Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

A Polyacrylate Cotton-based Pipette Tip Micro-solid-phase Extraction Technique Coupled with High-performance Liquid Chromatography for Carvedilol Determination in Aqueous Media

Author(s): Golchin Poryan, Maedeh Noori, Zahra Talebpour* and Hassan Y. Aboul-Enein

Volume 20, Issue 8, 2024

Published on: 02 May, 2024

Page: [569 - 581] Pages: 13

DOI: 10.2174/0115734110307066240425055358

Price: $65

Abstract

Introduction: In this work, a polyacrylate polymer was synthesized into a pipette tip containing cotton fibers and used to extract carvedilol from water and urine samples.

Methods: A high-performance liquid chromatography-ultraviolet detection method was developed, which demonstrated the suitability of the purposed pipette tip micro-solid-phase extraction device. Factors affecting the fabrication procedure and polymer quality were studied and optimized. In the next step, the sample preparation process (including extraction and desorption) was fully optimized, and the optimized method was validated.

Results: A coating with suitable mechanical and chemical stability was achieved. Its structure was successfully characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. Within-batch and between-batch fabrication reproducibility were obtained at 3.0 and 9.0%, respectively. The developed method displayed a limit of detection of 1.1 μg L-1 when 1.5 mL of sample was processed, and it was linear in the concentration range of 3.3-350 μg L-1 with LLOQ of 5 μg L-1. The polyacrylate cotton-based pipette tip was finally used to extract carvedilol from aqueous media with acceptable recoveries of 92-106%.

Conclusion: The proposed method is simple and fast and requires low sample volumes. In addition, this method has been evaluated in terms of greenness with three different tools, and the evaluation results with all three tools have shown that this method is one of the green and environmentally friendly methods.

Graphical Abstract

[1]
Poole, C.F. New trends in solid-phase extraction. Trends Analyt. Chem., 2003, 22(6), 362-373.
[http://dx.doi.org/10.1016/S0165-9936(03)00605-8]
[2]
Wasylka, P.J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Miniaturized solid-phase extraction techniques. Trends Analyt. Chem., 2015, 73, 19-38.
[http://dx.doi.org/10.1016/j.trac.2015.04.026]
[3]
Pawliszyn, J. Handbook of sample preparation; Lord JW& S, Inc.: New Jersey, 2010.
[http://dx.doi.org/10.1016/j.jpba.2004.09.060]
[4]
Arthur, C.L.; Pawliszyn, J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem., 1990, 62(19), 2145-2148.
[http://dx.doi.org/10.1021/ac00218a019]
[5]
Pawliszyn, J. Solid-Phase Microextraction in perspective; Elsevier Inc., 2012.
[http://dx.doi.org/10.1016/B978-0-12-416017-0.00001-2]
[6]
Cases, M.V.R. Solid-Phase Microextraction in perspective; Elsevier Inc, 2017.
[7]
Souza Silva, E.A.; Risticevic, S.; Pawliszyn, J. Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. Trends Analyt. Chem., 2013, 43, 24-36.
[http://dx.doi.org/10.1016/j.trac.2012.10.006]
[8]
Pereira, J.; Silva, C.L.; Perestrelo, R.; Gonçalves, J.; Alves, V.; Câmara, J.S. Re-exploring the high-throughput potential of microextraction techniques, SPME and MEPS, as powerful strategies for medical diagnostic purposes. Innovative approaches, recent applications and future trends. Anal. Bioanal. Chem., 2014, 406(8), 2101-2122.
[http://dx.doi.org/10.1007/s00216-013-7527-4] [PMID: 24442008]
[9]
Hasan, C.K.; Ghiasvand, A.; Lewis, T.W.; Nesterenko, P.N.; Paull, B. Recent advances in stir-bar sorptive extraction: Coatings, technical improvements, and applications. Anal. Chim. Acta, 2020, 1139, 222-240.
[http://dx.doi.org/10.1016/j.aca.2020.08.021] [PMID: 33190705]
[10]
Rostami, S.; Talebpour, Z.; Yeganeh, H. Preparation, optimization and application of poly(ethylene glycol)methyl ether methacrylate/urethane methacrylate as a new polar phase for stir bar sorptive extraction. Anal. Methods, 2014, 6(19), 7722-7732.
[http://dx.doi.org/10.1039/C4AY01113A]
[11]
Kaur, N.; Cabral, J.L.; Morin, A.; Waldron, K.C. Headspace stir bar sorptive extraction–gas chromatography/mass spectrometry characterization of the diluted vapor phase of cigarette smoke delivered to an in vitro cell exposure chamber. J. Chromatogr. A, 2011, 1218(2), 324-333.
[http://dx.doi.org/10.1016/j.chroma.2010.11.035] [PMID: 21163485]
[12]
Ghamat, S.N.; Talebpour, Z. A vinylpyrrolidone-based thin film microextraction in combination with direct solid-state spectrofluorimetry for determination of sartans in human plasma. Anal. Chim. Acta, 2020, 1124, 146-155.
[http://dx.doi.org/10.1016/j.aca.2020.04.059] [PMID: 32534667]
[13]
Olcer, Y.A.; Tascon, M.; Eroglu, A.E.; Boyacı, E. Thin film microextraction: Towards faster and more sensitive microextraction. Trends Analyt. Chem., 2019, 113, 93-101.
[http://dx.doi.org/10.1016/j.trac.2019.01.022]
[14]
Karimi, S.; Talebpour, Z.; Adib, N. Sorptive thin film microextraction followed by direct solid state spectrofluorimetry: A simple, rapid and sensitive method for determination of carvedilol in human plasma. Anal. Chim. Acta, 2016, 924, 45-52.
[http://dx.doi.org/10.1016/j.aca.2016.04.025] [PMID: 27181643]
[15]
Martinez, M.Y.; Caudet, B.A.; Andrés, V.J.; Hernández, H.R.; Legua, M.C.; Falcó, C.P. In-tube solid-phase microextraction. In: Solid-Phase Extraction Handbooks in Separation Science; Elsevier, 2019; pp. 387-427.
[http://dx.doi.org/10.1016/B978-0-12-816906-3.00014-5]
[16]
Kataoka, H. In-tube solid-phase microextraction: Current trends and future perspectives. J. Chromatogr. A, 2021, 1636, 461787.
[http://dx.doi.org/10.1016/j.chroma.2020.461787] [PMID: 33359971]
[17]
Zhang, H.; Lee, H.K. Plunger-in-needle solid-phase microextraction with graphene-based sol–gel coating as sorbent for determination of polybrominated diphenyl ethers. J. Chromatogr. A, 2011, 1218(28), 4509-4516.
[http://dx.doi.org/10.1016/j.chroma.2011.05.016] [PMID: 21636089]
[18]
Yang, Y.; Mai, W.; Gao, J.; Hu, Z.; Xu, J.; Zou, S. An in‐needle solid‐phase microextraction device packed with etched steel wires for polycyclic aromatic hydrocarbons enrichment in water samples. J. Sep. Sci., 2019, 42(9), 1750-1756.
[http://dx.doi.org/10.1002/jssc.201801112] [PMID: 30784188]
[19]
Bordin, D.C.M.; Alves, M.N.R.; de Campos, E.G.; De Martinis, B.S. Disposable pipette tips extraction: Fundamentals, applications and state of the art. J. Sep. Sci., 2016, 39(6), 1168-1172.
[http://dx.doi.org/10.1002/jssc.201500932] [PMID: 27027593]
[20]
Hashemi, S.H.; Kaykhaii, M.; Keikha, A.J.; Jangizahi, J. Fabrication of a molecularly imprinted polymer adsorbent for pipette tip micro solid-phase extraction of levofloxacin from aqueous samples prior to its spectrophotometric determination. Curr. Anal. Chem., 2023, 19(10), 721-731.
[http://dx.doi.org/10.2174/0115734110278576231128065402]
[21]
Seidi, S.; Tajik, M.; Baharfar, M.; Rezazadeh, M. Micro solid-phase extraction (pipette tip and spin column) and thin film solid-phase microextraction: Miniaturized concepts for chromatographic analysis. Trends Analyt. Chem., 2019, 118, 810-827.
[http://dx.doi.org/10.1016/j.trac.2019.06.036]
[22]
Kahkha, R.M.R.; Kaykhaii, M.; Afarani, M.S.; Sepehri, Z. Determination of mefenamic acid in urine and pharmaceutical samples by HPLC after pipette-tip solid phase microextraction using zinc sulfide modified carbon nanotubes. Anal. Methods, 2016, 8(30), 5978-5983.
[http://dx.doi.org/10.1039/C6AY01674J]
[23]
Xie, W.; Mullett, W.M.; Miller-Stein, C.M.; Pawliszyn, J. Automation of in-tip solid-phase microextraction in 96-well format for the determination of a model drug compound in human plasma by liquid chromatography with tandem mass spectrometric detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(4), 415-420.
[http://dx.doi.org/10.1016/j.jchromb.2008.12.036] [PMID: 19144575]
[24]
Kumazawa, T.; Hasegawa, C.; Lee, X.P.; Hara, K.; Seno, H.; Suzuki, O.; Sato, K. Simultaneous determination of methamphetamine and amphetamine in human urine using pipette tip solid-phase extraction and gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal., 2007, 44(2), 602-607.
[http://dx.doi.org/10.1016/j.jpba.2006.12.025] [PMID: 17267160]
[25]
Shen, Q.; Dong, W.; Wang, Y.; Gong, L.; Dai, Z.; Cheung, H.Y. Pipette tip solid-phase extraction and ultra-performance liquid chromatography/mass spectrometry based rapid analysis of picrosides from Picrorhiza scrophulariiflora. J. Pharm. Biomed. Anal., 2013, 80, 136-140.
[http://dx.doi.org/10.1016/j.jpba.2013.03.002] [PMID: 23567266]
[26]
Kumazawa, T.; Hasegawa, C.; Lee, X.P.; Sato, K. New and unique methods of solid-phase extraction for use before instrumental analysis of xenobiotics in human specimens. Forensic Toxicol., 2010, 28(2), 61-68.
[http://dx.doi.org/10.1007/s11419-010-0097-7]
[27]
Li, H.; Li, D. Preparation of a pipette tip-based molecularly imprinted solid-phase microextraction monolith by epitope approach and its application for determination of enkephalins in human cerebrospinal fluid. J. Pharm. Biomed. Anal., 2015, 115, 330-338.
[http://dx.doi.org/10.1016/j.jpba.2015.07.033] [PMID: 26263061]
[28]
Du, T.; Cheng, J.; Wu, M.; Wang, X.; Zhou, H.; Cheng, M. Pipette tip-based molecularly imprinted monolith for selective micro-solid-phase extraction of methomyl in environmental water. Anal. Methods, 2014, 6(16), 6375-6380.
[http://dx.doi.org/10.1039/C4AY00766B]
[29]
Ma, Y.; Liu, L.; Tang, W.; Zhu, T. Sulfonated poly(styrene‐divinylbenzene) modified with amines and the application for pipette‐tip solid‐phase extraction of carbendazim in apples. J. Sep. Sci., 2017, 40(20), 3938-3945.
[http://dx.doi.org/10.1002/jssc.201700594] [PMID: 28792120]
[30]
Su, Y.; Wang, S.; Zhang, N.; Cui, P.; Gao, Y.; Bao, T. Zr-MOF modified cotton fiber for pipette tip solid-phase extraction of four phenoxy herbicides in complex samples. Ecotoxicol. Environ. Saf., 2020, 201, 110764.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110764] [PMID: 32480162]
[31]
Rezaei Kahkha, M.R.; Kaykhaii, M.; Sargazi, G.; Kahkha, B.R. Determination of nicotine in saliva, urine and wastewater samples using tantalum metal organic framework pipette tip micro-solid phase extraction. Anal. Methods, 2019, 11(48), 6168-6175.
[http://dx.doi.org/10.1039/C9AY01773A]
[32]
Rezaei Kahkha, M.R.; Daliran, S.; Oveisi, A.R.; Kaykhaii, M.; Sepehri, Z. The mesoporous porphyrinic zirconium metal-organic framework for pipette-tip solid-phase extraction of mercury from fish samples followed by cold vapor atomic absorption spectrometric determination. Food Anal. Methods, 2017, 10(7), 2175-2184.
[http://dx.doi.org/10.1007/s12161-016-0786-x]
[33]
Tian, X.; Dai, Y.; Cheng, Y.; Zhang, L.; Kong, R.M.; Xia, L.; Kong, C.; Li, G. Combination of pipette tip solid phase extraction and high performance liquid chromatography for determination of plant growth regulators in food samples based on the electrospun covalent organic framework/polyacrylonitrile nanofiber as highly efficient sorbent. J. Chromatogr. A, 2022, 1661, 462692.
[http://dx.doi.org/10.1016/j.chroma.2021.462692] [PMID: 34883355]
[34]
Yan, Z.; Hu, B.; Li, Q.; Zhang, S.; Pang, J.; Wu, C. Facile synthesis of covalent organic framework incorporated electrospun nanofiber and application to pipette tip solid phase extraction of sulfonamides in meat samples. J. Chromatogr. A, 2019, 1584, 33-41.
[http://dx.doi.org/10.1016/j.chroma.2018.11.039] [PMID: 30497825]
[35]
Zhang, Y.; Liao, W.; Dai, Y.; Wang, W.; Wang, A. Covalent organic framework Schiff base network-1-based pipette tip solid phase extraction of sulfonamides from milk and honey. J. Chromatogr. A, 2020, 1634, 461665.
[http://dx.doi.org/10.1016/j.chroma.2020.461665] [PMID: 33181355]
[36]
Esrafili, A.; Ghambarian, M.; Tajik, M.; Baharfar, M.; Tabibpour, M. Polydopamine-functionalized carbon nanotubes for pipette-tip micro-solid phase extraction of malathion and parathion from environmental samples. ChemistrySelect, 2020, 5(10), 2966-2971.
[http://dx.doi.org/10.1002/slct.201904468]
[37]
Cala, F.B.; Roselló, M.Ó.; Alfonso, S.E.F.; Cárdenas, S.; Martínez, H.J.M. Carbon nanotube-modified monolithic polymethacrylate pipette tips for (micro)solid-phase extraction of antidepressants from urine samples. Mikrochim. Acta, 2018, 185(2), 127.
[http://dx.doi.org/10.1007/s00604-017-2659-4] [PMID: 29594510]
[38]
Wang, N.; Xin, H.; Zhang, Q.; Jiang, Y.; Wang, X.; Shou, D.; Qin, L. Carbon nanotube-polymer composite for effervescent pipette tip solid phase microextraction of alkaloids and flavonoids from Epimedii herba in biological samples. Talanta, 2017, 162, 10-18.
[http://dx.doi.org/10.1016/j.talanta.2016.09.059] [PMID: 27837804]
[39]
Yuan, Y.; Wang, M.; Jia, N.; Zhai, C.; Han, Y.; Yan, H. Graphene/multi-walled carbon nanotubes as an adsorbent for pipette-tip solid-phase extraction for the determination of 17β-estradiol in milk products. J. Chromatogr. A, 2019, 1600, 73-79.
[http://dx.doi.org/10.1016/j.chroma.2019.04.055] [PMID: 31047658]
[40]
Kaykhaii, M.; Yahyavi, H.; Hashemi, M.; Khoshroo, M.R. A simple graphene-based pipette tip solid-phase extraction of malondialdehyde from human plasma and its determination by spectrofluorometry. Anal. Bioanal. Chem., 2016, 408(18), 4907-4915.
[http://dx.doi.org/10.1007/s00216-016-9577-x] [PMID: 27113457]
[41]
Shi, Z.; Li, Q.; Xu, D.; Huai, Q.; Zhang, H. Graphene‐based pipette tip solid‐phase extraction with ultra‐high performance liquid chromatography and tandem mass spectrometry for the analysis of carbamate pesticide residues in fruit juice. J. Sep. Sci., 2016, 39(22), 4391-4397.
[http://dx.doi.org/10.1002/jssc.201600498] [PMID: 27647795]
[42]
Sun, N.; Han, Y.; Yan, H.; Song, Y. A self-assembly pipette tip graphene solid-phase extraction coupled with liquid chromatography for the determination of three sulfonamides in environmental water. Anal. Chim. Acta, 2014, 810, 25-31.
[http://dx.doi.org/10.1016/j.aca.2013.12.013] [PMID: 24439501]
[43]
Mirzaee, M.T.; Seidi, S.; Alizadeh, R. Pipette-tip SPE based on Graphene/ZnCr LDH for Pb(II) analysis in hair samples followed by GFAAS. Anal. Biochem., 2021, 612, 113949.
[http://dx.doi.org/10.1016/j.ab.2020.113949] [PMID: 32941913]
[44]
Sun, H.; Feng, J.; Han, S.; Ji, X.; Li, C.; Feng, J.; Sun, M. Recent advances in micro- and nanomaterial-based adsorbents for pipette-tip solid-phase extraction. Mikrochim. Acta, 2021, 188(6), 189.
[http://dx.doi.org/10.1007/s00604-021-04806-0] [PMID: 33991231]
[45]
Xu, X.L.; Xu, S.J.; Wang, B.; Liu, Y.W.; Li, W.X.; Fan, M.; Xu, X.; Ma, L.; Chen, D. In-syringe cotton fiber solid-phase extraction coupled with stable-isotope-dilution liquid chromatography-tandem mass spectrometry for the determination of zearalenone. Microchem. J., 2023, 193, 109264.
[http://dx.doi.org/10.1016/j.microc.2023.109264]
[46]
Selman, M.H.J.; Hemayatkar, M.; Deelder, A.M.; Wuhrer, M. Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Anal. Chem., 2011, 83(7), 2492-2499.
[http://dx.doi.org/10.1021/ac1027116] [PMID: 21366235]
[47]
Wang, J.; Liu, S.; Chen, C.; Zou, Y.; Hu, H.; Cai, Q.; Yao, S. Natural cotton fibers as adsorbent for solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. Analyst, 2014, 139(14), 3593-3599.
[http://dx.doi.org/10.1039/C4AN00195H] [PMID: 24872029]
[48]
Faraji, M.; Yamini, Y.; Shariati, S. Application of cotton as a solid phase extraction sorbent for on-line preconcentration of copper in water samples prior to inductively coupled plasma optical emission spectrometry determination. J. Hazard. Mater., 2009, 166(2-3), 1383-1388.
[http://dx.doi.org/10.1016/j.jhazmat.2008.12.063] [PMID: 19157691]
[49]
Feng, J.; Han, S.; Ji, X.; Li, C.; Wang, X.; Tian, Y.; Sun, M. A green extraction material — natural cotton fiber for in‐tube solidphase microextraction. J. Sep. Sci., 2019, 42(5), jssc.201801233.
[http://dx.doi.org/10.1002/jssc.201801233] [PMID: 30659743]
[50]
Kotchen, M.; Kallaos, J.; Wheeler, K.; Wong, C.; Zahller, M. Pharmaceuticals in wastewater: Behavior, preferences, and willingness to pay for a disposal program. J. Environ. Manage., 2009, 90(3), 1476-1482.
[http://dx.doi.org/10.1016/j.jenvman.2008.10.002] [PMID: 19028416]
[51]
Yang, Y.; Ok, Y.S.; Kim, K.H.; Kwon, E.E.; Tsang, Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ., 2017, 596-597, 303-320.
[http://dx.doi.org/10.1016/j.scitotenv.2017.04.102] [PMID: 28437649]
[52]
Pereira, A.; Silva, L.; Laranjeiro, C.; Pena, A. Assessment of human pharmaceuticals in drinking water catchments, tap and drinking fountain waters. Appl. Sci., 2021, 11(15), 7062.
[http://dx.doi.org/10.3390/app11157062]
[53]
Molnarova, L.; Halesova, T.; Vaclavikova, M.; Bosakova, Z. Monitoring pharmaceuticals and personal care products in drinking water samples by the LC-MS/MS method to estimate their potential health risk. Molecules, 2023, 28(15), 5899.
[http://dx.doi.org/10.3390/molecules28155899] [PMID: 37570870]
[54]
Seifrtová, M.; Nováková, L.; Lino, C.; Pena, A.; Solich, P. An overview of analytical methodologies for the determination of antibiotics in environmental waters. Anal. Chim. Acta, 2009, 649(2), 158-179.
[http://dx.doi.org/10.1016/j.aca.2009.07.031] [PMID: 19699391]
[55]
Liu, R.; Zhou, J.L.; Wilding, A. Simultaneous determination of endocrine disrupting phenolic compounds and steroids in water by solid-phase extraction–gas chromatography–mass spectrometry. J. Chromatogr. A, 2004, 1022(1-2), 179-189.
[http://dx.doi.org/10.1016/j.chroma.2003.09.035] [PMID: 14753785]
[56]
Es’haghi, Z. Determination of widely used non-steroidal anti-inflammatory drugs in water samples by in situ derivatization, continuous hollow fiber liquid-phase microextraction and gas chromatography-flame ionization detector. Anal. Chim. Acta, 2009, 641(1-2), 83-88.
[http://dx.doi.org/10.1016/j.aca.2009.03.043] [PMID: 19393370]
[57]
Conley, J.M.; Symes, S.J.; Kindelberger, S.A.; Richards, S.M. Rapid liquid chromatography–tandem mass spectrometry method for the determination of a broad mixture of pharmaceuticals in surface water. J. Chromatogr. A, 2008, 1185(2), 206-215.
[http://dx.doi.org/10.1016/j.chroma.2008.01.064] [PMID: 18304564]
[58]
Guruge, K.S.; Goswami, P.; Tanoue, R.; Nomiyama, K.; Wijesekara, R.G.S.; Dharmaratne, T.S. First nationwide investigation and environmental risk assessment of 72 pharmaceuticals and personal care products from Sri Lankan surface waterways. Sci. Total Environ., 2019, 690, 683-695.
[http://dx.doi.org/10.1016/j.scitotenv.2019.07.042] [PMID: 31301508]
[59]
Bottoni, P.; Caroli, S.; Caracciolo, A.B. Pharmaceuticals as priority water contaminants. Toxicol. Environ. Chem., 2010, 92(3), 549-565.
[http://dx.doi.org/10.1080/02772241003614320]
[60]
da Silva, A.T.M.; de Oliveira, H.L.; Silva, C.F.; Fonseca, M.C.; Pereira, T.F.D.; Nascimento, C.S., Jr; de Figueiredo, E.C.; Borges, K.B. Efficient molecularly imprinted polymer as a pipette-tip solid-phase sorbent for determination of carvedilol enantiomers in human urine. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1061-1062, 399-410.
[http://dx.doi.org/10.1016/j.jchromb.2017.07.056] [PMID: 28803116]
[61]
Ballesteros-Esteban, T.; Reyes-Gallardo, E.M.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Determination of propranolol and carvedilol in urine samples using a magnetic polyamide composite and LC–MS/MS. Bioanalysis, 2016, 8(20), 2115-2123.
[http://dx.doi.org/10.4155/bio-2016-0015] [PMID: 27593542]
[62]
European Medicines Agency. ICH topic Q 2 (R1) validation of analytical procedures: Text and methodology (CPMP/ICH/381/95). 1995. Available from: https://www.researchgate.net/publication/301950760_International_Conference_on_Harmonisation
[63]
U.S. Department of Health and Human Services Food and Drug Administration. Bioanalytical method validation guidance for industry. 2013. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry
[64]
[65]
González, O.; Blanco, M.E.; Iriarte, G.; Bartolomé, L.; Maguregui, M.I.; Alonso, R.M. Bioanalytical chromatographic method validation according to current regulations, with a special focus on the non-well defined parameters limit of quantification, robustness and matrix effect. J. Chromatogr. A, 2014, 1353, 10-27.
[http://dx.doi.org/10.1016/j.chroma.2014.03.077] [PMID: 24794936]
[66]
Maráková, N.; Humpolíček, P.; Kašpárková, V.; Capáková, Z.; Martinková, L.; Bober, P.; Trchová, M.; Stejskal, J. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles. Appl. Surf. Sci., 2017, 396, 169-176.
[http://dx.doi.org/10.1016/j.apsusc.2016.11.024]
[67]
Gao, D.; Chen, C.; Ma, J.; Duan, X.; Zhang, J. Preparation, characterization and antibacterial functionalization of cotton fabric using dimethyl diallyl ammonium chloride-allyl glycidyl ether-methacrylic/nano-ZnO composite. Chem. Eng. J., 2014, 258, 85-92.
[http://dx.doi.org/10.1016/j.cej.2014.07.072]
[68]
Talebpour, Z.; Taraji, M.; Adib, N. Stir bar sorptive extraction and high performance liquid chromatographic determination of carvedilol in human serum using two different polymeric phases and an ionic liquid as desorption solvent. J. Chromatogr. A, 2012, 1236, 1-6.
[http://dx.doi.org/10.1016/j.chroma.2012.02.063] [PMID: 22458964]
[69]
Sereshti, H.; Bakhtiari, S. Three-dimensional graphene/Fe 3 O 4 -based magnetic solid phase extraction coupled with high performance liquid chromatography for determination of carvedilol in human blood plasma. RSC Advances, 2016, 6(79), 75757-75765.
[http://dx.doi.org/10.1039/C6RA11363J]
[70]
Makahleh, A.; Cheng, K.W.; Saad, B.; Enein, A.H.Y. Hollow fiber based liquid phase microextraction with high performance liquid chromatography for the determination of trace carvedilol (β-blocker) in biological fluids. Acta Chromatogr., 2020, 32(2), 149-155.
[http://dx.doi.org/10.1556/1326.2019.00654]
[71]
Taraji, M.; Talebpour, Z.; Adib, N.; Karimi, S.; Haghighi, F.; Aboul-Enein, H.Y. Determination of carvedilol enantiomers in pharmaceutical dosages by SBSE – HPLC based on diastereomer formation. J. Chromatogr. Sci., 2015, 53(8), 1316-1321.
[http://dx.doi.org/10.1093/chromsci/bmv013] [PMID: 25700550]
[72]
Ren, X.; He, M.; Chen, B.; Hu, B. Magnetic porous organic polymers for extraction of cardiovascular drugs in human urine samples followed by HPLC-UV. Anal. Methods, 2020, 12(2), 141-148.
[http://dx.doi.org/10.1039/C9AY02041A]
[73]
Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. Trends Analyt. Chem., 2012, 37, 61-72.
[http://dx.doi.org/10.1016/j.trac.2012.03.013]
[74]
Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta, 2018, 181, 204-209.
[http://dx.doi.org/10.1016/j.talanta.2018.01.013] [PMID: 29426502]
[75]
Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE - Analytical GREEnness metric approach and software. Anal. Chem., 2020, 92(14), 10076-10082.
[http://dx.doi.org/10.1021/acs.analchem.0c01887] [PMID: 32538619]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy