Generic placeholder image

Current Signal Transduction Therapy

Editor-in-Chief

ISSN (Print): 1574-3624
ISSN (Online): 2212-389X

Review Article

Targeting Insulin- and Calcium-related Pathways for Potential Treatments for Alzheimer's Disease and Diabetes

Author(s): Shreya Sood, Sushma Devi*, Thakur Gurjeet Singh and Randhir Singh

Volume 19, Issue 3, 2024

Published on: 29 April, 2024

Article ID: e290424229521 Pages: 11

DOI: 10.2174/0115743624299306240419054021

Price: $65

Abstract

Alzheimer's disease and diabetes are common disorders among the elderly population and have emerged as a major health concern. Both diseases pose considerable risks to one another. Diabetics have a significantly increased probability of getting Alzheimer's disease throughout their lifetime. These diseases are linked because, both share common risk factors such as impaired carbohydrate metabolism, insulin resistance, oxidative stress, inflammatory response, mitochondrial dysfunction, and amyloidosis. Insulin is a vital hormone responsible for bringing extremely high glucose levels back to normal and its receptors available in the hippocampus help in enhancing cognitive function. Insulin resistance consequently serves as a link between both diabetes and AD. Similarly, amylin is another hormone secreted by the pancreas along with insulin. During diabetes, amylin gets oligomerized and forms a neurotoxic complex with Aβ inside the brain, which causes AD to develop. Along with these, another main mechanism influencing AD development is Ca2+ dyshomeostasis. Insulin production from the pancreas is generally aided by Ca2+, but in excess, it can cause dysregulation of many signaling pathways such as CaMKK2, CAMP, CREB, MAPK, STIM\Orai, etc. which can ultimately result in the pathogenesis of AD in diabetic people. In this review, we discussed in detail the pathogenesis of AD associated with diabetes and the mechanisms initiating their progression.

Graphical Abstract

[1]
Kandimalla R, Thirumala V, Reddy PH. Is alzheimer’s disease a type 3 diabetes? a critical appraisal. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1078-89.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.018] [PMID: 27567931]
[2]
Stelzmann RA, Norman Schnitzlein H, Reed Murtagh F, Murtagh FR. An english translation of alzheimer’s 1907 paper, “über eine eigenartige erkankung der hirnrinde”. Clin Anat 1995; 8(6): 429-31.
[http://dx.doi.org/10.1002/ca.980080612] [PMID: 8713166]
[3]
Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimer’s disease. Lancet 2021; 397(10284): 1577-90.
[http://dx.doi.org/10.1016/S0140-6736(20)32205-4] [PMID: 33667416]
[4]
Armstrong RA. What causes alzheimer’s disease? Folia Neuropathol 2013; 51(3): 169-88.
[http://dx.doi.org/10.5114/fn.2013.37702] [PMID: 24114635]
[5]
Jayaraj RL, Azimullah S, Beiram R. Diabetes as a risk factor for Alzheimer’s disease in the Middle East and its shared pathological mediators. Saudi J Biol Sci 2020; 27(2): 736-50.
[http://dx.doi.org/10.1016/j.sjbs.2019.12.028] [PMID: 32210695]
[6]
Xu W, Qiu C, Gatz M, Pedersen NL, Johansson B, Fratiglioni L. Mid- and late-life diabetes in relation to the risk of dementia: A population-based twin study. Diabetes 2009; 58(1): 71-7.
[http://dx.doi.org/10.2337/db08-0586] [PMID: 18952836]
[7]
Stanciu GD, Bild V, Ababei DC, et al. Link between diabetes and Alzheimer’s disease due to the shared amyloid aggregation and deposition involving both neurodegenerative changes and neurovascular damages. J Clin Med 2020; 9(6): 1713.
[http://dx.doi.org/10.3390/jcm9061713] [PMID: 32503113]
[8]
Lee HJ, Seo HI, Cha HY, Yang YJ, Kwon SH, Yang SJ. Diabetes and Alzheimer’s disease: Mechanisms and nutritional aspects. Clin Nutr Res 2018; 7(4): 229-40.
[http://dx.doi.org/10.7762/cnr.2018.7.4.229] [PMID: 30406052]
[9]
Galizzi G, Di Carlo M. Insulin and its key role for mitochondrial function/dysfunction and quality control: A shared link between dysmetabolism and neurodegeneration. Biology 2022; 11(6): 943.
[http://dx.doi.org/10.3390/biology11060943] [PMID: 35741464]
[10]
Neth BJ, Craft S. Insulin resistance and Alzheimer’s disease: Bioenergetic linkages. Front Aging Neurosci 2017; 9: 345.
[http://dx.doi.org/10.3389/fnagi.2017.00345] [PMID: 29163128]
[11]
Lutz TA. Control of energy homeostasis by amylin. Cell Mol Life Sci 2012; 69(12): 1947-65.
[http://dx.doi.org/10.1007/s00018-011-0905-1] [PMID: 22193913]
[12]
Jhamandas JH, Li Z, Westaway D, Yang J, Jassar S, MacTavish D. Actions of β-amyloid protein on human neurons are expressed through the amylin receptor. Am J Pathol 2011; 178(1): 140-9.
[http://dx.doi.org/10.1016/j.ajpath.2010.11.022] [PMID: 21224052]
[13]
Srodulski S, Sharma S, Bachstetter AB, et al. Neuroinflammation and neurologic deficits in diabetes linked to brain accumulation of amylin. Mol Neurodegener 2014; 9(1): 30.
[http://dx.doi.org/10.1186/1750-1326-9-30] [PMID: 25149184]
[14]
Reiss AB, Ahmed S, Dayaramani C, et al. The role of mitochondrial dysfunction in Alzheimer’s disease: A potential pathway to treatment. Exp Gerontol 2022; 164: 111828.
[http://dx.doi.org/10.1016/j.exger.2022.111828] [PMID: 35508280]
[15]
Zhang S, Chai R, Yang YY, et al. Chronic diabetic states worsen Alzheimer neuropathology and cognitive deficits accompanying disruption of calcium signaling in leptin-deficient APP/PS1 mice. Oncotarget 2017; 8(27): 43617-34.
[http://dx.doi.org/10.18632/oncotarget.17116] [PMID: 28467789]
[16]
Sims-Robinson C, Kim B, Rosko A, Feldman EL. How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 2010; 6(10): 551-9.
[http://dx.doi.org/10.1038/nrneurol.2010.130] [PMID: 20842183]
[17]
Nimgampalle M, Chakravarthy H, Devanathan V. Glucose metabolism in the brain: An updateRecent Developments in Applied Microbiology and Biochemistry. Academic Press 2021; pp. 77-88.
[http://dx.doi.org/10.1016/B978-0-12-821406-0.00008-4]
[18]
Vannucci SJ, Koehler-Stec EM, Li K, Reynolds TH, Clark R, Simpson IA. GLUT4 glucose transporter expression in rodent brain: Effect of diabetes. Brain Res 1998; 797(1): 1-11.
[http://dx.doi.org/10.1016/S0006-8993(98)00103-6] [PMID: 9630471]
[19]
McNay EC, Pearson-Leary J. GluT4: A central player in hippocampal memory and brain insulin resistance. Exp Neurol 2020; 323: 113076.
[http://dx.doi.org/10.1016/j.expneurol.2019.113076] [PMID: 31614121]
[20]
Werther GA, Hogg A, Oldfield BJ, et al. Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology 1987; 121(4): 1562-70.
[http://dx.doi.org/10.1210/endo-121-4-1562] [PMID: 3653038]
[21]
K C S Kakoty V, Krishna KV, Dubey SK, Chitkara D, Taliyan R. Neuroprotective efficacy of co-encapsulated rosiglitazone and vorinostat nanoparticle on streptozotocin induced mice model of Alzheimer disease. ACS Chem Neurosci 2021; 12(9): 1528-41.
[http://dx.doi.org/10.1021/acschemneuro.1c00022] [PMID: 33860663]
[22]
Bharadwaj P, Wijesekara N, Liyanapathirana M, et al. The link between type 2 diabetes and neurodegeneration: roles for amyloid-β, amylin, and tau proteins. J Alzheimers Dis 2017; 59(2): 421-32.
[http://dx.doi.org/10.3233/JAD-161192] [PMID: 28269785]
[23]
Mota RI, Morgan SE, Bahnson EM. Diabetic vasculopathy: Macro and microvascular injury. Curr Pathobiol Rep 2020; 8(1): 1-14.
[http://dx.doi.org/10.1007/s40139-020-00205-x] [PMID: 32655983]
[24]
Oskarsson ME, Paulsson JF, Schultz SW, Ingelsson M, Westermark P, Westermark GT. In vivo seeding and cross-seeding of localized amyloidosis: A molecular link between type 2 diabetes and Alzheimer disease. Am J Pathol 2015; 185(3): 834-46.
[http://dx.doi.org/10.1016/j.ajpath.2014.11.016] [PMID: 25700985]
[25]
Schultz N, Byman E, Fex M, Wennström M. Amylin alters human brain pericyte viability and NG2 expression. J Cereb Blood Flow Metab 2017; 37(4): 1470-82.
[http://dx.doi.org/10.1177/0271678X16657093] [PMID: 27354094]
[26]
Moreno-Gonzalez I, Edwards G III, Salvadores N, Shahnawaz M, Diaz-Espinoza R, Soto C. Molecular interaction between type 2 diabetes and Alzheimer’s disease through cross-seeding of protein misfolding. Mol Psychiatry 2017; 22(9): 1327-34.
[http://dx.doi.org/10.1038/mp.2016.230] [PMID: 28044060]
[27]
Cascella R, Chen SW, Bigi A, et al. The release of toxic oligomers from α-synuclein fibrils induces dysfunction in neuronal cells. Nat Commun 2021; 12(1): 1814.
[http://dx.doi.org/10.1038/s41467-021-21937-3] [PMID: 33753734]
[28]
Nisar O, Pervez H, Mandalia B, Waqas M, Sra HK. Type 3 diabetes mellitus: A link between Alzheimer’s disease and type 2 diabetes mellitus. Cureus 2020; 12(11): e11703.
[http://dx.doi.org/10.7759/cureus.11703] [PMID: 33391936]
[29]
Najar MA, Rex DAB, Modi PK, et al. A complete map of the Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) signaling pathway. J Cell Commun Signal 2021; 15(2): 283-90.
[http://dx.doi.org/10.1007/s12079-020-00592-1] [PMID: 33136287]
[30]
Calver B. The role of calmodulin in the regulation of calcium signalling proteins in health and disease. (Doctoral dissertation, Cardiff University) 2018.
[31]
Poejo J, Salazar J, Mata AM, Gutierrez-Merino C. The relevance of amyloid β-calmodulin complexation in neurons and brain degeneration in Alzheimer’s disease. Int J Mol Sci 2021; 22(9): 4976.
[http://dx.doi.org/10.3390/ijms22094976] [PMID: 34067061]
[32]
Sabbir MG. Loss of Ca2+/calmodulin dependent protein kinase kinase 2 leads to aberrant transferrin phosphorylation and trafficking: A potential biomarker for Alzheimer’s disease. Front Mol Biosci 2018; 5: 99.
[http://dx.doi.org/10.3389/fmolb.2018.00099] [PMID: 30525042]
[33]
Marcelo KL, Means AR, York B. The Ca2+/Calmodulin/CaMKK2 Axis: Nature’s metabolic camshaft. Trends Endocrinol Metab 2016; 27(10): 706-18.
[http://dx.doi.org/10.1016/j.tem.2016.06.001] [PMID: 27449752]
[34]
Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 2014; 57(4): 660-71.
[http://dx.doi.org/10.1007/s00125-014-3171-6] [PMID: 24477973]
[35]
Natunen T, Martiskainen H, Marttinen M, et al. Diabetic phenotype in mouse and humans reduces the number of microglia around β-amyloid plaques. Mol Neurodegener 2020; 15(1): 66.
[http://dx.doi.org/10.1186/s13024-020-00415-2] [PMID: 33168021]
[36]
Vallortigara J, Rangarajan S, Whitfield D, et al. Dynamin1 concentration in the prefrontal cortex is associated with cognitive impairment in Lewy body dementia. F1000 Res 2014; 3: 108.
[http://dx.doi.org/10.12688/f1000research.3786.1] [PMID: 25671083]
[37]
Milham LT, Morris GP, Konen LM, Rentsch P, Avgan N, Vissel B. Quantification of AMPA receptor subunits and RNA editing-related proteins in the J20 mouse model of Alzheimer’s disease by capillary western blotting. Front Mol Neurosci 2023; 16.
[PMID: 38299128]
[38]
McKee AC, Kosik KS, Kennedy MB, Kowall NW. Hippocampal neurons predisposed to neurofibrillary tangle formation are enriched in type II calcium/calmodulin-dependent protein kinase. J Neuropathol Exp Neurol 1990; 49(1): 49-63.
[http://dx.doi.org/10.1097/00005072-199001000-00006] [PMID: 2153760]
[39]
Zhang H, Jiang X, Ma L, et al. Role of Aβ in Alzheimer’s-related synaptic dysfunction. Front Cell Dev Biol 2022; 10: 964075.
[http://dx.doi.org/10.3389/fcell.2022.964075] [PMID: 36092715]
[40]
Muthal AP, Kulkarni R, Kumar D, et al. Cyclic adenosine monophosphate: Recent and future perspectives on various diseases. J Appl Pharmac Sci 2022; 12(3): 001-15.
[41]
Bergantin LB. Diabetes and inflammatory diseases: An overview from the perspective of Ca2+/3′-5′-cyclic adenosine monophosphate signaling. World J Diabetes 2021; 12(6): 767-79.
[http://dx.doi.org/10.4239/wjd.v12.i6.767] [PMID: 34168726]
[42]
Tengholm A. Cyclic AMP dynamics in the pancreatic β-cell. Ups J Med Sci 2012; 117(4): 355-69.
[http://dx.doi.org/10.3109/03009734.2012.724732] [PMID: 22970724]
[43]
Willoughby D, Cooper DMF. Ca2+ stimulation of adenylyl cyclase generates dynamic oscillations in cyclic AMP. J Cell Sci 2006; 119(5): 828-36.
[http://dx.doi.org/10.1242/jcs.02812] [PMID: 16478784]
[44]
Caricati-Neto A, García AG, Bergantin LB. Pharmacological implications of the Ca2+/cAMP signaling interaction: from risk for antihypertensive therapy to potential beneficial for neurological and psychiatric disorders. Pharmacol Res Perspect 2015; 3(5): e00181.
[http://dx.doi.org/10.1002/prp2.181] [PMID: 26516591]
[45]
Bergantin LB, Souza CF, Ferreira RM, et al. Novel model for “calcium paradox” in sympathetic transmission of smooth muscles: Role of cyclic AMP pathway. Cell Calcium 2013; 54(3): 202-12.
[http://dx.doi.org/10.1016/j.ceca.2013.06.004] [PMID: 23849429]
[46]
Bergantin LB, et al. A calcium paradox in the context of neurotransmission. J Pharm Pharmacol 2015; 3: 253-61.
[47]
Bergantin LB, Caricati-Neto A. Challenges for the pharmacological treatment of neurological and psychiatric disorders: Implications of the Ca2+/cAMP intracellular signalling interaction. Eur J Pharmacol 2016; 788: 255-60.
[http://dx.doi.org/10.1016/j.ejphar.2016.06.034] [PMID: 27349146]
[48]
Neto A, Bergantin L. New therapeutic perspectives for the cognitive deficit in alzheimer’s disease: pharmacological modulation of Ca2+/camp signaling interaction. Int J CognBehav 2017; 1(001)
[49]
Zündorf G, Reiser G. Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxid Redox Signal 2011; 14(7): 1275-88.
[http://dx.doi.org/10.1089/ars.2010.3359] [PMID: 20615073]
[50]
Bergantin LB, Caricati-Neto A. The “calcium paradox” and its impact on neurological and psychiatric diseases. Cambridge Scholars Publishing 2018.
[51]
Khakha N, Khan H, Kaur A, Singh TG. Therapeutic implications of phosphorylation- and dephosphorylation-dependent factors of cAMP-response element-binding protein (CREB) in neurodegeneration. Pharmacol Rep 2023; 75(5): 1152-65.
[http://dx.doi.org/10.1007/s43440-023-00526-9] [PMID: 37688751]
[52]
Herold S, Jagasia R, Merz K, Wassmer K, Lie DC. CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol Cell Neurosci 2011; 46(1): 79-88.
[http://dx.doi.org/10.1016/j.mcn.2010.08.008] [PMID: 20801218]
[53]
Heckman PRA, Blokland A, Bollen EPP, Prickaerts J. Phosphodiesterase inhibition and modulation of corticostriatal and hippocampal circuits: Clinical overview and translational considerations. Neurosci Biobehav Rev 2018; 87: 233-54.
[http://dx.doi.org/10.1016/j.neubiorev.2018.02.007] [PMID: 29454746]
[54]
Tang M, Shi S, Guo Y, et al. GSK-3/CREB pathway involved in the gx-50's effect on Alzheimer’s disease. Neuropharmacology 2014; 81: 256-66.
[http://dx.doi.org/10.1016/j.neuropharm.2014.02.008] [PMID: 24565641]
[55]
Cheng CY, Tang NY, Kao ST, Hsieh CL. Ferulic acid administered at various time points protects against cerebral infarction by activating p38 MAPK/p90RSK/CREB/Bcl-2 anti-apoptotic signaling in the subacute phase of cerebral ischemia-reperfusion injury in rats. PLoS One 2016; 11(5): e0155748.
[http://dx.doi.org/10.1371/journal.pone.0155748] [PMID: 27187745]
[56]
Xi YD, Zhang DD, Ding J, et al. Genistein inhibits Aβ25–35-induced synaptic toxicity and regulates CaMKII/CREB pathway in SH-SY5Y cells. Cell Mol Neurobiol 2016; 36(7): 1151-9.
[http://dx.doi.org/10.1007/s10571-015-0311-6] [PMID: 26658733]
[57]
Wang H, Xu J, Lazarovici P, Quirion R, Zheng W. cAMP response element-binding protein (CREB): A possible signaling molecule link in the pathophysiology of schizophrenia. Front Mol Neurosci 2018; 11: 255.
[http://dx.doi.org/10.3389/fnmol.2018.00255] [PMID: 30214393]
[58]
Shaywitz AJ, Greenberg ME. CREB: A stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 1999; 68(1): 821-61.
[http://dx.doi.org/10.1146/annurev.biochem.68.1.821] [PMID: 10872467]
[59]
Silva AJ, Kogan JH, Frankland PW, Kida S. CREB and memory. Annu Rev Neurosci 1998; 21(1): 127-48.
[http://dx.doi.org/10.1146/annurev.neuro.21.1.127] [PMID: 9530494]
[60]
Cho IS, Jung M, Kwon KS, et al. Deregulation of CREB signaling pathway induced by chronic hyperglycemia downregulates NeuroD transcription. PLoS One 2012; 7(4): e34860.
[http://dx.doi.org/10.1371/journal.pone.0034860] [PMID: 22509362]
[61]
Benchoula K, Parhar IS, Madhavan P, Hwa WE. CREB nuclear transcription activity as a targeting factor in the treatment of diabetes and diabetes complications. Biochem Pharmacol 2021; 188: 114531.
[http://dx.doi.org/10.1016/j.bcp.2021.114531] [PMID: 33773975]
[62]
Amidfar M, de Oliveira J, Kucharska E, Budni J, Kim YK. The role of CREB and BDNF in neurobiology and treatment of Alzheimer’s disease. Life Sci 2020; 257: 118020.
[http://dx.doi.org/10.1016/j.lfs.2020.118020] [PMID: 32603820]
[63]
Teich AF, Nicholls RE, Puzzo D, et al. Synaptic therapy in Alzheimer’s disease: A CREB-centric approach. Neurotherapeutics 2015; 12(1): 29-41.
[http://dx.doi.org/10.1007/s13311-014-0327-5] [PMID: 25575647]
[64]
Abuelezz NZ, Nasr FE. AbdulKader MA, Bassiouny AR, Zaky A. MicroRNAs as potential orchestrators of Alzheimer’s disease-related pathologies: insights on current status and future possibilities. Front Aging Neurosci 2021; 13: 743573.
[http://dx.doi.org/10.3389/fnagi.2021.743573] [PMID: 34712129]
[65]
White CD, Sacks DB. Regulation of MAP kinase signaling by calcium. (2nd ed.). MAP Kinase Signaling Protocols 2010; pp. 151-65.
[http://dx.doi.org/10.1007/978-1-60761-795-2_9]
[66]
Barbosa CMV, Fock RA, Hastreiter AA, et al. Extracellular annexin-A1 promotes myeloid/granulocytic differentiation of hematopoietic stem/progenitor cells via the Ca2+/MAPK signalling transduction pathway. Cell Death Discov 2019; 5(1): 135.
[http://dx.doi.org/10.1038/s41420-019-0215-1] [PMID: 31552142]
[67]
Heiser JH, Schuwald AM, Sillani G, Ye L, Müller WE, Leuner K. TRPC 6 channel‐mediated neurite outgrowth in PC 12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI 3K, and CAMKIV signaling. J Neurochem 2013; 127(3): 303-13.
[http://dx.doi.org/10.1111/jnc.12376] [PMID: 23875811]
[68]
Huang KF, Ma KH, Liu PS, Chen BW, Chueh SH. Ultraviolet B irradiation increases keratin 1 and keratin 10 expressions in HaCaT keratinocytes via TRPV 1 activation and ERK phosphorylation. Exp Dermatol 2017; 26(9): 832-5.
[http://dx.doi.org/10.1111/exd.13292] [PMID: 28094876]
[69]
Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 2008; 85(2): 148-75.
[http://dx.doi.org/10.1016/j.pneurobio.2008.03.002] [PMID: 18448228]
[70]
Pérez-Gracia E, Torrejón-Escribano B, Ferrer I. Dystrophic neurites of senile plaques in Alzheimer’s disease are deficient in cytochrome c oxidase. Acta Neuropathol 2008; 116(3): 261-8.
[http://dx.doi.org/10.1007/s00401-008-0370-6] [PMID: 18629521]
[71]
Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019; 24(8): 1583.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[72]
Slezak J, Kura B, LeBaron TW, Singal PK, Buday J, Barancik M. Oxidative stress and pathways of molecular hydrogen effects in medicine. Curr Pharm Des 2021; 27(5): 610-25.
[http://dx.doi.org/10.2174/18734286MTA5EMzkk3] [PMID: 32954996]
[73]
Tabner BJ, El-Agnaf OMA, Turnbull S, et al. Hydrogen peroxide is generated during the very early stages of aggregation of the amyloid peptides implicated in Alzheimer disease and familial British dementia. J Biol Chem 2005; 280(43): 35789-92.
[http://dx.doi.org/10.1074/jbc.C500238200] [PMID: 16141213]
[74]
Gadhave K, Kumar D, Uversky VN, Giri R. A multitude of signaling pathways associated with Alzheimer’s disease and their roles in AD pathogenesis and therapy. Med Res Rev 2021; 41(5): 2689-745.
[http://dx.doi.org/10.1002/med.21719] [PMID: 32783388]
[75]
La Rovere RML, Roest G, Bultynck G, Parys JB. Intracellular Ca2+ signaling and Ca2+ microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium 2016; 60(2): 74-87.
[http://dx.doi.org/10.1016/j.ceca.2016.04.005] [PMID: 27157108]
[76]
Klec C, Ziomek G, Pichler M, Malli R, Graier WF. Calcium signaling in ß-cell physiology and pathology: A revisit. Int J Mol Sci 2019; 20(24): 6110.
[http://dx.doi.org/10.3390/ijms20246110] [PMID: 31817135]
[77]
Rorsman P, Braun M, Zhang Q. Regulation of calcium in pancreatic α- and β-cells in health and disease. Cell Calcium 2012; 51(3-4): 300-8.
[http://dx.doi.org/10.1016/j.ceca.2011.11.006] [PMID: 22177710]
[78]
Prentki M, Matschinsky FM, Madiraju SRM. Metabolic signaling in fuel-induced insulin secretion. Cell Metab 2013; 18(2): 162-85.
[http://dx.doi.org/10.1016/j.cmet.2013.05.018] [PMID: 23791483]
[79]
Rorsman P, Ashcroft FM. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol Rev 2018; 98(1): 117-214.
[http://dx.doi.org/10.1152/physrev.00008.2017] [PMID: 29212789]
[80]
Idevall-Hagren O, Tengholm A. Metabolic regulation of calcium signaling in beta cellsSeminars in Cell & Developmental Biology. Elsevier 2020.
[http://dx.doi.org/10.1016/j.semcdb.2020.01.008]
[81]
Ahn C, Kang JH, Jeung EB. Calcium homeostasis in diabetes mellitus. J Vet Sci 2017; 18(3): 261-6.
[http://dx.doi.org/10.4142/jvs.2017.18.3.261] [PMID: 28927245]
[82]
Thibault O, Anderson KL, DeMoll C, Brewer LD, Landfield PW, Porter NM. Hippocampal calcium dysregulation at the nexus of diabetes and brain aging. Eur J Pharmacol 2013; 719(1-3): 34-43.
[http://dx.doi.org/10.1016/j.ejphar.2013.07.024] [PMID: 23872402]
[83]
Tandon NR. Linking Insulin Signaling to Age-Related Cognitive Decline: Insulin-Dependent Regulation of Intrinsic Excitability in Aging Hippocampus. The University of Texas at Dallas 2020.
[84]
Maimaiti S, Frazier HN, Anderson KL, et al. Novel calcium-related targets of insulin in hippocampal neurons. Neuroscience 2017; 364: 130-42.
[http://dx.doi.org/10.1016/j.neuroscience.2017.09.019] [PMID: 28939258]
[85]
Derler I, Jardin I, Romanin C. Molecular mechanisms of STIM/Orai communication. Am J Physiol Cell Physiol 2016; 310(8): C643-62.
[http://dx.doi.org/10.1152/ajpcell.00007.2016] [PMID: 26825122]
[86]
Lilliu E, Koenig S, Koenig X, Frieden M. Store-operated calcium entry in skeletal muscle: What makes it different? Cells 2021; 10(9): 2356.
[http://dx.doi.org/10.3390/cells10092356] [PMID: 34572005]
[87]
Sallinger M, Grabmayr H, Humer C, et al. Activation mechanisms and structural dynamics of STIM proteins. J Physiol 2023; JP283828.
[http://dx.doi.org/10.1113/JP283828] [PMID: 36651592]
[88]
Vashisht A, Trebak M, Motiani RK. STIM and Orai proteins as novel targets for cancer therapy. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am J Physiol Cell Physiol 2015; 309(7): C457-69.
[http://dx.doi.org/10.1152/ajpcell.00064.2015] [PMID: 26017146]
[89]
Collins HE, Zhang D, Chatham JC. STIM and orai mediated regulation of calcium signaling in age-related diseases. Front Aging 2022; 3: 876785.
[http://dx.doi.org/10.3389/fragi.2022.876785]
[90]
Sevilleja-Ortiz A, El Assar M, García-Gómez B, et al. STIM/Orai inhibition as a strategy for alleviating diabetic erectile dysfunction through modulation of rat and human penile tissue contractility and in vivo potentiation of erectile responses. J Sex Med 2022; 19(12): 1733-49.
[http://dx.doi.org/10.1016/j.jsxm.2022.08.200] [PMID: 36195535]
[91]
Waldron RT, Chen Y, Pham H, et al. The Orai Ca 2+ channel inhibitor CM4620 targets both parenchymal and immune cells to reduce inflammation in experimental acute pancreatitis. J Physiol 2019; 597(12): 3085-105.
[http://dx.doi.org/10.1113/JP277856] [PMID: 31050811]
[92]
Maléth J, Hegyi P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: Translational overview. Philos Trans R Soc Lond B Biol Sci 2016; 371(1700): 20150425.
[http://dx.doi.org/10.1098/rstb.2015.0425] [PMID: 27377719]
[93]
Kiselinova M, Robrechts C, Calonje JE, Vanslembrouck I, Christine M, Martens AMB. 0025 Case report: Erythema elevatum diutinum associated with B-cell small cell lymphocytic lymphoma. of the Belgian Society of Internal Medicine, 14–15 December 2018. Dolce La Hulpe, La Hulpe, Belgium 2018; 73(S2): 25.
[94]
Criddle DN, Gerasimenko JV, Baumgartner HK, et al. Calcium signalling and pancreatic cell death: Apoptosis or necrosis? Cell Death Differ 2007; 14(7): 1285-94.
[http://dx.doi.org/10.1038/sj.cdd.4402150] [PMID: 17431416]
[95]
Mukherjee R, Criddle D, Gukvoskaya A, Pandol S, Petersen O, Sutton R. Mitochondrial injury in pancreatitis. Cell Calcium 2008; 44(1): 14-23.
[http://dx.doi.org/10.1016/j.ceca.2007.11.013] [PMID: 18207570]
[96]
Gukovsky I, Pandol SJ, Gukovskaya AS. Organellar dysfunction in the pathogenesis of pancreatitis. Antioxid Redox Signal 2011; 15(10): 2699-710.
[http://dx.doi.org/10.1089/ars.2011.4068] [PMID: 21834686]
[97]
Shalbueva N. Effects of oxidative alcohol metabolism on the mitochondrial permeability transition pore and necrosis in a mouse model of alcoholic pancreatitis. Gastroenterology 2013; 144(2): 437-46.
[http://dx.doi.org/10.1053/j.gastro.2012.10.037]
[98]
Mukherjee R, Mareninova OA, Odinokova IV, et al. Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: inhibition prevents acute pancreatitis by protecting production of ATP. Gut 2016; 65(8): 1333-46.
[http://dx.doi.org/10.1136/gutjnl-2014-308553] [PMID: 26071131]
[99]
Pallagi P, Madácsy T, Varga Á, Maléth J. Intracellular Ca2+ signalling in the pathogenesis of acute pancreatitis: recent advances and translational perspectives. Int J Mol Sci 2020; 21(11): 4005.
[http://dx.doi.org/10.3390/ijms21114005] [PMID: 32503336]
[100]
Chakroborty S, Goussakov I, Miller MB, Stutzmann GE. Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 2009; 29(30): 9458-70.
[http://dx.doi.org/10.1523/JNEUROSCI.2047-09.2009] [PMID: 19641109]
[101]
Müller M, Cárdenas C, Mei L, Cheung KH, Foskett JK. Constitutive cAMP response element binding protein (CREB) activation by Alzheimer’s disease presenilin-driven inositol trisphosphate receptor (InsP 3 R) Ca 2+ signaling. Proc Natl Acad Sci 2011; 108(32): 13293-8.
[http://dx.doi.org/10.1073/pnas.1109297108] [PMID: 21784978]
[102]
Zhang H, Wu L, Pchitskaya E, et al. Neuronal store-operated calcium entry and mushroom spine loss in amyloid precursor protein knock-in mouse model of Alzheimer’s disease. J Neurosci 2015; 35(39): 13275-86.
[http://dx.doi.org/10.1523/JNEUROSCI.1034-15.2015] [PMID: 26424877]
[103]
Scremin E, Agostini M, Leparulo A, Pozzan T, Greotti E, Fasolato C. ORAI2 down-regulation potentiates SOCE and decreases Aβ42 accumulation in human neuroglioma cells. Int J Mol Sci 2020; 21(15): 5288.
[http://dx.doi.org/10.3390/ijms21155288] [PMID: 32722509]
[104]
Putney JW. Forms and functions of store-operated calcium entry mediators, STIM and Orai. Adv Biol Regul 2018; 68: 88-96.
[http://dx.doi.org/10.1016/j.jbior.2017.11.006] [PMID: 29217255]
[105]
Moccia F, Zuccolo E, Soda T, et al. Stim and Orai proteins in neuronal Ca2+ signaling and excitability. Front Cell Neurosci 2015; 9: 153.
[http://dx.doi.org/10.3389/fncel.2015.00153] [PMID: 25964739]
[106]
Huang DX, Yu X, Yu WJ, et al. Calcium signaling regulated by cellular membrane systems and calcium homeostasis perturbed in Alzheimer’s disease. Front Cell Dev Biol 2022; 10: 834962.
[http://dx.doi.org/10.3389/fcell.2022.834962] [PMID: 35281104]
[107]
Stauderman KA. CRAC channels as targets for drug discovery and development. Cell Calcium 2018; 74: 147-59.
[http://dx.doi.org/10.1016/j.ceca.2018.07.005] [PMID: 30075400]
[108]
Tong BCK, Wu AJ, Li M, Cheung KH. Calcium signaling in Alzheimer’s disease & therapies. Biochim Biophys Acta Mol Cell Res 2018; 1865(11): 1745-60.
[http://dx.doi.org/10.1016/j.bbamcr.2018.07.018] [PMID: 30059692]
[109]
Rotariu D. Oxidative stress-Complex pathological issues concerning the hallmark of cardiovascular and metabolic disorders. Biomedicine & Pharmacotherapy. 2022; 152: p. 113238.
[110]
Behl T. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomedicine & Pharmacotherapy. 2022; 146: p. 112545.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy