bind to amyloid-β protein with high affinity and readily enter the brain. Life Sci., 2001, 69(13), 1471-1484.
[http://dx.doi.org/10.1016/S0024-3205(01)01232-2] [PMID: 11554609]
[61]
Buxbaum, J.N.; Linke, R.P. A molecular history of the amyloidoses. J. Mol. Biol., 2012, 421(2-3), 142-159.
[http://dx.doi.org/10.1016/j.jmb.2012.01.024] [PMID: 22321796]
[62]
Sunde, M.; Blake, C. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv. Protein Chem., 1997, 50, 123-159.
[http://dx.doi.org/10.1016/S0065-3233(08)60320-4] [PMID: 9338080]
[63]
Yang, Y.; Cui, M. Radiolabeled bioactive benzoheterocycles for imaging β-amyloid plaques in Alzheimer’s disease. Eur. J. Med. Chem., 2014, 87, 703-721.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.012] [PMID: 25305715]
[64]
Gade Malmos, K.; Blancas-Mejia, L.M.; Weber, B.; Buchner, J.; Ramirez-Alvarado, M.; Naiki, H.; Otzen, D. ThT 101: A primer on the use of thioflavin T to investigate amyloid formation. Amyloid, 2017, 24(1), 1-16.
[http://dx.doi.org/10.1080/13506129.2017.1304905] [PMID: 28393556]
[65]
Sulatskaya, A.I.; Sulatsky, M.I.; Antifeeva, I.A.; Kuznetsova, I.M.; Turoverov, K.K. Structural analogue of Thioflavin T, DMASEBT, as a tool for amyloid study. Anal. Chem., 2019, 91(4), 3131-3140.
[http://dx.doi.org/10.1021/acs.analchem.8b05737] [PMID: 30673267]
[66]
Lavysh, A.V.; Sulatskaya, A.I.; Lugovskii, A.A.; Voropay, E.S.; Kuznetsova, I.M.; Turoverov, K.K.; Maskevich, A.A. Photophysical properties of Trans-2-[4-(dimethylamino)styryl]-3-ethyl-1,3-benzothiazolium perchlorate, a new structural analog of Thioflavin T. J. Appl. Spectrosc., 2014, 81(2), 205-213.
[http://dx.doi.org/10.1007/s10812-014-9911-z]
[67]
Klunk Imaging amyloid in AD with PIB. Ann. Neurol., 2004, 55(3), 1-14.
[PMID: 14991808]
[68]
Watanabe, H.; Ono, M.; Ariyoshi, T.; Katayanagi, R.; Saji, H. Novel benzothiazole derivatives as fluorescent probes for detection of β-amyloid and ὰ-synuclein aggregates. ACS Chem. Neurosci., 2017, 8(8), 1656-1662.
[http://dx.doi.org/10.1021/acschemneuro.6b00450] [PMID: 28467708]
[69]
Freire, S.; De Araujo, M.H.; Al-Soufi, W.; Novo, M. Photophysical study of Thioflavin T as fluorescence marker of amyloid fibrils. Dyes Pigments, 2014, 110, 97-105.
[http://dx.doi.org/10.1016/j.dyepig.2014.05.004]
[70]
Mathis, C.A.; Wang, Y.; Holt, D.P.; Huang, G.F.; Debnath, M.L.; Klunk, W.E. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem., 2003, 46(13), 2740-2754.
[http://dx.doi.org/10.1021/jm030026b] [PMID: 12801237]
[71]
Qin, L. Julian Vastl and Jianmin Gao, Hightly sensitive amyloid detection enabled by thioflavin T dimers. Mol. Biosyst., 2010, 6, 1791-1795.
[http://dx.doi.org/10.1039/c005255h] [PMID: 20614050]
[72]
Ono, M.; Hayashi, S.; Kimura, H.; Kawashima, H.; Nakayama, M.; Saji, H. Push–pull benzothiazole derivatives as probes for detecting β-amyloid plaques in Alzheimer’s brains. Bioorg. Med. Chem., 2009, 17(19), 7002-7007.
[http://dx.doi.org/10.1016/j.bmc.2009.08.032] [PMID: 19740669]
[73]
Kovalska, V.; Chernii, S.; Losytskyy, M.; Tretyakova, I.; Dovbii, Y.; Gorski, A.; Chernii, V.; Czerwieniec, R.; Yarmoluk, S. Design of functionalized β-ketoenole derivatives as efficient fluorescent dyes for detection of amyloid fibrils. New J. Chem., 2018, 42(16), 13308-13318.
[http://dx.doi.org/10.1039/C8NJ01020J]
[74]
Si, G.; Zhou, S.; Xu, G.; Wang, J.; Wu, B.; Zhou, S. A curcumin-based NIR fluorescence probe for detection of amyloid-beta (Aβ) plaques in Alzheimer’s disease. Dyes Pigments, 2019, 163, 509-515.
[http://dx.doi.org/10.1016/j.dyepig.2018.12.003]
[75]
Marzano, N.R.; Wray, K.M.; Johnston, C.L.; Paudel, B.P.; Hong, Y.; van Oijen, A.; Ecroyd, H. An ὰ-Cyanostilbene derivative for the enhanced detection and imaging of amyloid fibril aggregates. ACS Chem. Neurosci., 2020, 11(24), 4191-4202.
[http://dx.doi.org/10.1021/acschemneuro.0c00478] [PMID: 33226775]
[76]
Shrishti, P. Basic Orange 21: A molecular rotor probe for fluorescence turn-on sensing of amyloid fibrils. J. Mol. Liq., 2020, 303(112618), 1-11.
[77]
Teoh, C.L.; Su, D.; Sahu, S.; Yun, S.W.; Drummond, E.; Prelli, F.; Lim, S.; Cho, S.; Ham, S.; Wisniewski, T.; Chang, Y.T. A chemical fluorescent probe for the detection of Aβ oligomers. J. Am. Chem. Soc., 2015, 137(42), 13503-13509.
[http://dx.doi.org/10.1021/jacs.5b06190] [PMID: 26218347]
[78]
Cao, K.J.; Kim, J.H.; Kroeger, H.; Gaffney, P.M.; Lin, J.H.; Sigurdson, C.J.; Yang, J. ARCAM-1 facilitates fluorescence detection of amyloid-containing deposits in the retina. Transl. Vis. Sci. Technol., 2021, 10(7), 5.
[http://dx.doi.org/10.1167/tvst.10.7.5] [PMID: 34096989]
[79]
Pradhan, N.; Jana, D.; Ghorai, B.K.; Jana, N.R. Detection and monitoring of amyloid fibrillation using a fluorescence “Switch-On” Probe. ACS Appl. Mater. Interfaces, 2015, 7(46), 25813-25820.
[http://dx.doi.org/10.1021/acsami.5b07751] [PMID: 26540091]
[80]
Li, L.; Luo, W.C.; Jiang, M.; Yu, X.; Xu, L. Turn-on fluorescence probing of amyloid fibrils by the proto-berberine alkaloids and the study of their interactions. Int. J. Biol. Macromol., 2023, 231, 123319.
[http://dx.doi.org/10.1016/j.ijbiomac.2023.123319] [PMID: 36682666]
[81]
Carlos, W.B Small molecules fluorescent probes for the detection of amyloid self-assembly in vitro and in vivo. Curr. Protein Pept. Sci., 2011, 11, 206-220.
[82]
Oyarzún, M.P.; Tapia-Arellano, A.; Cabrera, P.; Jara-Guajardo, P.; Kogan, M.J. Plasmonic nanoparticles as optical sensing probes for the detection of Alzheimer’s disease. Sensors (Basel), 2021, 21(6), 2067.
[http://dx.doi.org/10.3390/s21062067] [PMID: 33809416]
[83]
Sun, L.; Liu, D.; Fu, D.; Yue, T.; Scharre, D.; Zhang, L. Fluorescent peptide nanoparticles to detect amyloid-beta aggregation in cerebrospinal fluid and serum for Alzheimer’s disease diagnosis and progression monitoring. Chem. Eng. J., 2021, 405, 126733.
[http://dx.doi.org/10.1016/j.cej.2020.126733]
[84]
Xu, S.C.S.; LoRicco, J.G.; Bishop, A.C.; James, N.A.; Huynh, W.H.; McCallum, S.A.; Roan, N.R.; Makhatadze, G.I. Sequence-independent recognition of the amyloid structural motif by GFP protein family. Proc. Natl. Acad. Sci. USA, 2020, 117(36), 22122-22127.
[http://dx.doi.org/10.1073/pnas.2001457117] [PMID: 32839332]
[85]
Usui, K.; Mie, M.; Andou, T.; Mihara, H.; Kobatake, E. Fluorescent and luminescent fusion proteins for analyses of amyloid beta peptide aggregation. J. Pept. Sci., 2017, 23(7-8), 659-665.
[http://dx.doi.org/10.1002/psc.3003] [PMID: 28378376]
[86]
Takahashi, T.; Mihara, H. FRET detection of amyloid β-peptide oligomerization using a fluorescent protein probe presenting a pseudo-amyloid structure. Chem. Commun. (Camb.), 2012, 48(10), 1568-1570.
[http://dx.doi.org/10.1039/C1CC14552E] [PMID: 21909572]
[87]
Morfin, J.F.; Lacerda, S.; Geraldes, C.F.G.C.; Tóth, É. Metal complexes for the visualisation of amyloid peptides. Sensors & Diagnostics, 2022, 1(4), 627-647.
[http://dx.doi.org/10.1039/D2SD00026A]
[88]
Chia, Y.Y.; Tay, M.G. An insight into fluorescent transition metal complexes. Dalton Trans., 2014, 43(35), 13159-13168.
[http://dx.doi.org/10.1039/C4DT01098A] [PMID: 25032996]
[89]
Hayne, D.J.; Lim, S.; Donnelly, P.S. Metal complexes designed to bind to amyloid-β for the diagnosis and treatment of Alzheimer’s disease. Chem. Soc. Rev., 2014, 43(19), 6701-6715.
[http://dx.doi.org/10.1039/C4CS00026A] [PMID: 24671229]
[90]
Yu, H.; Zhao, W.; Xie, M.; Li, X.; Sun, M.; He, J.; Wang, L.; Yu, L. Real-time monitoring of self-aggregation of β-amyloid by a fluorescent probe based on Ruthenium complex. Anal. Chem., 2020, 92(4), 2953-2960.
[http://dx.doi.org/10.1021/acs.analchem.9b03566] [PMID: 31941275]
[91]
Herland, A.; Nilsson, K.P.R.; Olsson, J.D.M.; Hammarström, P.; Konradsson, P.; Inganäs, O. Synthesis of a regioregular zwitterionic conjugated oligoelectrolyte, usable as an optical probe for detection of amyloid fibril formation at acidic pH. J. Am. Chem. Soc., 2005, 127(7), 2317-2323.
[http://dx.doi.org/10.1021/ja045835e] [PMID: 15713111]
[92]
Herrmann, U.S.; Schütz, A.K.; Shirani, H.; Huang , D.; Saban, D.; Nuvolone, M.; Li, B.; Ballmer, B.; Åslund, A.K.; Mason, J.J.; Rushing, E.; Budka, H.; Nyström, S.; Hammarström, P.; Böckmann, A.; Caflisch, A.; Meier, B.H.; Nilsson, K.P.; Hornemann, S.; Aguzzi., A. Structure-based drug design identifies polythiophenes as antiprion compounds. Sci. Translat. Med., 2015, 299, ra123.
[93]
Kieninger, B.; Gioeva, Z.; Krüger, S.; Westermark, G.T.; Friedrich, R.P.; FÄndrich, M.; Röcken, C. PTAA and B10: new approaches to amyloid detection in tissue—evaluation of amyloid detection in tissue with a conjugated polyelectrolyte and a fibril-specific antibody fragment. Amyloid, 2011, 18(2), 47-52.
[http://dx.doi.org/10.3109/13506129.2011.560623] [PMID: 21401323]
[94]
Åslund, A.; Sigurdson, C.J.; Klingstedt, T.; Grathwohl, S.; Bolmont, T.; Dickstein, D.L.; Glimsdal, E.; Prokop, S.; Lindgren, M.; Konradsson, P.; Holtzman, D.M.; Hof, P.R.; Heppner, F.L.; Gandy, S.; Jucker, M.; Aguzzi, A.; Hammarström, P.; Nilsson, K.P.R. Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses. ACS Chem. Biol., 2009, 4(8), 673-684.
[http://dx.doi.org/10.1021/cb900112v] [PMID: 19624097]
[95]
Nilsson, K.P.R. Conjugated polyelectrolytes- Conformation-sensitive optical probes for staining and characterization of amyloid deposits. Chembiochem., 2006, 797, 1096-1104.
[96]
Hawe, A.; Sutter, M.; Jiskoot, W. Extrinsic fluorescent dyes as tools for protein characterization. Pharm. Res., 2008, 25(7), 1487-1499.
[http://dx.doi.org/10.1007/s11095-007-9516-9] [PMID: 18172579]
[97]
Galbán, J.; Andreu, Y.; Sierra, J.F.; De Marcos, S.; Castillo, J.R. Intrinsic fluorescence of enzymes and fluorescence of chemically modified enzymes for analytical purposes: A review. Luminescence, 2001, 16(2), 199-210.
[http://dx.doi.org/10.1002/bio.633] [PMID: 11312548]
[98]
Hellmann, N.; Schneider, D. Hands on: Using tryptophan fluorescence spectroscopy to study protein structure. Methods Mol. Biol., 2019, 1958, 379-401.
[http://dx.doi.org/10.1007/978-1-4939-9161-7_20] [PMID: 30945230]
[99]
Ruiz-Arias, Á.; Jurado, R.; Fueyo-González, F.; Herranz, R.; Gálvez, N.; González-Vera, J.A.; Orte, A. A FRET pair for quantitative and superresolution imaging of amyloid fibril formation. Sens. Actuators. B. Chem., 2022, 350, 130882.
[http://dx.doi.org/10.1016/j.snb.2021.130882]
[100]
Espinar-Barranco, L.; Paredes, J.M.; Orte, A.; Crovetto, L.; Garcia-Fernandez, E. A solvatofluorochromic dye as a fluorescent lifetime-based probe of β-amyloid aggregation. Dyes Pigments, 2022, 202, 110274.
[http://dx.doi.org/10.1016/j.dyepig.2022.110274]
[101]
Zhou, Y.; Hua, J.; Ding, D.; Tang, Y. Interrogating amyloid aggregation with aggregation-induced emission fluorescence probes. Biomaterials, 2022, 286, 121605.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121605] [PMID: 35653878]
[102]
Alexander, P.D. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl. Fluoresc., 2020, 8, 1-26.
[103]
Wan, J.; Zhang, X.; Zhang, K.; Su, Z. Biological nanoscale fluorescent probes: From structure and performance to bioimaging. Rev. Anal. Chem., 2020, 39(1), 209-221.
[http://dx.doi.org/10.1515/revac-2020-0119]
[104]
Smith, A.M.; Mancini, M.C.; Nie, S. Second window for in vivo imaging. Nat. Nanotechnol., 2009, 4(11), 710-711.
[http://dx.doi.org/10.1038/nnano.2009.326] [PMID: 19898521]
[105]
Yang, Y.; Yu, Y.; Chen, H.; Meng, X.; Ma, W.; Yu, M.; Li, Z.; Li, C.; Liu, H.; Zhang, X.; Xiao, H.; Yu, Z. Illuminating platinum transportation while maximizing therapeutic efficacy by gold nanoclusters via simultaneous near-infrared-I/II imaging and glutathione scavenging. ACS Nano, 2020, 14(10), 13536-13547.
[http://dx.doi.org/10.1021/acsnano.0c05541] [PMID: 32924505]
[106]
Tokuraku, K.; Marquardt, M.; Ikezu, T. Real-time imaging and quantification of amyloid-β peptide aggregates by novel quantum-dot nanoprobes. PLoS One, 2009, 4(12), e8492.
[http://dx.doi.org/10.1371/journal.pone.0008492] [PMID: 20041162]
[107]
Barbalinardo, M.; Antosova, A.; Gambucci, M.; Bednarikova, Z.; Albonetti, C.; Valle, F.; Sassi, P.; Latterini, L.; Gazova, Z.; Bystrenova, E. Effect of metallic nanoparticles on amyloid fibrils and their influence to neural cell toxicity. Nano Res., 2020, 13(4), 1081-1089.
[http://dx.doi.org/10.1007/s12274-020-2748-2]
[108]
Zhao, J.; Xu, N.; Yang, X.; Ling, G.; Zhang, P. The roles of gold nanoparticles in the detection of amyloid-β peptide for Alzheimer’s disease. Colloid Interface Sci. Commun., 2022, 46, 100579.
[http://dx.doi.org/10.1016/j.colcom.2021.100579]
[109]
Chakraborty, A.; Mohapatra, S.S.; Barik, S.; Roy, I.; Gupta, B.; Biswas, A. Impact of nanoparticles on amyloid β-induced Alzheimer’s disease, tuberculosis, leprosy and cancer: A systematic review. Biosci. Rep., 2023, 43(2), BSR20220324.
[http://dx.doi.org/10.1042/BSR20220324] [PMID: 36630532]
[110]
Tsay, J.M.; Michalet, X. New light on quantum dot cytotoxicity. Chem. Biol., 2005, 12(11), 1159-1161.
[http://dx.doi.org/10.1016/j.chembiol.2005.11.002] [PMID: 16298294]
[111]
Crivat, G.; Taraska, J.W. Imaging proteins inside cells with fluorescent tags. Trends Biotechnol., 2012, 30(1), 8-16.
[http://dx.doi.org/10.1016/j.tibtech.2011.08.002] [PMID: 21924508]
[112]
Prajapati, K.P.; Ansari, M.; Yadav, D.K.; Mittal, S.; Anand, B.G.; Kar, K. A robust yet simple method to generate fluorescent amyloid nanofibers. J. Mater. Chem. B., 2023, 11(36), 8765-8774.
[http://dx.doi.org/10.1039/D3TB01203D] [PMID: 37661927]
[113]
Xu, R.; Wu, Q.; Xing, C.; Wang, H.; Xu, W.; Meng, X.; Hou, H. A novel water-stable luminescent metal complex exhibiting high sensitive and selective detection to Fe3+ and Al3+. Polyhedron, 2021, 197(197), 115056.
[http://dx.doi.org/10.1016/j.poly.2021.115056]
[114]
Nilsson, K.P.R.; Ikenberg, K.; Åslund, A.; Fransson, S.; Konradsson, P.; Röcken, C.; Moch, H.; Aguzzi, A. Structural typing of systemic amyloidoses by luminescent-conjugated polymer spectroscopy. Am. J. Pathol., 2010, 176(2), 563-574.
[http://dx.doi.org/10.2353/ajpath.2010.080797] [PMID: 20035056]
[115]
Thomas, S.W., III; Joly, G.D.; Swager, T.M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev., 2007, 107(4), 1339-1386.
[http://dx.doi.org/10.1021/cr0501339] [PMID: 17385926]
[116]
Sigurdson, C.J.; Nilsson, K.P.R.; Hornemann, S.; Manco, G.; Polymenidou, M.; Schwarz, P.; Leclerc, M.; Hammarström, P.; Wüthrich, K.; Aguzzi, A. Prion strain discrimination using luminescent conjugated polymers. Nat. Methods, 2007, 4(12), 1023-1030.
[http://dx.doi.org/10.1038/nmeth1131] [PMID: 18026110]
[117]
Jara-Guajardo, P.; Cabrera, P.; Celis, F.; Soler, M.; Berlanga, I.; Parra-Muñoz, N.; Acosta, G.; Albericio, F.; Guzman, F.; Campos, M.; Alvarez, A.; Morales-Zavala, F.; Kogan, M.J. Gold nanoparticles mediate improved detection of β-amyloid aggregates by fluorescence. Nanomaterials (Basel), 2020, 10(4), 690.
[http://dx.doi.org/10.3390/nano10040690] [PMID: 32268543]
[118]
Molecular rotors: fluorescent sensors for microviscosity and conformation of biomolecules. Angew. Chem. Int. Ed., 2024, 63(6), 1-711.
[119]
Gence, L. Conjugated polymer and hybrid polymer metal single nanowires: Correlated characterization and device integration. Nanowires Science and Technology; Intechopen, 2010.
[120]
Xia, N.; Zhou, B.; Huang, N.; Jiang, M.; Zhang, J.; Liu, L. Visual and fluorescent assays for selective detection of beta-amyloid oligomers based on the inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots. Biosens. Bioelectron., 2016, 85, 625-632.
[http://dx.doi.org/10.1016/j.bios.2016.05.066] [PMID: 27240009]
[121]
Gorbenko, G.; Trusova, V.; Deligeorgiev, T.; Gadjev, N.; Mizuguchi, C.; Saito, H. Two-step FRET as a tool for probing the amyloid state of proteins. J. Mol. Liq., 2019, 294(111675), 111675.
[http://dx.doi.org/10.1016/j.molliq.2019.111675]
[122]
Nair, R.V.; Padmanabhan, P.; Gulyás, B.; Matham, M.V. Fluorescence Resonance Energy Transfer (FRET)-Based ThT free sensing of Beta-Amyloid fibrillation by Carbon dot-Ag composites. Plasmonics, 2021, 16(3), 863-872.
[http://dx.doi.org/10.1007/s11468-020-01338-w]
[123]
Hamd-Ghadareh, S.; Salimi, A.; Parsa, S.; Mowla, S.J. Development of three-dimensional semi-solid hydrogel matrices for ratiometric fluorescence sensing of Amyloid β peptide and imaging in SH-SY5 cells: Improvement of point of care diagnosis of Alzheimer’s disease biomarker. Biosens. Bioelectron., 2022, 199(113895), 113895.
[http://dx.doi.org/10.1016/j.bios.2021.113895] [PMID: 34968953]
[124]
Birch, D.J.S. Fluorescence detections and directions. Meas. Sci. Technol., 2011, 22(5), 052002.
[http://dx.doi.org/10.1088/0957-0233/22/5/052002]
[125]
Rolinski, O.J.; Amaro, M.; Birch, D.J.S. Early detection of amyloid aggregation using intrinsic fluorescence. Biosens. Bioelectron., 2010, 25(10), 2249-2252.
[http://dx.doi.org/10.1016/j.bios.2010.03.005]
[126]
Nath, P.; Mahtaba, K.R.; Ray, A. Fluorescence-based portable assays for detection of biological and chemical analytes. Sensors, 2023, 23(11), 1-22.
[http://dx.doi.org/10.3390/s23115053]
[127]
Young-Ho Shin, M. Teresa Gutierrez-Wing, and Jin-Woo Choi, Review- Recent progress in portable fluorescence sensors. J. Electrochem. Soc., 2021, 168, 1-18.
[128]
Strianese, M.; Staiano, M.; Ruggiero, G.; Labella, T.; Pellecchia, C.; D’Auria, S. Fluorescence-Based Biosensors. Methods Mol. Biol., 2012, 875, 193-216.
[http://dx.doi.org/10.1007/978-1-61779-806-1_9] [PMID: 22573441]
[129]
Lohcharoenkal, W.; Abbas, Z.; Rojanasakul, Y. Advances in nanotechnology-based biosensing of immunoregulatory cytokines. Biosensors (Basel), 2021, 11(10), 364.
[http://dx.doi.org/10.3390/bios11100364] [PMID: 34677320]
[130]
Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem., 2016, 60(1), 91-100.
[http://dx.doi.org/10.1042/EBC20150010] [PMID: 27365039]
[131]
Jamerlan, A.; Soo, S.; Hulme, J. Advances in amyloid beta oligomer detection applications in Alzheimer’s disease. Trends Analyt Chem., 2020, 129, 115919.
[132]
Li, F.; Stewart, C.; Yang, S.; Shi, F.; Cui, W.; Zhang, S.; Wang, H.; Huang, H.; Chen, M.; Han, J. Optical sensor array for the early diagnosis of Alzheimer’s Disease. Front Chem., 2022, 10, 874864.
[http://dx.doi.org/10.3389/fchem.2022.874864] [PMID: 35444997]
[133]
Bunz, U.H. Poly(paraphenyleneethynylene and Poly(aryleneethynylene)s. Handbook of conducting polymers; CRC Press., 2007.
[134]
Mehrotra, Parikha Biosensors and their applications- A review. JOBCR-202, 2016, 6(2), 153-159.
[135]
Dominguez, M.H. Optical biosensors and their applications for the detection of water pollutants. Biosensors., 2023, 13(3), 370.
[136]
Ishigaki, Y.; Tanaka, H.; Akama, H.; Ogara, T.; Uwai, K.; Tokuraku, K. A microliter-scale high-throughput screening system with quantum-dot nanoprobes for amyloid-β aggregation inhibitors. PLoS One, 2013, 8(8), e72992.
[http://dx.doi.org/10.1371/journal.pone.0072992] [PMID: 23991168]
[137]
Sasaki, R.; Tainaka, R.; Ando, Y.; Hashi, Y.; Deepak, H.V.; Suga, Y.; Murai, Y.; Anetai, M.; Monde, K.; Ohta, K.; Ito, I.; Kikuchi, H.; Oshima, Y.; Endo, Y.; Nakao, H.; Sakono, M.; Uwai, K.; Tokuraku, K. An automated microliter-scale high-throughput screening system (MSHTS) for real-time monitoring of protein aggregation using quantum-dot nanoprobes. Sci. Rep., 2019, 9(1), 2587.
[http://dx.doi.org/10.1038/s41598-019-38958-0] [PMID: 30796247]
[138]
Akhtar, N.; Metkar, S.K.; Girigoswami, A.; Girigoswami, K. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater. Sci. Eng. C, 2017, 78, 960-968.
[http://dx.doi.org/10.1016/j.msec.2017.04.118] [PMID: 28576073]
[139]
Dong, J.; Fujita, R.; Zako, T.; Ueda, H. Construction of Quenchbodies to detect and image amyloid β oligomers. Anal. Biochem., 2018, 550, 61-67.
[http://dx.doi.org/10.1016/j.ab.2018.04.016] [PMID: 29678763]
[140]
Chen, W.; Gao, G.; Jin, Y.; Deng, C. A facile biosensor for Aβ40O based on fluorescence quenching of prussian blue nanoparticles. Talanta, 2020, 216(120930), 120930.
[http://dx.doi.org/10.1016/j.talanta.2020.120930] [PMID: 32456942]
[141]
Xing, Z.W. Driving force to detect Alzheimer’s disease biomarkers: application of a thioflavine T@Er-MOF ratiometric fluorescent sensor for smart detection of presenilin 1, amyloid β-protein and acetylcholine. Analyst (Lond.), 2020, 145(4646), 1-18.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy