Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Systematic Review Article

A Systematic Review of Herbal Interventions for the Management of Cardiovascular Diseases

Author(s): Ankita Wal, Neha Verma, Senthil Kumar Balakrishnan, Vinod Gahlot, Sumeet Dwivedi, Pankaj Kumar Sahu, Mohammad Tabish and Pranay Wal*

Volume 20, Issue 5, 2024

Published on: 03 May, 2024

Article ID: e030524229664 Pages: 12

DOI: 10.2174/011573403X286573240422104647

Price: $65

Abstract

Background: Cardiovascular diseases represent a significant global health burden, necessitating diverse approaches for effective management. Herbal interventions have gained attention as potential adjuncts or alternatives to conventional therapies due to their perceived safety and therapeutic potential. This structured abstract provides a comprehensive review of herbal interventions for the management of CVDs, summarising key findings, mechanisms of action, and clinical implications.

Objective: This systematic review aims to evaluate the impact of various herbal interventions employed for managing cardiovascular diseases.

Method: We conducted an extensive literature search across electronic databases, including PubMed, Scopus, and Web of Science, from inception to 2022. Studies were included if they investigated the use of herbal remedies for preventing or treating CVDs. Data extraction and synthesis focused on botanical sources, active compounds, mechanisms of action, and clinical outcomes.

Result: Numerous herbal interventions have demonstrated promising cardiovascular benefits. A number of medicinal herbs well identified to treat CVD are Moringaoleifera, Ginseng, Ginkgo biloba, Celosia argentea, Gongronematrifolium, Gynostemmapentaphyllum, Bombaxceiba, Gentianalutea, Allium sativum, Crataegus spp, Curcuma longa, Camellia sinensis, and Zingiber officinale. Mechanistic insights reveal that herbal interventions often target multiple pathways involved in CVD pathogenesis. These mechanisms encompass anti-inflammatory, antioxidant, anti-thrombotic, anti-hypertensive, and lipid-lowering effects. Additionally, some herbs enhance endothelial function, promote nitric oxide production, and exert vasodilatory effects, contributing to improved cardiovascular health. Clinical studies have provided evidence of the efficacy of certain herbal interventions in reducing CVD risk factors and improving patient outcomes. However, more rigorous, large-scale clinical trials are needed to establish their long-term safety and effectiveness. It is crucial to consider potential herb-drug interactions and standardise dosages for reliable therapeutic outcomes.

Conclusion: This comprehensive review highlights the potential of herbal interventions as valuable adjuncts or alternatives for managing cardiovascular diseases. Herbal remedies offer diverse mechanisms of action, targeting key CVD risk factors and pathways. While promising, their clinical utility warrants further investigation through well-designed trials to establish their safety and efficacy, paving the way for integrated approaches to cardiovascular disease management. Healthcare providers and patients should engage in informed discussions about the use of herbal interventions alongside conventional therapies in the context of CVD prevention and treatment.

Graphical Abstract

[1]
Bachheti RK, Worku LA, Gonfa YH, et al. Prevention and treatment of cardiovascular diseases with plant phytochemicals: A review. Evid Based Complement Alternat Med 2022; 2022: 1-21.
[http://dx.doi.org/10.1155/2022/5741198] [PMID: 35832515]
[2]
Fuchs FD, Whelton PK. High blood pressure and cardiovascular disease. Hypertension 2020; 75(2): 285-92.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.14240] [PMID: 31865786]
[3]
World Health Organization. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (Accessed 17-07-2023).
[4]
Roth GA, Johnson C, Abajobir A, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017; 70(1): 1-25.
[http://dx.doi.org/10.1016/j.jacc.2017.04.052] [PMID: 28527533]
[5]
Ruan Y, Guo Y, Zheng Y, et al. Cardiovascular disease (CVD) and associated risk factors among older adults in six low-and middle-income countries: Results from SAGE Wave 1. BMC Public Health 2018; 18(1): 778.
[http://dx.doi.org/10.1186/s12889-018-5653-9] [PMID: 29925336]
[6]
Vaduganathan M, Mensah GA, Turco JV, Fuster V, Roth GA. The global burden of cardiovascular diseases and risk: A compass for future health. J Am Coll Cardiol 2022; 80(25): 2361-71.
[http://dx.doi.org/10.1016/j.jacc.2022.11.005] [PMID: 36368511]
[7]
Dong C, Bu X, Liu J, Wei L, Ma A, Wang T. Cardiovascular disease burden attributable to dietary risk factors from 1990 to 2019: A systematic analysis of the Global Burden of Disease study. Nutr Metab Cardiovasc Dis 2022; 32(4): 897-907.
[http://dx.doi.org/10.1016/j.numecd.2021.11.012] [PMID: 35067445]
[8]
The American College of Cardiology. Available from: https://www.acc.org/Latest-in-Cardiology/Articles/2020/12/09/14/50/CV-Disease-Burden-Deaths-Rising-Around-the-World (Accessed 17-07-2023).
[9]
Deaton C, Froelicher ES, Wu LH, Ho C, Shishani K, Jaarsma T. The global burden of cardiovascular disease. Eur J Cardiovasc Nurs 2011; 10(2): S5-S13.
[PMID: 21762852]
[10]
Nazish J, Shoukat A. Cardioprotective and antilipidemic potential of Cyperusrotundus in chemically induced cardiotoxicity. Int J Agric Biol 2012; 14(6): 989-92.
[11]
Shaito A, Thuan DTB, Phu HT, et al. Herbal medicine for cardiovascular diseases: Efficacy, mechanisms, and safety. Front Pharmacol 2020; 11: 422.
[http://dx.doi.org/10.3389/fphar.2020.00422] [PMID: 32317975]
[12]
Islam SU, Ahmed MB, Ahsan H, Lee YS. Recent molecular mechanisms and beneficial effects of phytochemicals and plant-based whole foods in reducing LDL-C and preventing cardiovascular disease. Antioxidants 2021; 10(5): 784.
[http://dx.doi.org/10.3390/antiox10050784] [PMID: 34063371]
[13]
Mashour NH, Lin GI, Frishman WH. Herbal medicine for the treatment of cardiovascular disease: clinical considerations. Arch Intern Med 1998; 158(20): 2225-34.
[http://dx.doi.org/10.1001/archinte.158.20.2225] [PMID: 9818802]
[14]
Sangwan RS, Chaurasiya ND, Misra LN, et al. Phytochemical variability in commercial herbal products and preparations of Withaniasomnifera (Ashwagandha). Curr Sci 2004; 86(3): 461-5.
[15]
Delshad Aghdam S, Siassi F, Nasli Esfahani E, et al. Dietary phytochemical index associated with cardiovascular risk factor in patients with type 1 diabetes mellitus. BMC Cardiovasc Disord 2021; 21(1): 293.
[http://dx.doi.org/10.1186/s12872-021-02106-2] [PMID: 34118879]
[16]
National heart, lung, and blood institute.. Available from : https://www.nih.gov/about-nih/what-we-do/nih-almanac/national-heart-lung-blood-institute-nhlbi (Accessed July 25, 2023).
[17]
Bachmann JM, Willis BL, Ayers CR, Khera A, Berry JD. Association between family history and coronary heart disease death across long-term follow-up in men: The Cooper Center Longitudinal Study. Circulation 2012; 125(25): 3092-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.065490] [PMID: 22623718]
[18]
Hajar R. Risk factors for coronary artery disease: Historical perspectives. Heart Views 2017; 18(3): 109-14.
[http://dx.doi.org/10.4103/HEARTVIEWS.HEARTVIEWS_106_17] [PMID: 29184622]
[19]
Unal B, Critchley JA, Capewell S. Explaining the decline in coronary heart disease mortality in England and Wales between 1981 and 2000. Circulation 2004; 109(9): 1101-7.
[http://dx.doi.org/10.1161/01.CIR.0000118498.35499.B2] [PMID: 14993137]
[20]
Stewart J, Manmathan G, Wilkinson P. Primary prevention of cardiovascular disease: A review of contemporary guidance and literature. JRSM Cardiovasc Dis 2017; 6.
[http://dx.doi.org/10.1177/2048004016687211] [PMID: 28286646]
[21]
Bhatnagar A. E-cigarettes and cardiovascular disease risk: evaluation of evidence, policy implications, and recommendations. Curr Cardiovasc Risk Rep 2016; 10(7): 24.
[http://dx.doi.org/10.1007/s12170-016-0505-6]
[22]
Mozaffarian D, Katan MB, Ascherio A, Stampfer MJ, Willett WC. Trans fatty acids and cardiovascular disease. N Engl J Med 2006; 354(15): 1601-13.
[http://dx.doi.org/10.1056/NEJMra054035] [PMID: 16611951]
[23]
Narain A, Kwok CS, Mamas MA. Soft drinks and sweetened beverages and the risk of cardiovascular disease and mortality: A systematic review and meta-analysis. Int J Clin Pract 2016; 70(10): 791-805.
[http://dx.doi.org/10.1111/ijcp.12841] [PMID: 27456347]
[24]
DiNicolantonio JJ. OKeefe JH. Added sugars drive coronary heart disease via insulin resistance and hyperinsulinaemia: A new paradigm. Open Heart 2017; 4(2): e000729.
[http://dx.doi.org/10.1136/openhrt-2017-000729] [PMID: 29225905]
[25]
Lewington S, Clarke R, Qizilbash N, Peto R, Collins R. Age-specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for one million adults in 61 prospective studies. Lancet 2002; 360(9349): 1903-13.
[http://dx.doi.org/10.1016/S0140-6736(02)11911-8] [PMID: 12493255]
[26]
Care D. Standards of medical care in diabetes 2019. Diabetes Care 2019; 42(1): 124-38.
[PMID: 30559237]
[27]
Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics--2015 update: A report from the American Heart Association. Circulation 2015; 131(4): e29-e322.
[http://dx.doi.org/10.1161/CIR.0000000000000152] [PMID: 25520374]
[28]
Arnett DK, Blumenthal RS, Albert MA, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation 2019; 140(11): e596-646.
[http://dx.doi.org/10.1161/CIR.0000000000000678] [PMID: 30879355]
[29]
Waltenberger B, Mocan A, Šmejkal K, Heiss E, Atanasov A. Natural products to counteract the epidemic of cardiovascular and metabolic disorders. Molecules 2016; 21(6): 807.
[http://dx.doi.org/10.3390/molecules21060807] [PMID: 27338339]
[30]
Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z. Medicinal plants in therapy. Bull World Health Organ 1985; 63(6): 965-81.
[PMID: 3879679]
[31]
Singh B, Kaur P. Gopichand, Singh RD, Ahuja PS. Biology and chemistry of Ginkgo biloba. Fitoterapia 2008; 79(6): 401-18.
[http://dx.doi.org/10.1016/j.fitote.2008.05.007] [PMID: 18639617]
[32]
Lacour M, Ez-Zaher L, Raymond J. Plasticity mechanisms in vestibular compensation in the cat are improved by an extract of ginkgo biloba (EGb 761). Pharmacol Biochem Behav 1991; 40(2): 367-79.
[http://dx.doi.org/10.1016/0091-3057(91)90568-M] [PMID: 1805241]
[33]
Walia S, Kumar P, Kumar D, Kumar R. A preliminary study on suitability of growing ginseng (Panax ginseng Meyer) in western Himalayan region. Plant Soil Environ 2023; 69(2): 71-80.
[http://dx.doi.org/10.17221/288/2022-PSE]
[34]
Kim JH. Cardiovascular diseases and Panax ginseng: A review on molecular mechanisms and medical applications. J Ginseng Res 2012; 36(1): 16-26.
[http://dx.doi.org/10.5142/jgr.2012.36.1.16] [PMID: 23717100]
[35]
Shin W, Yoon J, Oh GT, Ryoo S. Korean red ginseng inhibits arginase and contributes to endothelium-dependent vasorelaxation through endothelial nitric oxide synthase coupling. J Ginseng Res 2013; 37(1): 64-73.
[http://dx.doi.org/10.5142/jgr.2013.37.64] [PMID: 23717158]
[36]
Ziaei R, Ghavami A, Ghaedi E, Hadi A, Javadian P, Clark CCT. The efficacy of ginseng supplementation on plasma lipid concentration in adults: A systematic review and meta-analysis. Complement Ther Med 2020; 48: 102239.
[http://dx.doi.org/10.1016/j.ctim.2019.102239] [PMID: 31987252]
[37]
Chauhan GS. (Glycine max)-the 21st century crop. Indian J Agric Sci 2005; 75(8)
[38]
Wiederstein M, Baumgartner S, Lauter K. Soybean (Glycine max) allergens: A review on an outstanding plant food with allergenic potential. ACS Food Science & Technology 2023; 3(3): 363-78.
[http://dx.doi.org/10.1021/acsfoodscitech.2c00380]
[39]
Roy DM, Schneeman BO. Effect of soy protein, casein and trypsin inhibitor on cholesterol, bile acids and pancreatic enzymes in mice. J Nutr 1981; 111(5): 878-85.
[http://dx.doi.org/10.1093/jn/111.5.878] [PMID: 6164772]
[40]
Erdman JW Jr. AHA Science Advisory: Soy protein and cardiovascular disease: A statement for healthcare professionals from the Nutrition Committee of the AHA. Circulation 2000; 102(20): 2555-9.
[http://dx.doi.org/10.1161/01.CIR.102.20.2555] [PMID: 11076833]
[41]
Shabana A, El-Menyar A, Asim M, Al-Azzeh H, Al Thani H. Cardiovascular benefits of black cumin (Nigella sativa). Cardiovasc Toxicol 2013; 13(1): 9-21.
[http://dx.doi.org/10.1007/s12012-012-9181-z] [PMID: 22911452]
[42]
Shakeri F, Khazaei M, Boskabady MH. Cardiovascular effects of Nigella sativa L. and its constituents. Int J Pharm Pharm Sci 2018; 80(6): 971-83.
[43]
Emadi SA, Ghasemzadeh Rahbardar M, Mehri S, Hosseinzadeh H. A review of therapeutic potentials of milk thistle (Silybum marianum L.) and its main constituent, silymarin, on cancer, and their related patents. Iran J Basic Med Sci 2022; 25(10): 1166-76.
[PMID: 36311193]
[44]
Zalat Z, Kohaf N, Alm El-Din M, Elewa H, Abdel-Latif M. Silymarin: A promising cardioprotective agent. Azhar Intern J Pharma Med Sci 2021; 1(1): 15-23.
[http://dx.doi.org/10.21608/aijpms.2021.52962.1014]
[45]
Taleb A, Ahmad KA, Ihsan AU, et al. Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed Pharmacother 2018; 102: 689-98.
[http://dx.doi.org/10.1016/j.biopha.2018.03.140] [PMID: 29604588]
[46]
Nouman W, Basra SMA, Siddiqui MT, Yasmeen A, Gull T, Alcayde MAC. Potential of Moringa oleifera L. as livestock fodder crop: A review. Turk J Agric For 2014; 38(1): 1-14.
[http://dx.doi.org/10.3906/tar-1211-66]
[47]
Stevens CG, Ugese FD, Otitoju GT, Baiyeri KP. Proximate and anti-nutritional composition of leaves and seeds of Moringa oleifera in Nigeria: A comparative study. Agric Sci 2015; 14(2): 9-17.
[48]
Alia F, Putri M, Anggraeni N, Syamsunarno MRAA. The potency of Moringa oleifera Lam. as protective agent in cardiac damage and vascular dysfunction. Front Pharmacol 2022; 12: 724439.
[http://dx.doi.org/10.3389/fphar.2021.724439] [PMID: 35140601]
[49]
Louisa M, Patintingan CGH, Wardhani BWK. Moringa Oleifera Lam. in cardiometabolic disorders: a systematic review of recent studies and possible mechanism of actions. Front Pharmacol 2022; 13: 792794.
[http://dx.doi.org/10.3389/fphar.2022.792794] [PMID: 35431967]
[50]
Guo WY, Wang WX. Cultivation and utilisation of Gynostemma pentaphyllum Publishing House of Electronics. Science and Technology University 1993; pp. 1-261.
[51]
Razmovski-Naumovski V, Huang THW, Tran VH, Li GQ, Duke CC, Roufogalis BD. Chemistry and pharmacology of Gynostemma pentaphyllum. Pharmacogn Rev 2005; 4: 197-219.
[52]
Chen F, Zhang HY, He D, Rao CM, Xu B. Cardioprotective effect of gynostemma pentaphyllum against streptozotocin induced cardiac toxicity in rats via alteration of AMPK/Nrf2/HO-1 pathway. J Oleo Sci 2022; 71(7): 991-1002.
[http://dx.doi.org/10.5650/jos.ess21281] [PMID: 35781259]
[53]
Su C, Li N, Ren R, et al. Progress in the medicinal value, bioactive compounds, and pharmacological activities of Gynostemma pentaphyllum. Molecules 2021; 26(20): 6249.
[http://dx.doi.org/10.3390/molecules26206249] [PMID: 34684830]
[54]
la Cour B, Mølgaard P, Yi Z. Traditional Chinese medicine in treatment of hyperlipidaemia. J Ethnopharmacol 1995; 46(2): 125-9.
[http://dx.doi.org/10.1016/0378-8741(95)01234-5] [PMID: 7650951]
[55]
Morebise O. A review on Gongronema latifolium, an extremely useful plant with great prospects. European J Med Plants 2015; 10(1): 1-9.
[http://dx.doi.org/10.9734/EJMP/2015/19713]
[56]
Djobissie SFA. Gongronemalatifolium: A phytochemical, nutritional and pharmacological review. J Phys Pharma Advan 2016; 6(1): 811-24.
[http://dx.doi.org/10.5455/jppa.1969123104000]
[57]
Beshel JA, Palacios J, Beshel FN, et al. Blood pressure-reducing activity of Gongronema latifolium Benth. (Apocynaeceae) and the identification of its main phytochemicals by UHPLC Q-Orbitrap mass spectrometry. J Basic Clin Physiol Pharmacol 2020; 31(1): 20180178.
[http://dx.doi.org/10.1515/jbcpp-2018-0178] [PMID: 32037779]
[58]
Okon IA, Beshel JA, Nna VU, Owu DU. Gongronema latifolium leaf extract protects against dexamethasone‐induced myocardial cell injury via cardiac oxido‐inflammatory molecules modulation. J Food Biochem 2022; 46(12): e14378.
[http://dx.doi.org/10.1111/jfbc.14378] [PMID: 35976861]
[59]
Thorat BR. Review on Celosia argentea L. Plant. J Pharmacogn Phytochem 2018; 10(1): 109-19.
[60]
Kanu CL, Owoeye O, Imosemi IO, Malomo AO. A review of the multifaceted usefulness of Celosia argentea Linn. Eur J Pharm Med Res 2017; 4(10): 72-9.
[61]
Tolouei SEL, Tirloni CAS, Palozi RAC, et al. Celosia argentea L. (Amaranthaceae) a vasodilator species from the Brazilian Cerrado: An ethnopharmacological report. J Ethnopharmacol 2019; 229: 115-26.
[http://dx.doi.org/10.1016/j.jep.2018.09.027] [PMID: 30248350]
[62]
Nauman MC, Johnson JJ. Clinical application of bergamot (Citrus bergamia) for reducing high cholesterol and cardiovascular disease markers. Integr Food Nutr Metab 2019; 6(2): 1-12.
[http://dx.doi.org/10.15761/IFNM.1000249] [PMID: 31057945]
[63]
Yu J, Wang L, Walzem RL, Miller EG, Pike LM, Patil BS. Antioxidant activity of citrus limonoids, flavonoids, and coumarins. J Agric Food Chem 2005; 53(6): 2009-14.
[http://dx.doi.org/10.1021/jf0484632] [PMID: 15769128]
[64]
Joksic G, Radak D, Sudar-Milovanovic E, Obradovic M, Radovanovic J, Isenovic ER. Effects of Gentiana lutea root on vascular diseases. Curr Vasc Pharmacol 2021; 19(4): 359-69.
[http://dx.doi.org/10.2174/1570161118666200529111314] [PMID: 32469702]
[65]
Jiang M, Cui BW, Wu YL, Nan JX, Lian LH. Genus Gentiana: A review on phytochemistry, pharmacology and molecular mechanism. J Ethnopharmacol 2021; 264: 113391.
[http://dx.doi.org/10.1016/j.jep.2020.113391] [PMID: 32931880]
[66]
Mishra RK, Kumar A, Kumar A. Pharmacological activity of Zingiber officinale. Int J Pharm Chem Sci 2012; 1(3): 1073-8.
[67]
Shivananjappa M. Cardioprotective effects of ginger (Zingiber officinale). South Asian J Health Prof 2021; 4(1): 1-5.
[68]
Fakhri S, Patra JK, Das SK, Das G, Majnooni MB, Farzaei MH. Ginger and heart health: From mechanisms to therapeutics. Curr Mol Pharmacol 2021; 14(6): 943-59.
[http://dx.doi.org/10.2174/1874467213666201209105005] [PMID: 33297926]
[69]
Azimi P, Ghiasvand R, Feizi A, et al. Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized controlled clinical trial. Blood Press 2016; 25(3): 133-40.
[http://dx.doi.org/10.3109/08037051.2015.1111020] [PMID: 26758574]
[70]
Debjit Bhowmik C, Kumar KS, Chandira M, Jayakar B. Turmeric: A herbal and traditional medicine. Arch Appl Sci Res 2009; 1(2): 86-108.
[71]
Sharifi-Rad J, Rayess YE, Rizk AA, et al. Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 2020; 11: 01021.
[http://dx.doi.org/10.3389/fphar.2020.01021] [PMID: 33041781]
[72]
El-Saadony MT, Yang T, Korma SA, et al. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front Nutr 2023; 9: 1040259.
[http://dx.doi.org/10.3389/fnut.2022.1040259] [PMID: 36712505]
[73]
Kapakos G, Youreva V, Srivastava AK. Cardiovascular protection by curcumin: molecular aspects. Indian J Biochem Biophys 2012; 49(5): 306-15.
[PMID: 23259317]
[74]
Alwi I, Santoso T, Suyono S, et al. The effect of curcumin on lipid level in patients with acute coronary syndrome. Acta Med Indones 2008; 40(4): 201-10.
[PMID: 19151449]
[75]
Panahi Y, Khalili N, Sahebi E, et al. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: A randomized controlled trial. Inflammopharmacology 2017; 25(1): 25-31.
[http://dx.doi.org/10.1007/s10787-016-0301-4] [PMID: 27928704]
[76]
Mohammadi A, Sahebkar A, Iranshahi M, et al. Effects of supplementation with curcuminoids on dyslipidemia in obese patients: A randomized crossover trial. Phytother Res 2013; 27(3): 374-9.
[http://dx.doi.org/10.1002/ptr.4715] [PMID: 22610853]
[77]
Babish JG, Dahlberg CJ, Ou JJ, et al. Synergistic in vitro antioxidant activity and observational clinical trial of F105, a phytochemical formulation including Citrus bergamia, in subjects with moderate cardiometabolic risk factors. Can J Physiol Pharmacol 2016; 94(12): 1257-66.
[http://dx.doi.org/10.1139/cjpp-2016-0062] [PMID: 27463949]
[78]
Mollace V, Sacco I, Janda E, et al. Hypolipemic and hypoglycaemic activity of bergamot polyphenols: From animal models to human studies. Fitoterapia 2011; 82(3): 309-16.
[http://dx.doi.org/10.1016/j.fitote.2010.10.014] [PMID: 21056640]
[79]
Gardner CD, Taylor-Piliae RE, Kiazand A, Nicholus J, Rigby AJ, Farquhar JW. Effect of Ginkgo biloba (EGb 761) on treadmill walking time among adults with peripheral artery disease: A randomized clinical trial. J Cardiopulm Rehabil Prev 2008; 28(4): 258-65.
[http://dx.doi.org/10.1097/01.HCR.0000327184.51992.b8] [PMID: 18628657]
[80]
Sun M, Chai L, Lu F, et al. Efficacy and safety of Ginkgo Biloba pills for coronary heart disease with impaired glucose regulation: Study protocol for a series of N-of-1 randomized, double-blind, placebo-controlled trials. Evid Based Complement Alternat Med 2018; 2018: 1-8.
[http://dx.doi.org/10.1155/2018/7571629] [PMID: 30405743]
[81]
Wu T, Li S, Li Z, et al. Efficacy and safety of Ginkgo biloba dropping pills in the treatment of coronary heart disease with stable angina pectoris and depression: Study protocol for a randomised, placebo-controlled, parallel-group, double-blind and multicentre clinical trial. BMJ Open 2023; 13(5): e055263.
[http://dx.doi.org/10.1136/bmjopen-2021-055263] [PMID: 37164472]
[82]
Alizadeh-Navaei R, Roozbeh F, Saravi M, Pouramir M, Jalali F, Moghadamnia AA. Investigation of the effect of ginger on the lipid levels. A double blind controlled clinical trial. Saudi Med J 2008; 29(9): 1280-4.
[PMID: 18813412]
[83]
Cerdá B, Marhuenda J, Arcusa R, Villaño Valencia D, Ballester P, Zafrilla P. Ginger in the prevention of cardiovascular diseases. In: Shiomi N, Savitskaya A, Eds. Current topics in functional foods. IntechOpen 2022; p. 1.
[http://dx.doi.org/10.5772/intechopen.103970]
[84]
Talaei B, Mozaffari-Khosravi H, Bahreini S. The effect of Ginger on blood lipid and lipoproteins in patients with type 2 diabetes: A double-blind randomized clinical controlled trial. J Nutr Food Secur 2017; 2(1): 87-95.
[85]
Moey M, Gan XT, Huang CX, et al. Ginseng reverses established cardiomyocyte hypertrophy and postmyocardial infarction-induced hypertrophy and heart failure. Circ Heart Fail 2012; 5(4): 504-14.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.967489] [PMID: 22576957]
[86]
Mesquita TRR, de Jesus ICG, dos Santos JF, et al. Cardioprotective action of Ginkgo biloba extract against sustained β-adrenergic stimulation occurs via activation of M2/NO pathway. Front Pharmacol 2017; 8: 220.
[http://dx.doi.org/10.3389/fphar.2017.00220] [PMID: 28553225]
[87]
Kingsley U, Steven O, Agu C, Orji O, Chekwube B, Nwosu T. Anti-hyperlipidemic effect of crude methanolic extracts of Glycine max (soy bean) on high cholesterol diet-fed albino rats. J Med Appl Sci 2017; 7(1): 1.
[http://dx.doi.org/10.5455/jmas.251532]
[88]
Uchendu IK, Nnedu EB, Ekeigwe IB. Nigella sativa seed extract protects against cadmium-induced cardiotoxicity in rats. J Drug Deliv Ther 2020; 10(1-s): 174-7.
[http://dx.doi.org/10.22270/jddt.v10i1-s.3868]
[89]
Rao PR, Viswanath RK. Cardioprotective activity of silymarin in ischemia-reperfusion-induced myocardial infarction in albino rats. Exp Clin Cardiol 2007; 12(4): 179-87.
[PMID: 18651002]
[90]
Fikriansyah F, Widiastuti M, Wulandari N, Tirtanirmala P, Murwanti R. Cardioprotective effect of Kelor (Moringa oleifera) leaf ethanolic extract against doxorubicin-induced cardiotoxicity in rats. Indonesian J Can Chemo 2017; 6(2): 53-7.
[http://dx.doi.org/10.14499/indonesianjcanchemoprev6iss2pp53-57]
[91]
Circosta C, De Pasquale R, Occhiuto F. Cardiovascular effects of the aqueous extract of Gynostemma pentaphyllum Makino. Phytomedicine 2005; 12(9): 638-43.
[http://dx.doi.org/10.1016/j.phymed.2004.06.023] [PMID: 16194050]
[92]
Kesavan R, Chandel S, Upadhyay S, et al. Gentiana lutea exerts anti-atherosclerotic effects by preventing endothelial inflammation and smooth muscle cell migration. Nutr Metab Cardiovasc Dis 2016; 26(4): 293-301.
[http://dx.doi.org/10.1016/j.numecd.2015.12.016] [PMID: 26868432]
[93]
Miceli N, Mondello MR, Monforte MT, et al. Hypolipidemic effects of Citrus bergamia Risso et Poiteau juice in rats fed a hypercholesterolemic diet. J Agric Food Chem 2007; 55(26): 10671-7.
[http://dx.doi.org/10.1021/jf071772i] [PMID: 18038978]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy