Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

In vitro Antioxidant Activity of 5-caffeoylquinic Acid and Ester Analogues

Author(s): Muamer Dizdar*, Danijela Vidic, Sanja Ćavar Zeljković and Milka Maksimović

Volume 20, Issue 8, 2024

Published on: 02 May, 2024

Page: [582 - 591] Pages: 10

DOI: 10.2174/0115734110299953240425035548

Price: $65

Abstract

Background: Chlorogenic acid, an ester of caffeic acid with quinic acid, also known as 5- O-caffeoylquinic acid (5-CQA), is a ubiquitous plant constituent that is an important intermediate in lignin biosynthesis. In some cases, it occurs at surprisingly high levels in the leaves and fruits of certain higher plants, such as coffee beans. Due to its catechol moiety and an extended side chain conjugation, it easily forms a resonance-stabilised phenoxy radical, accounting for its powerful antioxidant potential.

Objective: The objective of this work was to determine if the esterification and methylation of 5- CQA would enhance its antioxidant activity.

Methods: Two 5-CQA derivatives were prepared for this study. Chlorogenic acid was esterified with methanol over Amberlite IR120-H to obtain methyl chlorogenate, while methyl 3',4´-dimethyl chlorogenate was prepared from 5-CQA by treatment with diazomethane. Spectroscopic methods confirmed the structure of these derivatives. Their antioxidant properties were tested to establish a relationship between structure and antioxidant activity.

Results: Antioxidant activity results were generated for 5-CQA and its ester analogues using eight different methods. Depending on the method applied, results were expressed as IC50/MCE50 values or as equivalents of the applied standard (ascorbic acid and Trolox).

Conclusion: In most of these tests, 5-CQA showed the highest antioxidant activity compared to its derivatives. Nevertheless, due to their hydrophobic characteristics, their ester analogues remain promising antioxidant candidates in emulsifying systems.

Graphical Abstract

[1]
de la Rosa, L.A.; Escamilla, M.J.O.; García, R.J.; Parrilla, A.E. Phenolic compounds. In: Postharvest physiology and biochemistry of fruits and vegetables; Elsevier, 2019; pp. 253-271.
[2]
Tsimogiannis, D.; Oreopoulou, V. Classification of phenolic compounds in plants. In: Polyphenols in plants; Elsevier, 2019; pp. 263-284.
[http://dx.doi.org/10.1016/B978-0-12-813768-0.00026-8]
[3]
Kumar, S.; Abedin, M.M.; Singh, A.K.; Das, S. Role of phenolic compounds in plant-defensive mechanisms. Plant Phenolics in Sustainable Agriculture, 2020, 1, 517-532.
[http://dx.doi.org/10.1007/978-981-15-4890-1_22]
[4]
Rahman, M.M.; Rahaman, M.S.; Islam, M.R.; Rahman, F.; Mithi, F.M.; Alqahtani, T.; Almikhlafi, M.A.; Alghamdi, S.Q.; Alruwaili, A.S.; Hossain, M.S.; Ahmed, M.; Das, R.; Emran, T.B.; Uddin, M.S. Role of phenolic compounds in human disease: Current knowledge and future prospects. Molecules, 2021, 27(1), 233.
[http://dx.doi.org/10.3390/molecules27010233] [PMID: 35011465]
[5]
Tufarelli, V.; Casalino, E.; D’Alessandro, A.G.; Laudadio, V. Dietary phenolic compounds: Biochemistry, metabolism and significance in animal and human health. Curr. Drug Metab., 2017, 18(10), 905-913.
[PMID: 28952431]
[6]
Clifford, M.N. Chlorogenic acids and other cinnamates - Nature, occurrence, dietary burden, absorption and metabolism. J. Sci. Food Agric., 2000, 80(7), 1033-1043.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1033::AID-JSFA595>3.0.CO;2-T]
[7]
Liang, N.; Kitts, D. Role of chlorogenic acids in controlling oxidative and inflammatory stress conditions. Nutrients, 2015, 8(1), 16.
[http://dx.doi.org/10.3390/nu8010016] [PMID: 26712785]
[8]
Clifford, M.N.; Jaganath, I.B.; Ludwig, I.A.; Crozier, A. Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat. Prod. Rep., 2017, 34(12), 1391-1421.
[http://dx.doi.org/10.1039/C7NP00030H] [PMID: 29160894]
[9]
Clifford, M. Chlorogenic acids—Their complex nature and routine determination in coffee beans. Food Chem., 1979, 4(1), 63-71.
[http://dx.doi.org/10.1016/0308-8146(79)90031-1]
[10]
Clifford, M. Chlorogenic acids; Wikipedia, 1985.
[http://dx.doi.org/10.1007/978-94-009-4948-5_5]
[11]
Sondheimer, E. Chlorogenic acids and related depsides. Bot. Rev., 1964, 30(4), 667-712.
[http://dx.doi.org/10.1007/BF02858654]
[12]
Clifford, M.N. Chlorogenic acids and other cinnamates - Nature, occurrence and dietary burden. J. Sci. Food Agric., 1999, 79(3), 362-372.
[http://dx.doi.org/10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D]
[13]
Herrmann, K.; Nagel, C.W. Occurrence and content of hydroxycinnamic and hydroxybenzoic acid compounds in foods. Crit. Rev. Food Sci. Nutr., 1989, 28(4), 315-347.
[http://dx.doi.org/10.1080/10408398909527504] [PMID: 2690858]
[14]
Robiquet, ; Boutron, About the coffee. Arch. Pharm., 1837, 61(2), 146-152.
[http://dx.doi.org/10.1002/ardp.18370610212]
[15]
Rochleder, F. Examination of coffee beans. Justus Liebigs Ann. Chem., 1844, 50(2), 224-234.
[http://dx.doi.org/10.1002/jlac.18440500204]
[16]
Gorter, K. Contributions to the knowledge of coffee (Second treatise). Justus Liebigs Ann. Chem., 1908, 359(1-2), 217-244.
[http://dx.doi.org/10.1002/jlac.19083590111]
[17]
Freudenberg, K. About tannins. III. Chlorogenic acid, the tannin-like component of coffee beans. Ber. Dtsch. Chem. Ges. B, 1920, 53(2), 232-239. [A and B Series].
[http://dx.doi.org/10.1002/cber.19200530214]
[18]
Fischer, H.O.L.; Dangschat, G. Constitution of chlorogenic acid (3rd communication on quinic acid derivatives). Ber. Dtsch. Chem. Ges. B, 1932, 65(6), 1037-1040.
[http://dx.doi.org/10.1002/cber.19320650623]
[19]
Fischer, H.O.L.; Dangschat, G. On the constitution and configuration of quinic acid (2nd communication on quinic acid and derivatives). Ber. Dtsch. Chem. Ges. B, 1932, 65(6), 1009-1031.
[http://dx.doi.org/10.1002/cber.19320650621]
[20]
Panizzi, L.; Scarpati, M.L.; Oriente, G. Synthesis of chlorogenic acid. Experientia, 1955, 11(10), 383-384.
[http://dx.doi.org/10.1007/BF02158491]
[21]
IUPAC. Nomenclature of cyclitols. Biochem. J., 1976, 153, 23-31.
[22]
Abrankó, L.; Clifford, M.N. An unambiguous nomenclature for the acyl-quinic acids commonly known as chlorogenic acids. J. Agric. Food Chem., 2017, 65(18), 3602-3608.
[http://dx.doi.org/10.1021/acs.jafc.7b00729] [PMID: 28420230]
[23]
Olthof, M.R.; Katan, M.B.; Hollman, P.C.H. Chlorogenic acid and caffeic acid are absorbed in humans. J. Nutr., 2001, 131(1), 66-71.
[http://dx.doi.org/10.1093/jn/131.1.66] [PMID: 11208940]
[24]
Monteiro, M.; Farah, A.; Perrone, D.; Trugo, L.C.; Donangelo, C. Chlorogenic acid compounds from coffee are differentially absorbed and metabolized in humans. J. Nutr., 2007, 137(10), 2196-2201.
[http://dx.doi.org/10.1093/jn/137.10.2196] [PMID: 17884997]
[25]
Morishita, H.; Ohnishi, M. Absorption, metabolism and biological activities of chlorogenic acids and related compounds. Stud. Nat. Prod. Chem., 2001, 25, 919-953.
[26]
Upadhyay, R.; Mohan Rao, L.J. An outlook on chlorogenic acids-occurrence, chemistry, technology, and biological activities. Crit. Rev. Food Sci. Nutr., 2013, 53(9), 968-984.
[http://dx.doi.org/10.1080/10408398.2011.576319] [PMID: 23768188]
[27]
Gálvez, S.J.; Zevallos, C.L.; Velázquez, J.D. Chlorogenic acid: Recent advances on its dual role as a food additive and a nutraceutical against metabolic syndrome. Molecules, 2017, 22(3), 358.
[http://dx.doi.org/10.3390/molecules22030358] [PMID: 28245635]
[28]
Zhu, X.; Zhang, H.; Lo, R. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities. J. Agric. Food Chem., 2004, 52(24), 7272-7278.
[http://dx.doi.org/10.1021/jf0490192] [PMID: 15563206]
[29]
Bajko, E.; Kalinowska, M.; Borowski, P.; Siergiejczyk, L.; Lewandowski, W. 5-O-Caffeoylquinic acid: A spectroscopic study and biological screening for antimicrobial activity. Lebensm. Wiss. Technol., 2016, 65, 471-479.
[http://dx.doi.org/10.1016/j.lwt.2015.08.024]
[30]
Jiang, F.; Dusting, G. Natural phenolic compounds as cardiovascular therapeutics: potential role of their antiinflammatory effects. Curr. Vasc. Pharmacol., 2003, 1(2), 135-156.
[http://dx.doi.org/10.2174/1570161033476736] [PMID: 15320840]
[31]
dos Santos, M.D.; Almeida, M.C.; Lopes, N.P.; de Souza, G.E.P. Evaluation of the anti-inflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull., 2006, 29(11), 2236-2240.
[http://dx.doi.org/10.1248/bpb.29.2236] [PMID: 17077520]
[32]
Demirkiran, O.; Mesaik, M.A.; Beynek, H.; Abbaskhan, A.; Choudhary, M.I. Immunosupressive phenolic constituents from Hypericum montbretii Spach. Rec. Nat. Prod., 2013, 7(3), 210.
[33]
Trute, A.; Gross, J.; Mutschler, E.; Nahrstedt, A. In vitro antispasmodic compounds of the dry extract obtained from Hedera helix. Planta Med., 1997, 63(2), 125-129.
[http://dx.doi.org/10.1055/s-2006-957627] [PMID: 9140224]
[34]
Xu, J.G.; Hu, Q.P.; Liu, Y. Antioxidant and DNA-protective activities of chlorogenic acid isomers. J. Agric. Food Chem., 2012, 60(46), 11625-11630.
[http://dx.doi.org/10.1021/jf303771s] [PMID: 23134416]
[35]
Robinson, W.E., Jr; Reinecke, M.G.; Abdel-Malek, S.; Jia, Q.; Chow, S.A. Inhibitors of HIV-1 replication that inhibit HIV integrase. Proc. Natl. Acad. Sci., 1996, 93(13), 6326-6331.
[http://dx.doi.org/10.1073/pnas.93.13.6326] [PMID: 8692814]
[36]
Tamayose, C.I.; Torres, P.B.; Roque, N.; Ferreira, M.J.P. HIV-1 reverse transcriptase inhibitory activity of flavones and chlorogenic acid derivatives from Moquiniastrum floribundum (Asteraceae). S. Afr. J. Bot., 2019, 123, 142-146.
[http://dx.doi.org/10.1016/j.sajb.2019.02.005]
[37]
Das, M.; Bickers, D.R.; Mukhtar, H. Plant phenols as in vitro inhibitors of glutathione S-transferase(s). Biochem. Biophys. Res. Commun., 1984, 120(2), 427-433.
[http://dx.doi.org/10.1016/0006-291X(84)91271-3] [PMID: 6732766]
[38]
Arion, W.J.; Canfield, W.K.; Ramos, F.C.; Schindler, P.W.; Burger, H.J.; Hemmerle, H.; Schubert, G.; Below, P.; Herling, A.W. Chlorogenic acid and hydroxynitrobenzaldehyde: New inhibitors of hepatic glucose 6-phosphatase. Arch. Biochem. Biophys., 1997, 339(2), 315-322.
[http://dx.doi.org/10.1006/abbi.1996.9874] [PMID: 9056264]
[39]
Hemmerle, H.; Burger, H.J.; Below, P.; Schubert, G.; Rippel, R.; Schindler, P.W.; Paulus, E.; Herling, A.W. Chlorogenic acid and synthetic chlorogenic acid derivatives: Novel inhibitors of hepatic glucose-6-phosphate translocase. J. Med. Chem., 1997, 40(2), 137-145.
[http://dx.doi.org/10.1021/jm9607360] [PMID: 9003513]
[40]
Trendafilova, A.; Ivanova, V.; Rangelov, M.; Todorova, M.; Ozek, G.; Yur, S.; Ozek, T.; Aneva, I.; Veleva, R.; Doumanova, M.V.; Doumanov, J.; Hristova, T.T. Caffeoylquinic acids, cytotoxic, antioxidant, acetylcholinesterase and tyrosinase enzyme inhibitory activities of six Inula species from Bulgaria. Chem. Biodivers., 2020, 17(4), e2000051.
[http://dx.doi.org/10.1002/cbdv.202000051] [PMID: 32187453]
[41]
Meng, S.; Cao, J.; Feng, Q.; Peng, J.; Hu, Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid. Based Complement. Alternat. Med., 2013, 2013, 801457.
[42]
Mikami, Y.; Yamazawa, T. Chlorogenic acid, a polyphenol in coffee, protects neurons against glutamate neurotoxicity. Life Sci., 2015, 139, 69-74.
[http://dx.doi.org/10.1016/j.lfs.2015.08.005] [PMID: 26285175]
[43]
Ge, L.; Wan, H.; Tang, S.; Chen, H.; Li, J.; Zhang, K.; Zhou, B.; Fei, J.; Wu, S.; Zeng, X. Novel caffeoylquinic acid derivatives from Lonicera japonica Thunb. flower buds exert pronounced anti-HBV activities. RSC Adv., 2018, 8(62), 35374-35385.
[http://dx.doi.org/10.1039/C8RA07549B] [PMID: 35547940]
[44]
Li, H.R.; Habasi, M.; Xie, L.Z.; Aisa, H. Effect of chlorogenic acid on melanogenesis of B16 melanoma cells. Molecules, 2014, 19(9), 12940-12948.
[http://dx.doi.org/10.3390/molecules190912940] [PMID: 25157464]
[45]
Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr., 2017, 56(7), 2215-2244.
[http://dx.doi.org/10.1007/s00394-017-1379-1] [PMID: 28391515]
[46]
Naveed, M.; Hejazi, V.; Abbas, M.; Kamboh, A.A.; Khan, G.J.; Shumzaid, M.; Ahmad, F.; Babazadeh, D.; FangFang, X.; Ghazani, M.F.; WenHua, L.; XiaoHui, Z. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother., 2018, 97, 67-74.
[http://dx.doi.org/10.1016/j.biopha.2017.10.064] [PMID: 29080460]
[47]
Kono, Y.; Shibata, H.; Kodama, Y.; Sawa, Y. The suppression of the N-nitrosating reaction by chlorogenic acid. Biochem. J., 1995, 312(3), 947-953.
[http://dx.doi.org/10.1042/bj3120947] [PMID: 8554543]
[48]
Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm., 2011, 403(1-2), 136-138.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.035] [PMID: 20933071]
[49]
Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 1996, 20(7), 933-956.
[http://dx.doi.org/10.1016/0891-5849(95)02227-9] [PMID: 8743980]
[50]
Laguerre, M.; Wrutniak-Cabello, C.; Chabi, B.; López Giraldo, L.J.; Lecomte, J.; Villeneuve, P.; Cabello, G. Does hydrophobicity always enhance antioxidant drugs? A cut-off effect of the chain length of functionalized chlorogenate esters on ROS-overexpressing fibroblasts. J. Pharm. Pharmacol., 2011, 63(4), 531-540.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01216.x] [PMID: 21401605]
[51]
Xiang, Z.; Ning, Z. Scavenging and antioxidant properties of compound derived from chlorogenic acid in South-China honeysuckle. Lebensm. Wiss. Technol., 2008, 41(7), 1189-1203.
[http://dx.doi.org/10.1016/j.lwt.2007.08.006]
[52]
Armarego, W.L. Purification of organic chemicals. In: Purification of Laboratory Chemicals, 8th ed.; Elsevier, 2017; pp. 95-634.
[53]
López Giraldo, L.J.; Laguerre, M.; Lecomte, J.; Espinoza, F.M.C.; Barouh, N.; Baréa, B.; Villeneuve, P. Lipase-catalyzed synthesis of chlorogenate fatty esters in solvent-free medium. Enzyme Microb. Technol., 2007, 41(6-7), 721-726.
[http://dx.doi.org/10.1016/j.enzmictec.2007.06.004]
[54]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 1995, 28(1), 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[55]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Evans, R.C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[56]
Berker, K.I.; Güçlü, K.; Tor, İ.; Apak, R. Comparative evaluation of Fe(III) reducing power-based antioxidant capacity assays in the presence of phenanthroline, batho-phenanthroline, tripyridyltriazine (FRAP), and ferricyanide reagents. Talanta, 2007, 72(3), 1157-1165.
[http://dx.doi.org/10.1016/j.talanta.2007.01.019] [PMID: 19071739]
[57]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[58]
Dinis, T.C.P.; Madeira, V.M.C.; Almeida, L.M. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys., 1994, 315(1), 161-169.
[http://dx.doi.org/10.1006/abbi.1994.1485] [PMID: 7979394]
[59]
Fogliano, V.; Verde, V.; Randazzo, G.; Ritieni, A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem., 1999, 47(3), 1035-1040.
[http://dx.doi.org/10.1021/jf980496s] [PMID: 10552412]
[60]
Smith, R.C.; Hargis, J.H. Reaction of urates and other antioxidants with galvinoxyl. Microchem. J., 1985, 31(1), 18-21.
[http://dx.doi.org/10.1016/0026-265X(85)90003-7]
[61]
Cao, G.; Alessio, H.M.; Cutler, R.G. Oxygen-radical absorbance capacity assay for antioxidants. Free Radic. Biol. Med., 1993, 14(3), 303-311.
[http://dx.doi.org/10.1016/0891-5849(93)90027-R] [PMID: 8458588]
[62]
Foti, M.C. Antioxidant properties of phenols. J. Pharm. Pharmacol., 2010, 59(12), 1673-1685.
[http://dx.doi.org/10.1211/jpp.59.12.0010] [PMID: 18053330]
[63]
Vermerris, W.; Nicholson, R. Phenolic compound biochemistry; Springer Science & Business Media, 2007.
[64]
Ćavar, S.; Kovač, F.; Maksimović, M. Synthesis and antioxidant activity of selected 4-methylcoumarins. Food Chem., 2009, 117(1), 135-142.
[http://dx.doi.org/10.1016/j.foodchem.2009.03.087]
[65]
Sasaki, K.; Alamed, J.; Weiss, J.; Villeneuve, P.; Giraldo, L.L.J.; Lecomte, J.; Espinoza, F.M.C.; Decker, E.A. Relationship between the physical properties of chlorogenic acid esters and their ability to inhibit lipid oxidation in oil-in-water emulsions. Food Chem., 2010, 118(3), 830-835.
[http://dx.doi.org/10.1016/j.foodchem.2009.05.070]
[66]
López-Giraldo, L.J.; Laguerre, M.; Lecomte, J.; Espinoza, F.M.C.; Baréa, B.; Weiss, J.; Decker, E.A.; Villeneuve, P. Kinetic and stoichiometry of the reaction of chlorogenic acid and its alkyl esters against the DPPH radical. J. Agric. Food Chem., 2009, 57(3), 863-870.
[http://dx.doi.org/10.1021/jf803148z] [PMID: 19143487]
[67]
Laguerre, M.; López Giraldo, L.J.; Lecomte, J.; Figueroa-Espinoza, M.C.; Baréa, B.; Weiss, J.; Decker, E.A.; Villeneuve, P. Chain length affects antioxidant properties of chlorogenate esters in emulsion: The cutoff theory behind the polar paradox. J. Agric. Food Chem., 2009, 57(23), 11335-11342.
[http://dx.doi.org/10.1021/jf9026266] [PMID: 19899758]
[68]
Perron, N.R.; Brumaghim, J.L. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem. Biophys., 2009, 53(2), 75-100.
[http://dx.doi.org/10.1007/s12013-009-9043-x] [PMID: 19184542]
[69]
Wells, A.F. Structural inorganic chemistry; Oxford University Press, 2012.
[70]
Andjelković, M.; Vancamp, J.; Demeulenaer, B.; Depaemelaere, G.; Socaciu, C.; Verloo, M.; Verhe, R. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem., 2006, 98(1), 23-31.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.044]
[71]
Damasceno, S.S.; Santos, N.A.; Santos, I.M.G.; Souza, A.L.; Souza, A.G.; Queiroz, N. Caffeic and ferulic acids: An investigation of the effect of antioxidants on the stability of soybean biodiesel during storage. Fuel, 2013, 107, 641-646.
[http://dx.doi.org/10.1016/j.fuel.2012.11.045]
[72]
Farhoosh, R.; Johnny, S.; Asnaashari, M.; Molaahmadibahraseman, N.; Sharif, A. Structure–antioxidant activity relationships of o-hydroxyl, o-methoxy, and alkyl ester derivatives of p-hydroxybenzoic acid. Food Chem., 2016, 194, 128-134.
[http://dx.doi.org/10.1016/j.foodchem.2015.08.003] [PMID: 26471535]
[73]
Schaich, K.M.; Tian, X.; Xie, J. Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays. J. Funct. Foods, 2015, 14, 111-125.
[http://dx.doi.org/10.1016/j.jff.2015.01.043]
[74]
Shahidi, F. Antioxidants: Principles and applications. In: Handbook of antioxidants for food preservation; Elsevier, 2015; pp. 1-14.
[http://dx.doi.org/10.1016/B978-1-78242-089-7.00001-4]
[75]
Barclay, L.R.C.; Vinqvist, M.R. Phenols as antioxidants. In: The chemistry of phenols; Wiley, 2003; pp. 839-908.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy