Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Development of Micro/Nano Pattern Arrays with Grating-Based Periodic Structures using the Direct Laser Lithography System

In Press, (this is not the final "Version of Record"). Available online 07 May, 2024
Author(s): Rency Rajan, Alfred Kirubaraj*, Senith Samson, Shajin Prince and S.R. Jino Ramson
Published on: 07 May, 2024

DOI: 10.2174/0115734137283785240118095556

open access plus

Abstract

Introduction: This research delves into utilizing the Direct Laser Lithography System to produce micro/nanopattern arrays with grating-based periodic structures. Initially, refining the variation in periodic structures within these arrays becomes a pivotal pursuit. This demands a deep comprehension of how structural variation aligns with specific applications, particularly in photonics and material science.

Method: Advancements in hardware, software, or process optimization techniques hold potential for reaching this objective. Using an optical beam, this system enables the engraving of moderate periodic and quasi-periodic structures, enhancing pattern formation in a three-dimensional environment. Through cost-effective direct-beam interferometry systems utilizing 405 nm GaN and 290 to 780 nm AlInGaN semiconductor laser diodes, patterns ranging from in period were created, employing 300 nm gratings.

Result: The system's cost-efficiency and ability to achieve high-resolution permit the creation of both regular and irregular grating designs. By employing an optical head assembly from a bluray disc recorder, housing a semiconductor laser diode and an objective lens with an NA of 0.85, this system displays promising potential in progressing the fabrication of micro/nanopattern arrays.

Conclusion: Assessing their optical, mechanical, and electrical properties and exploring potential applications across varied fields like optoelectronics, photovoltaics, sensors, and biomedical devices represent critical strides for further exploration and advancement.

[1]
Asenbaum, P.; Overstreet, C.; Kovachy, T.; Brown, D.D.; Hogan, J.M.; Kasevich, M.A. Phase shift in an atom interferometer due to spacetime curvature across its wave function. Phys. Rev. Lett., 2017, 118(18), 183602.
[http://dx.doi.org/10.1103/PhysRevLett.118.183602] [PMID: 28524681]
[2]
Baek, Y.; Lee, K.; Yoon, J.; Kim, K.; Park, Y. White-light quantitative phase imaging unit. Opt. Express, 2016, 24(9), 9308-9315.
[http://dx.doi.org/10.1364/OE.24.009308] [PMID: 27137546]
[3]
Chauvin, A.; Stephant, N.; Du, K.; Ding, J.; Wathuthanthri, I.; Choi, C.H.; Tessier, P-Y.; El Mel, A-A. Large-scale fabrication of porous gold nanowires via laser interference lithography and dealloying of gold-silver nano-alloys. Micromachines, 2017, 8(6), 168.
[http://dx.doi.org/10.3390/mi8060168]
[4]
Chen, P.Y.; Jywe, W.Y.; Wang, M.S.; Wu, C.H. Application of blue laser direct-writing equipment for manufacturing of periodic and aperiodic nanostructure patterns. Precis. Eng., 2016, 46, 263-269.
[http://dx.doi.org/10.1016/j.precisioneng.2016.05.006]
[5]
D’Amico, G.; Rosi, G.; Zhan, S.; Cacciapuoti, L.; Fattori, M.; Tino, G.M. Canceling the gravity gradient phase shift in atom interferometry. Phys. Rev. Lett., 2017, 119(25), 253201.
[http://dx.doi.org/10.1103/PhysRevLett.119.253201] [PMID: 29303327]
[6]
Deng, X.; Hu, Z.; Xiu, G.; Song, Z.; Weng, Z.; Xu, J. Five-beam interference pattern model for laser interference lithography. The 2010 IEEE International Conference on Information and Automation, Harbin, China, 2010, pp. 1208-1213.
[http://dx.doi.org/10.1109/ICINFA.2010.5512128]
[7]
Di, J.; Li, Y.; Xie, M.; Zhang, J.; Ma, C.; Xi, T.; Li, E.; Zhao, J. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry. Appl. Opt., 2016, 55(26), 7287-7293.
[http://dx.doi.org/10.1364/AO.55.007287] [PMID: 27661364]
[8]
Guo, L.; Jiang, H.B.; Shao, R.Q.; Zhang, Y.L.; Xie, S.Y.; Wang, J.N.; Li, X-B.; Jiang, F.; Chen, Q-D.; Zhang, T.; Sun, H-B. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon, 2012, 50(4), 1667-1673.
[http://dx.doi.org/10.1016/j.carbon.2011.12.011]
[9]
Guo, T.; Li, F.; Chen, J.; Fu, X.; Hu, X. Multi-wavelength phase-shifting interferometry for micro-structures measurement based on color image processing in white light interference. Opt. Lasers Eng., 2016, 82, 41-47.
[http://dx.doi.org/10.1016/j.optlaseng.2016.02.003]
[10]
Hassan, S.; Sale, O.; Lowell, D.; Hurley, N.; Lin, Y. Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell. Photonics, 2018, 5(4), 34.
[http://dx.doi.org/10.3390/photonics5040034]
[11]
Hayasaki, Y.; Nishitani, M.; Takahashi, H.; Yamamoto, H.; Takita, A.; Suzuki, D.; Hasegawa, S. Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing. Appl. Phys., A Mater. Sci. Process., 2012, 107(2), 357-362.
[http://dx.doi.org/10.1007/s00339-012-6801-1]
[12]
Kang, M.J.; Kim, M.; Hwang, E.S.; Noh, J.; Shin, S.T.; Cheong, B.H. Crystallization of amorphous-Si using nanosecond laser interference method. J. Soc. Inf. Disp., 2019, 27(1), 34-40.
[http://dx.doi.org/10.1002/jsid.745]
[13]
Kim, J.; Jeong, I.G.; Lee, S.H.; Kang, K.T.; Lee, S.H. Fabrication of large-area periodic nanostructures using two-mirror laser interference lithography. Electron. Mater. Lett., 2013, 9(6), 879-882.
[http://dx.doi.org/10.1007/s13391-013-6035-1]
[14]
Lasagni, A.; Bieda, M.; Roch, T.; Langheinrich, D. Direct fabrica- tion of periodic structures on surfaces: Laser interference patterning as new scalable industrial tool. Laser Tech. J., 2011, 8(1), 45-48.
[http://dx.doi.org/10.1002/latj.201090109]
[15]
Lehmann, P.; Tereschenko, S.; Xie, W. Fundamental aspects of resolution and precision in vertical scanning white-light interferometry. Surf. Topogr., 2016, 4(2), 024004.
[http://dx.doi.org/10.1088/2051-672X/4/2/024004]
[16]
Li, L.; Hong, M.; Schmidt, M.; Zhong, M.; Malshe, A. Laser nano-manufacturing - State of the art and challenges. CIRP Ann. -. Manuf. Technol., 2011, 60(2), 735-755.
[http://dx.doi.org/10.1016/j.cirp.2011.05.005]
[17]
Lorens, M.; Zabila, Y.; Krupiński, M.; Perzanowski, M.; Suchanek, K.; Marszałek, K.; Marszałek, M. Micropatterning of silicon surface by direct laser inter- ference lithography. Acta Phys. Pol. A, 2012, 121(2), 543-545.
[http://dx.doi.org/10.12693/APhysPolA.121.543]
[18]
Poleshchuk, A.G.; Sametov, R.A.; Sedukhin, A.G. Multibeam laser writing of diffractive optical elements. Optoelectron. Instrum. Data Process., 2012, 48(4), 327-333.
[http://dx.doi.org/10.3103/S8756699012040012]
[19]
Rothenbach, C.A.; Kravchenko, I.I.; Gupta, M.C. Optical diffraction properties of multimicrogratings. Appl. Opt., 2015, 54(7), 1808.
[http://dx.doi.org/10.1364/AO.54.001808]
[20]
Seo, J.H.; Park, J.H.; Kim, S.I.; Park, B.J.; Ma, Z.; Choi, J.; Ju, B.K. Nanopatterning by laser interference lithography: Applications to optical devices. J. Nanosci. Nanotechnol., 2014, 14(2), 1521-1532.
[http://dx.doi.org/10.1166/jnn.2014.9199] [PMID: 24749439]
[21]
Sidharthan, R.; Murukeshan, V.M. Nano-scale patterning using pyramidal prism based wavefront interference lithography. Phys. Procedia, 2011, 19, 416-421.
[http://dx.doi.org/10.1016/j.phpro.2011.06.185]
[22]
Suslik, L.; Pudis, D.; Skriniarova, J.; Martincek, I.; Kubicova, I.; Kovac, J. 2D photonic structures for optoelectronic devices prepared by interference lithography. Phys. Procedia, 2012, 32, 807-813.
[http://dx.doi.org/10.1016/j.phpro.2012.03.640]
[23]
Tahara, T.; Kanno, T.; Arai, Y.; Ozawa, T. Single-shot phase-shifting incoherent digital holography. J. Opt., 2017, 19(6), 065705.
[http://dx.doi.org/10.1088/2040-8986/aa6e82]
[24]
Tian, C.; Liu, S. Two-frame phase-shifting interferometry for testing optical surfaces. Opt. Express, 2016, 24(16), 18695-18708.
[http://dx.doi.org/10.1364/OE.24.018695] [PMID: 27505832]
[25]
Vala, M.; Homola, J. Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays. Opt. Express, 2014, 22(15), 18778-18789.
[http://dx.doi.org/10.1364/OE.22.018778] [PMID: 25089495]
[26]
Koch, F.; Lehr, D.; Schönbrodt, O.; Glaser, T.; Fechner, R.; Frost, F. Manufacturing of highly-dispersive, high-efficiency transmission gratings by laser interference lithography and dry etching. Microelectron. Eng., 2018, 191, 60-65.
[http://dx.doi.org/10.1016/j.mee.2018.01.031]
[27]
Lasagni, A.F.; Menéndez-Ormaza, B.S. Two‐ and three‐dimensional micro‐ and sub‐micrometer periodic structures using two‐beam laser interference lithography. Adv. Eng. Mater., 2010, 12(1-2), 54-60.
[http://dx.doi.org/10.1002/adem.200900221]
[28]
Wang, Z.; Zhang, J.; Ji, Z.; Packianather, M.; Peng, C.S.; Tan, C.; Verevkin, Y.K.; Olaizola, S.M.; Berthou, T.; Tisserand, S. Laser interference nanolithography. Proceedings of the 3rd International Conference on Manufacturing Engineering (ICMEN), 1-3 October 2008 Chalkidiki, Greece 2008.

© 2025 Bentham Science Publishers | Privacy Policy