Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Deep Learning-enhanced Hyperspectral Imaging for the Rapid Identification and Classification of Foodborne Pathogens

Author(s): Hanjing Ge*

Volume 20, Issue 9, 2024

Published on: 06 May, 2024

Page: [619 - 628] Pages: 10

DOI: 10.2174/0115734110287027240427064546

Price: $65

Abstract

Background: Bacterial cellulose (BC) is a versatile biomaterial with numerous applications, and the identification of bacterial strains that produce it is of great importance. This study explores the effectiveness of a Stacked Autoencoder (SAE)-based deep learning method for the classification of bacterial cellulose-producing bacteria.

Objective: The primary objective of this research is to assess the potential of SAE-based classification models in accurately identifying and classifying bacterial cellulose-producing bacteria, with a particular focus on strain GZ-01.

Methods: Strain GZ-01 was isolated and subjected to a comprehensive characterization process, including morphological observations, physiological and biochemical analysis, and 16S rDNA sequencing. These methods were employed to determine the identity of strain GZ-01, ultimately recognized as Acetobacter Okinawa. The study compares the performance of SAE-based classification models to traditional methods like Principal Component Analysis (PCA).

Results: The SAE-based classifier exhibits outstanding performance, achieving an impressive accuracy of 94.9% in the recognition and classification of bacterial cellulose-producing bacteria. This approach surpasses the efficacy of conventional PCA in handling the complexities of this classification task.

Conclusion: The findings from this research highlight the immense potential of utilizing nanotechnology- driven data analysis methods, such as Stacked Autoencoders, in the realm of bacterial cellulose research. These advanced techniques offer a promising avenue for enhancing the efficiency and accuracy of bacterial cellulose-producing bacteria classification, which has significant implications for various applications in biotechnology and materials science.

Graphical Abstract

[1]
Zhou, J.; Gu, F.; Yang, H.; Cao, G.; Xu, W.; Sun, S. Sequential fermentation strategy improves microbial conversion of waste jasmine flower to bacterial cellulose with antibacterial properties. Industrial Crops and Products, 2022, 185, 115147.
[http://dx.doi.org/10.1016/j.indcrop.2022.115147]
[2]
Li, G.; Wang, L.; Deng, Y.; Wei, Q. Research progress of the biosynthetic strains and pathways of bacterial cellulose. J. Ind. Microbiol. Biotechnol., 2022, 49(1), kuab071.
[http://dx.doi.org/10.1093/jimb/kuab071] [PMID: 34549273]
[3]
Balasubramanian, S.; Yu, K.; Cardenas, D.V.; Tam, A.M.E.; Meyer, A.S. Emergent biological endurance depends on extracellular matrix composition of three-dimensionally printedescherichia colibiofilms. ACS Synth. Biol., 2021, 10(11), 2997-3008.
[http://dx.doi.org/10.1021/acssynbio.1c00290] [PMID: 34652130]
[4]
Witri, P.S.; Rahmayetty, R.; Toha, M.; Alamsyah, A.; Kanani, N.; Wardhono, E.Y. Acetylation of bacterial cellulose from a mixture of palm flour liquid waste and coconut water: The effect of acetylation time on yield and identification of cellulose acetate. Mater. Sci. Forum, 2022, 1057, 48-54.
[http://dx.doi.org/10.4028/p-ex7xpa]
[5]
Mutiara, T.; Sulistyo, H.; Fahrurrozi, M.; Hidayat, M. Facile route of synthesis of silver nanoparticles templated bacterial cellulose, characterization, and its antibacterial application. Green Processing and Synthesis, 2022, 11(1), 361-372.
[http://dx.doi.org/10.1515/gps-2022-0038]
[6]
Brown, D.M.; Pawlak, J.; Grunden, A.M. Bacterial valorization of pulp and paper industry process streams and waste. Appl. Microbiol. Biotechnol., 2021, 105(4), 1345-1363.
[http://dx.doi.org/10.1007/s00253-021-11107-2] [PMID: 33481067]
[7]
Ada, K.; Clare, E.C.; Chidinma, O.; Goodluck, U.O.; Ekwealor, I.A. Isolation of multidrug resistant and extended spectrum β-lactamase producing bacteria from faecal samples of piggery farms in anambra state, nigeria. American J. Infectious Diseases and Microbiology, 2021, 9(4), 106-113.
[8]
Krishnaswamy, V.G.; Sridharan, R.; Kumar, P.S.; Fathima, M.J. Cellulase enzyme catalyst producing bacterial strains from vermicompost and its application in low-density polyethylene degradation. Chemosphere, 2022, 288(Pt 2), 132552.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132552] [PMID: 34648790]
[9]
Ila, K.R.; Feb, A.F. Screening of cellulolytic bacteria from biological education and research forest floor andalas university, indonesia. Pakistan journal of biological sciences. Pak. J. Biol. Sci., 2021, 24(5), 612-617.
[http://dx.doi.org/10.3923/pjbs.2021.612.617] [PMID: 34486336]
[10]
Bhat, A.H.; Khan, I.; Usmani, M.A.; Umapathi, R.; Kindy, A.S.M.Z. Cellulose an ageless renewable green nanomaterial for medical applications: An overview of ionic liquids in extraction, separation and dissolution of cellulose. Int. J. Biol. Macromol., 2019, 129, 750-777.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.190] [PMID: 30593803]
[11]
Feng, Y.; Yin, N.; Zhou, Z.; Han, Y. Physical and antibacterial properties of bacterial cellulose films supplemented with cell-free supernatant enterocin-producing Enterococcus faecium TJUQ1. Food Microbiol., 2021, 99(1), 103828.
[http://dx.doi.org/10.1016/j.fm.2021.103828] [PMID: 34119113]
[12]
Danso, B.; Ali, S.S.; Xie, R.; Sun, J. Valorisation of wheat straw and bioethanol production by a novel xylanase- and cellulase-producing Streptomyces strain isolated from the wood-feeding termite, Microcerotermes species. Fuel, 2022, 310, 122333.
[13]
Laavanya, D.; Shirkole, S.; Balasubramanian, P. Current challenges, applications and future perspectives of SCOBY cellulose of Kombucha fermentation. J. Clean. Prod., 2021, 295(3), 126454.
[http://dx.doi.org/10.1016/j.jclepro.2021.126454]
[14]
Hajjar, R. Improvement of colonic healing and surgical recovery with perioperative supplementation of inulin and galacto-oligosaccharides. Clin. Nutr., 2021, 40(6), 3842-3851.
[15]
Otuka, A.; Domeneguetti, R.R.; Moraes, J.; Balogh, D.T.; Ribeiro, S.; Mendona, C.R. Bacterial cellulose growth on 3d acrylate-based microstructures fabricated by two-photon polymerization. J. Physics. Photonics, 2021, 3(2), 024003.
[16]
Morsy, F.M.; Elbadry, M.; Elbahloul, Y. Semidry acid hydrolysis of cellulose sustained by autoclaving for production of reducing sugars for bacterial biohydrogen generation from various cellulose feedstock. PeerJ, 2021, 9(1), e11244.
[http://dx.doi.org/10.7717/peerj.11244] [PMID: 33976974]
[17]
Nassiri, M.; Barzegar, H.; Nasiri, K. Endoglucanase isolated from iranian bacillus subtilis recombinant expression and characterization of. J. Appl. Biotechnology Reports, 2021, 8(2), 133-140.
[18]
Khattak, S.; Qin, X.T.; Huang, L.H.; Xie, Y.Y.; Jia, S.R.; Zhong, C. Preparation and characterization of antibacterial bacterial cellulose/chitosan hydrogels impregnated with silver sulfadiazine. Int. J. Biol. Macromol., 2021, 189, 483-493.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.08.157] [PMID: 34450146]
[19]
Brandão, P.R.; Crespo, M.T.B.; Nascimento, F.X. Phylogenomic and comparative analyses support the reclassification of several Komagataeibacter species as novel members of the Novacetimonas gen. nov. and bring new insights into the evolution of cellulose synthase genes. Int. J. Syst. Evol. Microbiol., 2022, 72(2), 72.
[http://dx.doi.org/10.1099/ijsem.0.005252] [PMID: 35175916]
[20]
Szen, E.; Gündüz, G.; Aydemir, D.; Can, A. Surface modification of bacterial cellulose films with various fire retardants. J. Therm. Sci. Eng. Appl., 2021, 13(2), 1-18.
[21]
Ling, Z.; Liu, W.; Ren, Y.; Chen, H.; Huang, C.; Lai, C.; Yong, Q. Bioinspired manufacturing of oriented polysaccharides scaffolds for strong, optical haze and anti-UV/bacterial membranes. Carbohydr. Polym., 2021, 270(2), 118328.
[http://dx.doi.org/10.1016/j.carbpol.2021.118328] [PMID: 34364591]
[22]
Qiao, Z.; Lampugnani, E.R.; Yan, X.F.; Khan, G.A.; Saw, W.G.; Hannah, P.; Qian, F.; Calabria, J.; Miao, Y.; Grüber, G.; Persson, S.; Gao, Y.G. Structure of Arabidopsis CESA3 catalytic domain with its substrate UDP-glucose provides insight into the mechanism of cellulose synthesis. Proc. Natl. Acad. Sci., 2021, 118(11), e2024015118.
[http://dx.doi.org/10.1073/pnas.2024015118] [PMID: 33729990]
[23]
Zhou, J.; Zhang, D.; Ren, W.; Zhang, W. Auto color correction of underwater images utilizing depth information. IEEE Geosci. Remote Sens. Lett., 2022, 19, 1-5.
[http://dx.doi.org/10.1109/LGRS.2022.3170702]
[24]
Kearney, A.; Boyle, M.A.; Curley, G.F.; Humphreys, H. Preventing infections caused by carbapenemase-producing bacteria in the intensive care unit - Think about the sink. J. Crit. Care, 2021, 66, 52-59.
[http://dx.doi.org/10.1016/j.jcrc.2021.07.023] [PMID: 34438134]
[25]
Leibovitch, M.; Cahn, A.; Gellman, Y.; Haze, A.; Peled, S.; Amit, S. Predictors and outcomes of diabetic foot ulcer infection with esbl-producing bacteria in a large tertiary center. Int. Society for Infectious Diseases, 2021, 113, 318-324.
[http://dx.doi.org/10.1016/j.ijid.2021.10.016]
[26]
Alsayegh, S.Y.; Disi, Z.A.; Ghouti, A.M.A.; Zouari, N. Evaluation by MALDI-TOF MS and PCA of the diversity of biosurfactants and their producing bacteria, as adaption to weathered oil components. Biotechnol. Rep., 2021, 31(3), e00660.
[http://dx.doi.org/10.1016/j.btre.2021.e00660] [PMID: 34557388]
[27]
Bedia, C.; Alcaide, L.; Jaumot, J.; Tauler, R. Multivariate curve resolution mass spectrometry imaging (MSI) of biological tissues. Analyst, 2015, 140(3), 837-846.
[http://dx.doi.org/10.1039/C4AN00801D]
[28]
Kabiraz, M.P.; Majumdar, P.R.; Mahmud, M.M.C.; Bhowmik, S.; Ali, A. Conventional and advanced detection techniques of foodborne pathogens: A comprehensive review. Heliyon, 2023, 9(4), e15482.
[http://dx.doi.org/10.1016/j.heliyon.2023.e15482] [PMID: 37151686]
[29]
Pennacchio, A.; Giampaolo, F.; Cafaro, V.; Cicatiello, P.; Ventura, D.B.; Giardina, P.; Rosanova, R.; Savoia, M.; Velotta, R.; Piccialli, F.; Piscitelli, A. A bacterial biosensor based on gold nanoparticles functionalized by a hydrophobin-chimera and combined with machine learning for user-friendly detection. Sens. Actuators B Chem., 2024, 410, 135645.
[http://dx.doi.org/10.1016/j.snb.2024.135645]
[30]
Zhan, X.; Liu, Y.; Chen, Z.; Luo, J.; Yang, S.; Yang, X. Revolutionary approaches for cancer diagnosis by terahertz-based spectroscopy and imaging. Talanta, 2023, 259, 124483.
[http://dx.doi.org/10.1016/j.talanta.2023.124483] [PMID: 37019007]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy