Note! Please note that this article is currently in the "Article in Press" stage and is not the final "Version of record". While it has been accepted, copy-edited, and formatted, however, it is still undergoing proofreading and corrections by the authors. Therefore, the text may still change before the final publication. Although "Articles in Press" may not have all bibliographic details available, the DOI and the year of online publication can still be used to cite them. The article title, DOI, publication year, and author(s) should all be included in the citation format. Once the final "Version of record" becomes available the "Article in Press" will be replaced by that.
Abstract
Introduction: This research delves into utilizing the Direct Laser Lithography System to produce micro/nanopattern arrays with grating-based periodic structures. Initially, refining the variation in periodic structures within these arrays becomes a pivotal pursuit. This demands a deep comprehension of how structural variation aligns with specific applications, particularly in photonics and material science.
Method: Advancements in hardware, software, or process optimization techniques hold potential for reaching this objective. Using an optical beam, this system enables the engraving of moderate periodic and quasi-periodic structures, enhancing pattern formation in a three-dimensional environment. Through cost-effective direct-beam interferometry systems utilizing 405 nm GaN and 290 to 780 nm AlInGaN semiconductor laser diodes, patterns ranging from in period were created, employing 300 nm gratings.
Result: The system's cost-efficiency and ability to achieve high-resolution permit the creation of both regular and irregular grating designs. By employing an optical head assembly from a bluray disc recorder, housing a semiconductor laser diode and an objective lens with an NA of 0.85, this system displays promising potential in progressing the fabrication of micro/nanopattern arrays.
Conclusion: Assessing their optical, mechanical, and electrical properties and exploring potential applications across varied fields like optoelectronics, photovoltaics, sensors, and biomedical devices represent critical strides for further exploration and advancement.
[1]
Asenbaum, P.; Overstreet, C.; Kovachy, T.; Brown, D.D.; Hogan, J.M.; Kasevich, M.A. Phase shift in an atom interferometer due to spacetime curvature across its wave function. Phys. Rev. Lett., 2017, 118(18), 183602.
[http://dx.doi.org/10.1103/PhysRevLett.118.183602] [PMID: 28524681]
[http://dx.doi.org/10.1103/PhysRevLett.118.183602] [PMID: 28524681]
[2]
Baek, Y.; Lee, K.; Yoon, J.; Kim, K.; Park, Y. White-light quantitative phase imaging unit. Opt. Express, 2016, 24(9), 9308-9315.
[http://dx.doi.org/10.1364/OE.24.009308] [PMID: 27137546]
[http://dx.doi.org/10.1364/OE.24.009308] [PMID: 27137546]
[3]
Chauvin, A.; Stephant, N.; Du, K.; Ding, J.; Wathuthanthri, I.; Choi, C.H.; Tessier, P-Y.; El Mel, A-A. Large-scale fabrication of porous gold nanowires via laser interference lithography and dealloying of gold-silver nano-alloys. Micromachines, 2017, 8(6), 168.
[http://dx.doi.org/10.3390/mi8060168]
[http://dx.doi.org/10.3390/mi8060168]
[4]
Chen, P.Y.; Jywe, W.Y.; Wang, M.S.; Wu, C.H. Application of blue laser direct-writing equipment for manufacturing of periodic and aperiodic nanostructure patterns. Precis. Eng., 2016, 46, 263-269.
[http://dx.doi.org/10.1016/j.precisioneng.2016.05.006]
[http://dx.doi.org/10.1016/j.precisioneng.2016.05.006]
[5]
D’Amico, G.; Rosi, G.; Zhan, S.; Cacciapuoti, L.; Fattori, M.; Tino, G.M. Canceling the gravity gradient phase shift in atom interferometry. Phys. Rev. Lett., 2017, 119(25), 253201.
[http://dx.doi.org/10.1103/PhysRevLett.119.253201] [PMID: 29303327]
[http://dx.doi.org/10.1103/PhysRevLett.119.253201] [PMID: 29303327]
[6]
Deng, X.; Hu, Z.; Xiu, G.; Song, Z.; Weng, Z.; Xu, J. Five-beam interference pattern model for laser interference lithography. The 2010 IEEE International Conference on Information and Automation, Harbin, China, 2010, pp. 1208-1213.
[http://dx.doi.org/10.1109/ICINFA.2010.5512128]
[http://dx.doi.org/10.1109/ICINFA.2010.5512128]
[7]
Di, J.; Li, Y.; Xie, M.; Zhang, J.; Ma, C.; Xi, T.; Li, E.; Zhao, J. Dual-wavelength common-path digital holographic microscopy for quantitative phase imaging based on lateral shearing interferometry. Appl. Opt., 2016, 55(26), 7287-7293.
[http://dx.doi.org/10.1364/AO.55.007287] [PMID: 27661364]
[http://dx.doi.org/10.1364/AO.55.007287] [PMID: 27661364]
[8]
Guo, L.; Jiang, H.B.; Shao, R.Q.; Zhang, Y.L.; Xie, S.Y.; Wang, J.N.; Li, X-B.; Jiang, F.; Chen, Q-D.; Zhang, T.; Sun, H-B. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon, 2012, 50(4), 1667-1673.
[http://dx.doi.org/10.1016/j.carbon.2011.12.011]
[http://dx.doi.org/10.1016/j.carbon.2011.12.011]
[9]
Guo, T.; Li, F.; Chen, J.; Fu, X.; Hu, X. Multi-wavelength phase-shifting interferometry for micro-structures measurement based on color image processing in white light interference. Opt. Lasers Eng., 2016, 82, 41-47.
[http://dx.doi.org/10.1016/j.optlaseng.2016.02.003]
[http://dx.doi.org/10.1016/j.optlaseng.2016.02.003]
[10]
Hassan, S.; Sale, O.; Lowell, D.; Hurley, N.; Lin, Y. Holographic fabrication and optical property of graded photonic super-crystals with a rectangular unit super-cell. Photonics, 2018, 5(4), 34.
[http://dx.doi.org/10.3390/photonics5040034]
[http://dx.doi.org/10.3390/photonics5040034]
[11]
Hayasaki, Y.; Nishitani, M.; Takahashi, H.; Yamamoto, H.; Takita, A.; Suzuki, D.; Hasegawa, S. Experimental investigation of the closest parallel pulses in holographic femtosecond laser processing. Appl. Phys., A Mater. Sci. Process., 2012, 107(2), 357-362.
[http://dx.doi.org/10.1007/s00339-012-6801-1]
[http://dx.doi.org/10.1007/s00339-012-6801-1]
[12]
Kang, M.J.; Kim, M.; Hwang, E.S.; Noh, J.; Shin, S.T.; Cheong, B.H. Crystallization of amorphous-Si using nanosecond laser interference method. J. Soc. Inf. Disp., 2019, 27(1), 34-40.
[http://dx.doi.org/10.1002/jsid.745]
[http://dx.doi.org/10.1002/jsid.745]
[13]
Kim, J.; Jeong, I.G.; Lee, S.H.; Kang, K.T.; Lee, S.H. Fabrication of large-area periodic nanostructures using two-mirror laser interference lithography. Electron. Mater. Lett., 2013, 9(6), 879-882.
[http://dx.doi.org/10.1007/s13391-013-6035-1]
[http://dx.doi.org/10.1007/s13391-013-6035-1]
[14]
Lasagni, A.; Bieda, M.; Roch, T.; Langheinrich, D. Direct fabrica- tion of periodic structures on surfaces: Laser interference patterning as new scalable industrial tool. Laser Tech. J., 2011, 8(1), 45-48.
[http://dx.doi.org/10.1002/latj.201090109]
[http://dx.doi.org/10.1002/latj.201090109]
[15]
Lehmann, P.; Tereschenko, S.; Xie, W. Fundamental aspects of resolution and precision in vertical scanning white-light interferometry. Surf. Topogr., 2016, 4(2), 024004.
[http://dx.doi.org/10.1088/2051-672X/4/2/024004]
[http://dx.doi.org/10.1088/2051-672X/4/2/024004]
[16]
Li, L.; Hong, M.; Schmidt, M.; Zhong, M.; Malshe, A. Laser nano-manufacturing - State of the art and challenges. CIRP Ann. -. Manuf. Technol., 2011, 60(2), 735-755.
[http://dx.doi.org/10.1016/j.cirp.2011.05.005]
[http://dx.doi.org/10.1016/j.cirp.2011.05.005]
[17]
Lorens, M.; Zabila, Y.; Krupiński, M.; Perzanowski, M.; Suchanek, K.; Marszałek, K.; Marszałek, M. Micropatterning of silicon surface by direct laser inter- ference lithography. Acta Phys. Pol. A, 2012, 121(2), 543-545.
[http://dx.doi.org/10.12693/APhysPolA.121.543]
[http://dx.doi.org/10.12693/APhysPolA.121.543]
[18]
Poleshchuk, A.G.; Sametov, R.A.; Sedukhin, A.G. Multibeam laser writing of diffractive optical elements. Optoelectron. Instrum. Data Process., 2012, 48(4), 327-333.
[http://dx.doi.org/10.3103/S8756699012040012]
[http://dx.doi.org/10.3103/S8756699012040012]
[19]
Rothenbach, C.A.; Kravchenko, I.I.; Gupta, M.C. Optical diffraction properties of multimicrogratings. Appl. Opt., 2015, 54(7), 1808.
[http://dx.doi.org/10.1364/AO.54.001808]
[http://dx.doi.org/10.1364/AO.54.001808]
[20]
Seo, J.H.; Park, J.H.; Kim, S.I.; Park, B.J.; Ma, Z.; Choi, J.; Ju, B.K. Nanopatterning by laser interference lithography: Applications to optical devices. J. Nanosci. Nanotechnol., 2014, 14(2), 1521-1532.
[http://dx.doi.org/10.1166/jnn.2014.9199] [PMID: 24749439]
[http://dx.doi.org/10.1166/jnn.2014.9199] [PMID: 24749439]
[21]
Sidharthan, R.; Murukeshan, V.M. Nano-scale patterning using pyramidal prism based wavefront interference lithography. Phys. Procedia, 2011, 19, 416-421.
[http://dx.doi.org/10.1016/j.phpro.2011.06.185]
[http://dx.doi.org/10.1016/j.phpro.2011.06.185]
[22]
Suslik, L.; Pudis, D.; Skriniarova, J.; Martincek, I.; Kubicova, I.; Kovac, J. 2D photonic structures for optoelectronic devices prepared by interference lithography. Phys. Procedia, 2012, 32, 807-813.
[http://dx.doi.org/10.1016/j.phpro.2012.03.640]
[http://dx.doi.org/10.1016/j.phpro.2012.03.640]
[23]
Tahara, T.; Kanno, T.; Arai, Y.; Ozawa, T. Single-shot phase-shifting incoherent digital holography. J. Opt., 2017, 19(6), 065705.
[http://dx.doi.org/10.1088/2040-8986/aa6e82]
[http://dx.doi.org/10.1088/2040-8986/aa6e82]
[24]
Tian, C.; Liu, S. Two-frame phase-shifting interferometry for testing optical surfaces. Opt. Express, 2016, 24(16), 18695-18708.
[http://dx.doi.org/10.1364/OE.24.018695] [PMID: 27505832]
[http://dx.doi.org/10.1364/OE.24.018695] [PMID: 27505832]
[25]
Vala, M.; Homola, J. Flexible method based on four-beam interference lithography for fabrication of large areas of perfectly periodic plasmonic arrays. Opt. Express, 2014, 22(15), 18778-18789.
[http://dx.doi.org/10.1364/OE.22.018778] [PMID: 25089495]
[http://dx.doi.org/10.1364/OE.22.018778] [PMID: 25089495]
[26]
Koch, F.; Lehr, D.; Schönbrodt, O.; Glaser, T.; Fechner, R.; Frost, F. Manufacturing of highly-dispersive, high-efficiency transmission gratings by laser interference lithography and dry etching. Microelectron. Eng., 2018, 191, 60-65.
[http://dx.doi.org/10.1016/j.mee.2018.01.031]
[http://dx.doi.org/10.1016/j.mee.2018.01.031]
[27]
Lasagni, A.F.; Menéndez-Ormaza, B.S. Two‐ and three‐dimensional micro‐ and sub‐micrometer periodic structures using two‐beam laser interference lithography. Adv. Eng. Mater., 2010, 12(1-2), 54-60.
[http://dx.doi.org/10.1002/adem.200900221]
[http://dx.doi.org/10.1002/adem.200900221]