Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Analysis of Seven Terpenoids by HS-SPME Coupled with GC-MS for the Identification and Classification of Different Teas

Author(s): Yangzhou Xie, Yi Yang, Yu Tian, Zhimin Liu, Zhigang Xu*, Wei Jiang, Zhihua Liu and Xiaoxi Si*

Volume 20, Issue 9, 2024

Published on: 06 May, 2024

Page: [629 - 636] Pages: 8

DOI: 10.2174/0115734110301044240426170020

Price: $65

Abstract

Background: Terpenoids are essential aroma substances in teas, and their concentration brings various characteristics to different teas. Therefore, developing a simple and stable method is necessary for distinguishing tea categories.

Objective: In previous studies, more attention was paid to non-chiral isomers of terpenes due to the challenges of separating chiral isomers. So, this paper aims to present a method for effectively separating seven terpenoid substances, including chiral isomers and non-chiral isomers, to facilitate the classification and identification of teas.

Methods: A method utilizing headspace solid-phase microextraction coupled with gas chromatography- mass spectrometry was used to isolate and analyze 7 terpenoid compounds. After optimized conditions, the BGB-176 chiral column and the PDMS/DVB fiber were selected for subsequent analysis.

Results: This method has a good linear range of 0.1-200 mg/L, and its linear correlation coefficients are between 0.9974 and 0.9994, and the limit of detection and the limit of quantification is 0.02–0.03 and 0.06–0.09 mg/L, respectively. Only five terpenoid substances were detected in a total of 15 tea samples. Furthermore, In the detection of carvon and α-ionone optical isomers, the S isomer was mainly detected.

Conclusions: An effective approach was developed to separate and analyze 7 terpenoid compounds in natural and synthetic teas. Meanwhile, 15 tea samples can be identified and classified using principal component analysis.

Graphical Abstract

[1]
Zhang, C.; Hong, K. Production of terpenoids by synthetic biology approaches. Front. Bioeng. Biotechnol., 2020, 8, 347.
[http://dx.doi.org/10.3389/fbioe.2020.00347] [PMID: 32391346]
[2]
Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils – A review. Food Chem. Toxicol., 2008, 46(2), 446-475.
[http://dx.doi.org/10.1016/j.fct.2007.09.106] [PMID: 17996351]
[3]
Zhou, Y.; He, Y.; Zhu, Z. Understanding of formation and change of chiral aroma compounds from tea leaf to tea cup provides essential information for tea quality improvement. Food Res. Int., 2023, 167, 112703.
[http://dx.doi.org/10.1016/j.foodres.2023.112703] [PMID: 37087269]
[4]
Zhang, J.; Xia, D.; Li, T.; Wei, Y.; Feng, W.; Xiong, Z.; Huang, J.; Deng, W.W.; Ning, J. Effects of different over-fired drying methods on the aroma of Lu’an Guapian tea. Food Res. Int., 2023, 173(Pt 1), 113224.
[http://dx.doi.org/10.1016/j.foodres.2023.113224] [PMID: 37803542]
[5]
Faustina, D.R.; Gunadi, R.; Fitriani, A.; Supriyadi, S. Alteration of phenolic and volatile compounds of tea leaf extract by tyrosinase and β-glucosidase during preparation of ready-to-drink tea on farm. Int. J. Food Sci., 2022, 2022, 1-8.
[http://dx.doi.org/10.1155/2022/1977762] [PMID: 35282309]
[6]
Strub, D.J.; Kula, J.; Sikora, M.; Gibka, J.; Lochyński, S. Synthesis and olfactory evaluation of homologous series of (+)‐ and (−)‐carvone oxime ethers. Flavour Fragrance J., 2016, 31(1), 81-86.
[http://dx.doi.org/10.1002/ffj.3285]
[7]
Hu, W.; Wang, G.; Lin, S.; Liu, Z.; Wang, P.; Li, J.; Zhang, Q.; He, H. Digital evaluation of aroma intensity and odor characteristics of tea with different types—based on OAV-splitting method. Foods, 2022, 11(15), 2204.
[http://dx.doi.org/10.3390/foods11152204] [PMID: 35892790]
[8]
Zhu, J.; Zhu, Y.; Wang, K.; Niu, Y.; Xiao, Z. Characterization of key aroma compounds and enantiomer distribution in Longjing tea. Food Chem., 2021, 361, 130096.
[http://dx.doi.org/10.1016/j.foodchem.2021.130096] [PMID: 34023691]
[9]
Tian, Y.; Xu, Z.; Liu, Z.; Zhu, R.; Zhang, F.; Liu, Z.; Si, X. Botanical discrimination and classification of Mentha plants applying two-chiral column tandem GC–MS analysis of eight menthol enantiomers. Food Res. Int., 2022, 162(Pt A), 112035.
[http://dx.doi.org/10.1016/j.foodres.2022.112035] [PMID: 36461254]
[10]
Xin, H.; Fang, L.; Xie, J.; Qi, W.; Niu, Y.; Yang, F.; Cai, D.; Zhang, Y.; Wen, Z. Identification and quantification of triterpenoids in lingzhi or reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), with HPLC-MS/MS methods. Int. J. Med. Mushrooms, 2018, 20(10), 919-934.
[http://dx.doi.org/10.1615/IntJMedMushrooms.2018027398] [PMID: 30806265]
[11]
Perestrelo, R.; Silva, C.L.; Silva, P.; Medina, S.; Pereira, R.; Câmara, J.S. Untargeted fingerprinting of cider volatiles from different geographical regions by HS-SPME/GC-MS. Microchem. J., 2019, 148, 643-651.
[http://dx.doi.org/10.1016/j.microc.2019.05.028]
[12]
Huang, C.; Zhou, W.; Bian, C.; Wang, L.; Li, Y.; Li, B. Degradation and pathways of carvone in soil and water. Molecules, 2022, 27(8), 2415.
[http://dx.doi.org/10.3390/molecules27082415] [PMID: 35458614]
[13]
Cozzi, F.; Neuhauser, E.I.; Teichmann, K.; Zaunschirm, M. Determination of phytochemical compounds in chicken breast by gas chromatography-tandem mass spectrometry. Yao Wu Shi Pin Fen Xi, 2021, 29(2), 256-262.
[http://dx.doi.org/10.38212/2224-6614.3288] [PMID: 35696212]
[14]
Langen, J.; Herr, W.P.; Schmarr, H.G. Quantitative determination of α-ionone, β-ionone, and β-damascenone and enantiodifferentiation of α-ionone in wine for authenticity control using multidimensional gas chromatography with tandem mass spectrometric detection. Anal. Bioanal. Chem., 2016, 408(23), 6483-6496.
[http://dx.doi.org/10.1007/s00216-016-9767-6] [PMID: 27417694]
[15]
Du, X.; Zhang, W.; Liu, B.; Liu, T.; Xiao, Y.; Taniguchi, M.; Ren, Y. Optimization and validation of HS-SPME-GCMS method for determination of multifumigant residues in grain, oilseeds, nuts, and dry fruit. J. AOAC Int., 2019, 102(6), 1877-1883.
[http://dx.doi.org/10.5740/jaoacint.18-0093] [PMID: 31097055]
[16]
Wang, X.R.; Cassells, J.; Berna, A.Z. Stability control for breath analysis using GC-MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1097-1098, 27-34.
[http://dx.doi.org/10.1016/j.jchromb.2018.08.024] [PMID: 30199747]
[17]
Waś, E.; Szczęsna, T.; Chmielewska, R.H. Efficiency of GC-MS method in detection of beeswax adulterated with paraffin. J. Apic. Sci., 2016, 60(1), 145-162.
[http://dx.doi.org/10.1515/jas-2016-0012]
[18]
Ma, L.; Qiao, Y.; Du, L.; Li, Y.; Huang, S.; Liu, F.; Xiao, D. Evaluation and optimization of a superior extraction method for the characterization of the volatile profile of black tea by HS-SPME/GC-MS. Food Anal. Methods, 2017, 10(7), 2481-2489.
[http://dx.doi.org/10.1007/s12161-016-0785-y]
[19]
Xie, J.; Wang, Q.; Cui, H.; Wang, L.; Deng, Y.; Yuan, H.; Zhu, J.; Yang, Y.; Jiang, Y. Characterization of Gardenia tea based on aroma profiles using GC-E-Nose, GC-O-MS and GC×GC-TOFMS combined with chemometrics. Beverage Plant Res., 2024, 4(1), e001.
[http://dx.doi.org/10.48130/bpr-0023-0034]
[20]
Lin, Y.; Wang, Y.; Huang, Y.; Song, H.; Yang, P. Aroma identification and classification in 18 kinds of teas (Camellia sinensis) by sensory evaluation, HS-SPME-GC-IMS/GC×GC-MS, and chemometrics. Foods, 2023, 12(13), 2433.
[http://dx.doi.org/10.3390/foods12132433] [PMID: 37444171]
[21]
Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst., 1987, 2(1-3), 37-52.
[http://dx.doi.org/10.1016/0169-7439(87)80084-9]
[22]
Rodríguez, C.; Durant-Archibold, A.A.; Santana, A.; Murillo, E.; Abuín, C.M.F. Analysis of the volatile components of Pouteria sapota (Sapote Mamey) fruit by HS-SPME-GC-MS. Nat. Prod. Commun., 2018, 13(8), 1934578X1801300..
[http://dx.doi.org/10.1177/1934578X1801300826]
[23]
Yaqun, L.; Hanxu, L.; Wanling, L.; Yingzhu, X.; Mouquan, L.; Yuzhong, Z.; Lei, H.; Yingkai, Y.; Yidong, C. SPME-GC–MS combined with chemometrics to assess the impact of fermentation time on the components, flavor, and function of Laoxianghuang. Front. Nutr., 2022, 9, 915776.
[http://dx.doi.org/10.3389/fnut.2022.915776] [PMID: 35983487]
[24]
Pragadheesh, V.S.; Yadav, A.; Chanotiya, C.S. Role of substituents in cyclodextrin derivatives for enantioselective gas chromatographic separation of chiral terpenoids in the essential oils of Mentha spicata. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2015, 1002, 30-41.
[http://dx.doi.org/10.1016/j.jchromb.2015.07.034] [PMID: 26310896]
[25]
Chanotiya, C.S.; Pragadheesh, V.S.; Yadav, A.; Gupta, P.; Lal, R.K. Cyclodextrin-based gas chromatography and GC/MS methods for determination of chiral pair constituents in mint essential oils. J. Essent. Oil Res., 2021, 33(1), 23-31.
[http://dx.doi.org/10.1080/10412905.2020.1835744]
[26]
Skórka, M.; Asztemborska, M.; Żukowski, J. Thermodynamic studies of complexation and enantiorecognition processes of monoterpenoids by α- and β-cyclodextrin in gas chromatography. J. Chromatogr. A, 2005, 1078(1-2), 136-143.
[http://dx.doi.org/10.1016/j.chroma.2005.05.011] [PMID: 16007991]
[27]
Zenoni, G.; Quattrini, F.; Mazzotti, M.; Fuganti, C.; Morbidelli, M. Scale‐up of analytical chromatography to the simulated moving bed separation of the enantiomers of the flavour norterpenoids α‐ionone and α‐damascone. Flavour Fragrance J., 2002, 17(3), 195-202.
[http://dx.doi.org/10.1002/ffj.1088]
[28]
Matsubara, E.; Morikawa, T.; Kusumoto, N.; Hashida, K.; Matsui, N.; Ohira, T. Subjective effects of inhaling kuromoji tea aroma. Molecules, 2021, 26(3), 575.
[http://dx.doi.org/10.3390/molecules26030575] [PMID: 33499197]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy