Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

New Schiff Base Derived Organotin (IV) Complexes: Synthesis, Characterization, In vitro and In silico Biological Studies

Author(s): Manoj Kumar*, Priyanka Siwach, Harish Kumar Sharma, Hardeep Singh Tuli, Mehmet Varol, Anita Rani and Pallvi Aggarwal

Volume 22, Issue 5, 2024

Published on: 26 April, 2024

Article ID: e260424229420 Pages: 13

DOI: 10.2174/0122113525305623240409075331

open access plus

Abstract

Aims: The creation and testing of new Schiff base-based antibacterial organotin (IV) complexes were the objectives of this investigation.

Background: Due to developed resistance, antibiotics that were once often used to treat microorganisms are no longer effective against them. It is thought that organotin compounds synthesized from Schiff bases have significant pharmacological effectiveness and work well as antibacterial agents.

Methods: Thiocarbohydrazide and dehydroacetic acid were condensed to create the Schiff base, followed by processing with dialkyltin (IV) dichloride to synthesize the final product. Modern analytical techniques were used to clarify the compounds' probable structural details. The crystalline nature of the produced compounds was tested using PXRD.

Results: All of the compounds were thermally stable up to 300°C. All of the synthesized complexes showed potent antibacterial activity in the range of 250 to 400 μg/ml. Furthermore, the computational biology research showed that, in contrast to ligands, which had a binding energy of -7.3 to -7.4 kcal/mol, complexes interacted well with dihydropteroate synthase and DNA gyrase.

Conclusion: The current study offered a unique technique for synthesizing diorganotin (IV) derivatives of N-substituted Schiff bases that are physiologically active. The results show that the chemicals created are promising antibacterial mediators against diseases that affect humans in the modern world. It might also open the door to future studies on drug-resistant microorganisms that could have biological uses.

Graphical Abstract

[1]
Levison, M.E.; Levison, J.H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. North Am., 2009, 23(4), 791-815. [vii].
[http://dx.doi.org/10.1016/j.idc.2009.06.008] [PMID: 19909885]
[2]
Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic resistance in bacteria—A review. Antibiotics, 2022, 11(8), 1079.
[http://dx.doi.org/10.3390/antibiotics11081079] [PMID: 36009947]
[3]
Griffith, M.; Postelnick, M.; Scheetz, M. Antimicrobial stewardship programs: Methods of operation and suggested outcomes. Expert Rev. Anti Infect. Ther., 2012, 10(1), 63-73.
[http://dx.doi.org/10.1586/eri.11.153] [PMID: 22149615]
[4]
Chancey, S.T.; Zähner, D.; Stephens, D.S. Acquired inducible antimicrobial resistance in Gram-positive bacteria. Future Microbiol., 2012, 7(8), 959-978.
[http://dx.doi.org/10.2217/fmb.12.63] [PMID: 22913355]
[5]
Mahon, C.R.; Lehman, D.C.; Manuselis, G. Antimicrobial agent mechanisms of action and resistance. In: Textbook of Diagnostic Microbiology; Saunders: St. Louis, 2014; pp. 254-273.
[6]
Kargar, H.; Fallah-Mehrjardi, M.; Ashfaq, M.; Munawar, K.S.; Tahir, M.N.; Behjatmanesh-Ardakani, R.; Amiri Rudbari, H. Adabi Ardakani, A.; Sedighi-Khavidak, S. Zn(II) complexes containing O,N,N,O-donor Schiff base ligands: Synthesis, crystal structures, spectral investigations, biological activities, theoretical calculations and substitution effect on structures. J. Coord. Chem., 2021, 74(16), 2720-2740.
[http://dx.doi.org/10.1080/00958972.2021.1990271]
[7]
Joseyphus, R.S.; Nair, M.S. Antibacterial and antifungal studies on some schiff base complexes of zinc (II). Mycobiology, 2008, 36(2), 93-98.
[http://dx.doi.org/10.4489/MYCO.2008.36.2.093] [PMID: 23990740]
[8]
Kargar, H.; Fallah-Mehrjardi, M.; Behjatmanesh-Ardakani, R.; Amiri Rudbari, H.; Adabi Ardakani, A.; Sedighi-Khavidak, S.; Munawar, K.S.; Ashfaq, M.; Tahir, M.N. Synthesis, spectral characterization, crystal structures, biological activities, theoretical calculations and substitution effect of salicylidene ligand on the nature of mono and dinuclear Zn(II) Schiff base complexes. Polyhedron, 2022, 213, 115636.
[http://dx.doi.org/10.1016/j.poly.2021.115636]
[9]
Abdulghani, A.J.; Hussain, R.K. Synthesis and characterization of schiff base metal complexes derived from cefotaxime with 1<i>H</i>-indole-2,3-dione (Isatin) and 4-N,N-dimethyl-aminobenzaldehyde. Open J. Inorg. Chem., 2015, 5(4), 83-101.
[http://dx.doi.org/10.4236/ojic.2015.54010]
[10]
Abdel-Rahman, L.H.; El-Khatib, R.M.; Nassr, L.A.E.; Abu-Dief, A.M.; Ismael, M.; Seleem, A.A. Metal based pharmacologically active agents: Synthesis, structural characterization, molecular modeling, CT-DNA binding studies and in vitro antimicrobial screening of iron(II) bromosalicylidene amino acid chelates. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 366-378.
[http://dx.doi.org/10.1016/j.saa.2013.07.056] [PMID: 24001978]
[11]
Ibrahim, M.N.; Sharif, S.A.; El-Tajory, A.N.; Elamari, A.A. Synthesis and antibacterial activities of some schiff bases. E-J. Chem., 2011, 8, 212-216.
[http://dx.doi.org/10.1155/2011/258340]
[12]
Shujah, S.; Zia-ur-Rehman,; Muhammad, N.; Ali, S.; Khalid, N.; Tahir, M.N. New dimeric and supramolecular organotin(IV) complexes with a tridentate schiff base as potential biocidal agents. J. Organomet. Chem., 2011, 696(15-16), 2772-2781.
[http://dx.doi.org/10.1016/j.jorganchem.2011.04.010]
[13]
Yao, M.; Ding, Y.; Ma, X.; Deng, Z.; Zhong, M.; Yang, Z. Synthesis and crystal structures of antimony(III) and tin(IV) compounds with an amino-amido-silane ligand. Inorg. Chim. Acta, 2017, 455, 271-275.
[http://dx.doi.org/10.1016/j.ica.2016.10.027]
[14]
Singh, J.; Jaiswal, A.; Kumar Pal, A. Some neoteric tin complexes used in biological properties. Am. J. Pharmacol. Sci., 2023, 11(1), 21-27.
[http://dx.doi.org/10.12691/ajps-11-1-4]
[15]
Romero-Chávez, M.M.; Pineda-Urbina, K.; Pérez, D.J.; Obledo-Benicio, F.; Flores-Parra, A.; Gómez-Sandoval, Z.; Ramos-Organillo, Á. Organotin(IV) compounds derived from ibuprofen and cinnamic acids, an alternative into design of anti-inflammatory by the cyclooxygenases (COX-1 and COX-2) pathway. J. Organomet. Chem., 2018, 862, 58-70.
[http://dx.doi.org/10.1016/j.jorganchem.2018.02.049]
[16]
Tariq, M.; Sirajuddin, M.; Ali, S.; Khalid, N.; Tahir, M.N.; Khan, H.; Ansari, T.M. Pharmacological investigations and Petra/Osiris/Molinspiration (POM) analyses of newly synthesized potentially bioactive organotin(IV) carboxylates. J. Photochem. Photobiol. B, 2016, 158, 174-183.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.02.028] [PMID: 26974578]
[17]
Da Silva Santos, A.F.; Da Silveira Maia, J.R. antimicrobial effect of organotin compounds derivedfrom phenolic schiff bases. J. Eng. Exact Sci., 2019, 5(5), 0452-0459.
[http://dx.doi.org/10.18540/jcecvl5iss5pp0452-0459]
[18]
Despaigne, A.A.R.; Vieira, L.F.; Mendes, I.C.; Costa, F.B.; Speziali, N.L.; Beraldo, H. Organotin(IV) complexes with 2-acetylpyridine benzoyl hydrazones: Antimicrobial activity. J. Braz. Chem. Soc., 2010, 21(7), 1247-1257.
[http://dx.doi.org/10.1590/S0103-50532010000700012]
[19]
Smolyaninov, I.V.; Poddel’sky, A.I.; Burmistrova, D.A.; Voronina, Y.K.; Pomortseva, N.P.; Polovinkina, M.A.; Almyasheva, N.R.; Zamkova, M.A.; Berberova, N.T.; Eremenko, I.L. The synthesis and biological activity of organotin complexes with thio-schiff bases bearing phenol fragments. Int. J. Mol. Sci., 2023, 24(9), 8319.
[http://dx.doi.org/10.3390/ijms24098319] [PMID: 37176027]
[20]
Naz, N.; Sirajuddin, M.; Haider, A.; Abbas, S.M.; Ali, S.; Wadood, A.; Ghufran, M.; Rehman, G.; Mirza, B. Synthesis, characterization, biological screenings and molecular docking study of Organotin(IV) derivatives of 2,4-dichlorophenoxyacetic acid. J. Mol. Struct., 2019, 1179, 662-671.
[http://dx.doi.org/10.1016/j.molstruc.2018.11.011]
[21]
Nath, M.; Saini, P.K. Chemistry and applications of organotin(iv) complexes of Schiff bases. Dalton Trans., 2011, 40(27), 7077-7121.
[http://dx.doi.org/10.1039/c0dt01426e] [PMID: 21494719]
[22]
Devi, J.; Kumar, B.; Taxak, B. Recent advancements of organotin(IV) complexes derived from hydrazone and thiosemicarbazone ligands as potential anticancer agents. Inorg. Chem. Commun., 2022, 139, 109208.
[http://dx.doi.org/10.1016/j.inoche.2022.109208]
[23]
Pachwania, S.; Devi, J.; Taxak, B.; Boora, A. Synthesis, characterization, and biological evaluation of organotin(IV) complexes derived from Schiff bases of 3-methoxybenzohydrazide. Phosphorus Sulfur Silicon Relat. Elem., 2023, 198(2), 102-113.
[http://dx.doi.org/10.1080/10426507.2022.2116637]
[24]
Basu Baul, T.S. Antimicrobial activity of organotin(IV) compounds: A review. Appl. Organomet. Chem., 2008, 22(4), 195-204.
[http://dx.doi.org/10.1002/aoc.1378]
[25]
Win, Y.F.; Choong, C.S.; Dang, J.C.; Iqbal, M.A.; Quah, C.K.; Kanuparth, S.R.; Haque, R.A.; Ahamed, M.B.K.; Teoh, S.G. Synthesis, crystal structures and spectroscopic properties of two new organotin (IV) complexes and their antiproliferative effect against cancerous and non-cancerous cells. C. R. Chim., 2015, 18(2), 137-148.
[http://dx.doi.org/10.1016/j.crci.2014.06.001]
[26]
Sirajuddin, M.; McKee, V.; Tariq, M.; Ali, S. Newly designed organotin(IV) carboxylates with peptide linkage: Synthesis, structural elucidation, physicochemical characterizations and pharmacological investigations. Eur. J. Med. Chem., 2018, 143, 1903-1918.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.001] [PMID: 29133050]
[27]
Maurya, M.R.; Agarwal, S.; Bader, C.; Rehder, D. Dioxovanadium (V) complexes of ONO donor ligands derived from pyridoxal and hydrazides: Models of vanadate‐dependent haloperoxidases. Eur. J. Inorg. Chem., 2005, 2005(1), 147-157.
[http://dx.doi.org/10.1002/ejic.200400211]
[28]
Kumar, M.; Abbas, Z.; Tuli, H.S.; Rani, A. Organotin complexes with promising therapeutic potential. Curr. Pharmacol. Rep., 2020, 6(4), 167-181.
[http://dx.doi.org/10.1007/s40495-020-00222-9]
[29]
Hadi, S.; Lestari, S.; Suhartati, T.; Qudus, H.I.; Rilyanti, M.; Herasari, D.; Yandri, Y. Synthesis and comparative study on the antibacterial activity organotin(IV) 3-hydroxybenzoate compounds. Pure Appl. Chem., 2021, 93(5), 623-628.
[http://dx.doi.org/10.1515/pac-2020-1103]
[30]
Adeyemi, J.; Onwudiwe, D. Organotin (IV) dithiocarbamate complexes: Chemistry and biological activity. Molecules, 2018, 23(10), 2571.
[http://dx.doi.org/10.3390/molecules23102571] [PMID: 30304779]
[31]
Singh, V.P.; Katiyar, A.; Singh, S. Synthesis, characterization of some transition metal(II) complexes of acetone p-amino acetophenone salicyloyl hydrazone and their anti microbial activity. Biometals, 2008, 21(4), 491-501.
[http://dx.doi.org/10.1007/s10534-008-9136-9] [PMID: 18305909]
[32]
Khan, N.; Farina, Y.; Mun, L.K.; Rajab, N.F.; Awang, N. Triorganotin(IV) complexes with o-substituted arylhydroxamates: Synthesis, spectroscopic characterization, X-ray structures and in vitro cytotoxic activities. J. Organomet. Chem., 2014, 763-764, 26-33.
[http://dx.doi.org/10.1016/j.jorganchem.2014.04.015]
[33]
Malhotra, R.; Ravesh, A.; Singh, V. Synthesis, characterization, antimicrobial activities, and QSAR studies of organotin(IV) complexes. Phosphorus Sulfur Silicon Relat. Elem., 2017, 192(1), 0.
[http://dx.doi.org/10.1080/10426507.2016.1225054]
[34]
Shah, S.; Ashfaq, M.; Waseem, A.; Ahmed, M.; Najam, T.; Shaheen, S.; Rivera, G. Synthesis and biological activities of organotin(IV) complexes as antitumoral and antimicrobial agents. A review. Mini Rev. Med. Chem., 2015, 15(5), 406-426.
[http://dx.doi.org/10.2174/138955751505150408142958] [PMID: 25910654]
[35]
Duaa, G.; Zahraa, R.; Emad, Y. A review of organotin compounds: Chemistry and applications. Arch. Org. Inorg. Chem. Sci., 2018, 3, 344-352.
[36]
Valentina, U.; Alexandra-Cristina, M. Flavonoid complexes as promising anticancer metallodrugs; Flavonoids—From Biosyn Thesis to Human Health, IntechOpen: London, UK, 2017, pp. 305-323.
[37]
Kurzwernhart, A.; Mokesch, S.; Klapproth, E.; Adib-Ravazi, M.S.; Jakupec, M.A.; Hartinger, C.G.; Kandioller, W.; Keppler, B.K. Flavo-noid‐based organometallics with different metal centers – Investigations of the effects on reactivity and cytotoxicity. Eur. J. Inorg. Chem., 2016, 2016(2), 240-246.
[http://dx.doi.org/10.1002/ejic.201501020]
[38]
Joshi, R.; Tomar, N.; Pokharia, S.; Joshi, I. Recent advancements in organotin(IV) complexes of drugs: Synthesis, characterization, and application. Results in Chemistry, 2023, 5, 100955.
[http://dx.doi.org/10.1016/j.rechem.2023.100955]
[39]
Tariq, M.; Muhammad, N.; Sirajuddin, M.; Ali, S.; Shah, N.A.; Khalid, N.; Tahir, M.N.; Khan, M.R. Synthesis, spectroscopic characterization, X-ray structures, biological screenings, DNA interaction study and catalytic activity of organotin(IV) 3-(4-flourophenyl)-2-methylacrylic acid derivatives. J. Organomet. Chem., 2013, 723, 79-89.
[http://dx.doi.org/10.1016/j.jorganchem.2012.09.011]
[40]
Dey, D.K.; Samanta, B.; Lycka, A.; Dahlenburg, L. Simple synthesis, characterization and structure of diorganotin(IV) complexes containing the N-(2-salicylidene)-N′-benzoylhydrazone ligand. Zeitschrift fur Naturforschung - Section B. Z. Naturforsch. B. J. Chem. Sci., 2003, 58(4), 336-344.
[http://dx.doi.org/10.1515/znb-2003-0415]
[41]
Zhou, J.; Wu, D.; Guo, D. Optimization of the production of thiocarbohydrazide using the Taguchi method. J. Chem. Technol. Biotechnol., 2010, 85(10), 1402-1406.
[http://dx.doi.org/10.1002/jctb.2446]
[42]
Chilwal, A.; Malhotra, P.; Narula, A.K. Synthesis, characterization, thermal, and antibacterial studies of organotin(Iv) complexes of indole-3-butyric acid and indole-3-propionic acid. Phosphorus Sulfur Silicon Relat. Elem., 2014, 189(3), 410-421.
[http://dx.doi.org/10.1080/10426507.2013.819871]
[43]
Abbas, Z.; Tuli, H.S.; Varol, M.; Sharma, S.; Sharma, H.K.; Aggarwal, P.; Kumar, M. Organotin (IV) complexes derived from Schiff base 1,3-bis[(1E)-1-(2-hydroxyphenyl)ethylidene] thiourea: synthesis, spectral investigation and biological study to molecular docking. J. Iranian Chem. Soc., 2022, 19(5), 1923-1935.
[http://dx.doi.org/10.1007/s13738-021-02430-6]
[44]
Barba, V.; Vega, E.; Luna, R.; Höpfl, H.; Beltrán, H.I.; Zamudio-Rivera, L.S. Structural and conformational analysis of neutral dinuclear diorganotin(IV) complexes derived from hexadentate Schiff base ligands. J. Organomet. Chem., 2007, 692(4), 731-739.
[http://dx.doi.org/10.1016/j.jorganchem.2006.09.064]
[45]
Mukherjee, S.; Reddy B, V.P.; Mitra, I.; Saha,, R.; K, J.C.B.; Reddy Dodda, S.; Linert, W.; Moi, S.C. In vitro model reaction of sulfur containing bio-relevant ligands with Pt(II) complex: Kinetics, mechanism, bioactivity and computational studies. RSC Advances, 2015, 5(94), 76987-76999.
[http://dx.doi.org/10.1039/C5RA15740D]
[46]
Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model., 2021, 61(8), 3891-3898.
[http://dx.doi.org/10.1021/acs.jcim.1c00203] [PMID: 34278794]
[47]
Macindoe, G.; Mavridis, L.; Venkatraman, V.; Devignes, M.D.; Ritchie, D.W. HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res., 2010, 38(Web Server), W445-W449.
[http://dx.doi.org/10.1093/nar/gkq311] [PMID: 20444869]
[48]
Fani, S.; Kamalidehghan, B.; Lo, K.M.; Mohd Hashim, N.; Ahmadipour, F.; May Chow, K. Synthesis, structural characterization, and anticancer activity of a monobenzyltin compound against MCF-7 breast cancer cells. Drug Des. Devel. Ther., 2015, 9, 6191-6201.
[http://dx.doi.org/10.2147/DDDT.S87064] [PMID: 26648695]
[49]
Kumar, G.; Devi, S.; Johari, R.; Kumar, D. Synthesis, spectral characterization and antimicrobial evaluation of Schiff base Cr (III), Mn (III) and Fe (III) macrocyclic complexes. Eur. J. Med. Chem., 2012, 52, 269-274.
[http://dx.doi.org/10.1016/j.ejmech.2012.03.025] [PMID: 22503655]
[50]
Yin, H.D.; Hong, M.; Li, G.; Wang, D.Q. Synthesis, characterization and structural studies of diorganotin(IV) complexes with Schiff base ligand salicylaldehyde isonicotinylhydrazone. J. Organomet. Chem., 2005, 690(16), 3714-3719.
[http://dx.doi.org/10.1016/j.jorganchem.2005.04.049]
[51]
Devi, J.; Yadav, J.; Kumar, D.; Jindal, D.K.; Basu, B. Synthesis, spectral analysis and in vitro cytotoxicity of diorganotin (IV) complexes derived from indole-3-butyric hydrazide. App. Organomet. Chem., 2020, 34(10), e5815.
[http://dx.doi.org/10.1002/aoc.5815]
[52]
Pettinari, C.; Lorenzotti, A.; Sclavi, G.; Cingolani, A.; Rivarola, E.; Colapietro, M.; Cassetta, A. Synthesis and spectroscopic investigations (IR, NMR and Mössbauer) of tin(IV) and organotin(IV) derivatives of bis(pyrazol-1-yl) alkanes: X-ray crystal structures of bis(4-methylpyrazol-1-yl) methane and its dimethyltin(IV) dichloride adduct. J. Organomet. Chem., 1995, 496(1), 69-85.
[http://dx.doi.org/10.1016/0022-328X(95)05445-U]
[53]
Shujha, S.; Shah, A.; Zia-ur-Rehman,; Muhammad, N.; Ali, S.; Qureshi, R.; Khalid, N.; Meetsma, A. Diorganotin(IV) derivatives of ONO tridentate Schiff base: Synthesis, crystal structure, in vitro antimicrobial, anti-leishmanial and DNA binding studies. Eur. J. Med. Chem., 2010, 45(7), 2902-2911.
[http://dx.doi.org/10.1016/j.ejmech.2010.03.015] [PMID: 20399542]
[54]
Pettinari, C.; Marchetti, F.; Pettinari, R.; Martini, D.; Drozdov, A.; Troyanov, S. Synthesis and characterisation of tin(IV) and organotin(IV) derivatives 2-[(2-hydroxyphenyl)imino]methylphenol. Inorg. Chim. Acta, 2001, 325(1-2), 103-114.
[http://dx.doi.org/10.1016/S0020-1693(01)00654-5]
[55]
Shaheen, F.; Sirajuddin, M.; Ali, S.; Zia-ur-Rehman,; Dyson, P.J.; Shah, N.A.; Tahir, M.N Organotin(IV) 4-(benzo[d][1,3]dioxol-5-ylmethyl)piperazine-1-carbodithioates: Synthesis, characterization and biological activities. J. Organomet. Chem., 2018, 856, 13-22.
[http://dx.doi.org/10.1016/j.jorganchem.2017.12.010]
[56]
Camacho-Camacho, C.; Rojas-Oviedo, I.; Garza-Ortiz, A.; Toscano, R.A.; Sánchez-Sánchez, L.; Cardenas, J.; López-Muñoz, H. Tributyltin(IV) Schiff base complexes with amino acid derivatives: synthesis, characterization and biological activity. Appl. Organomet. Chem., 2016, 30(4), 199-207.
[http://dx.doi.org/10.1002/aoc.3417]
[57]
Zhang, L.; Zhou, Y.; Zeng, X.; Vittal, J.J.; You, X. Synthesis, molecular, and crystal structure of a new organotin/Schiff-base complex C28H31Cl3NO4Sn. J. Chem. Crystallogr., 2000, 30(4), 259-263.
[http://dx.doi.org/10.1023/A:1009547207486]
[58]
Devi, J.; Devi, S.; Kumar, A. Synthesis, characterization, and quantitative structure–activity relationship studies of bioactive dehydroacetic acid and amino ether Schiff base complexes. Heteroatom Chem., 2016, 27(6), 361-371.
[http://dx.doi.org/10.1002/hc.21347]
[59]
Singh, K.; Dharampal, P.V.; Parkash, V. Synthesis, spectroscopic studies, and in vitro antifungal activity of organosilicon (IV) and organotin (IV) complexes of 4-amino-5-mercapto-3-methyl-S-triazole Schiff bases. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183(11), 2784-2794.
[http://dx.doi.org/10.1080/10426500802013577]
[60]
Mun, L.S.; Hapipah, M.A.; Shin, S.K.; Sri Nurestri, A.M.; Mun, L.K. Synthesis, structural characterization and in vitro cytotoxicity of diorganotin complexes with Schiff base ligands derived from 3‐hydroxy‐2‐naphthoylhydrazide. Appl. Organomet. Chem., 2012, 26(6), 310-319.
[http://dx.doi.org/10.1002/aoc.2862]
[61]
Wagler, J.; Böhme, U.; Brendler, E.; Thomas, B.; Goutal, S.; Mayr, H.; Kempf, B.; Remennikov, G.Y.; Roewer, G. Switching between penta- and hexacoordination with salen-silicon-complexes. Inorg. Chim. Acta, 2005, 358(14), 4270-4286.
[http://dx.doi.org/10.1016/j.ica.2005.03.036]
[62]
Isele, K.; Broughton, V.; Matthews, C.J.; Williams, A.F.; Bernardinelli, G.; Franz, P.; Decurtins, S. 1,2-Bis(2-benzimidazolyl)-1,2-ethanediol, a chiral, tridentate, facially coordinating ligand. J. Chem. Soc., Dalton Trans., 2002, (20), 3899-3905.
[http://dx.doi.org/10.1039/b203229e]
[63]
Arjmand, F.; Sayeed, F.; Parveen, S. In vitro binding studies of organotin(IV) complexes of 1,2-bis(1H-benzimidazol-2-yl)ethane-1,2-diol with CT-DNA and nucleotides (5′-GMP and 5′-TMP): Effect of the ancillary ligand on the binding propensity. J. Organomet. Chem., 2011, 696(24), 3836-3845.
[http://dx.doi.org/10.1016/j.jorganchem.2011.08.007]
[64]
Shujah, S.; Zia-ur-Rehman,; Muhammad, N.; Shah, A.; Ali, S.; Khalid, N. Meetsma, A. Bioactive hepta- and penta-coordinated supramolecular diorganotin(IV) Schiff bases. J. Organomet. Chem., 2013, 741-742, 59-66.
[http://dx.doi.org/10.1016/j.jorganchem.2013.05.019]
[65]
Koparde, S.; Hosamani, K.M.; Kulkarni, V.; Joshi, S.D. Synthesis of coumarin-piperazine derivatives as potent anti-microbial and anti-inflammatory agents, and molecular docking studies. Chemical Data Collections, 2018, 15-16, 197-206.
[http://dx.doi.org/10.1016/j.cdc.2018.06.001]
[66]
Abbas, Z.; Kumar, M.; Tuli, H.S.; Janahi, E.M.; Haque, S.; Harakeh, S.; Dhama, K.; Aggarwal, P.; Varol, M.; Rani, A.; Sharma, S. Synthesis, structural investigations, and in vitro/in silico bioactivities of flavonoid substituted biguanide: A novel schiff base and its diorganotin (IV) complexes. Molecules, 2022, 27(24), 8874.
[http://dx.doi.org/10.3390/molecules27248874] [PMID: 36558007]
[67]
Gilad, Y.; Senderowitz, H. Docking studies on DNA intercalators. J. Chem. Inf. Model., 2014, 54(1), 96-107.
[http://dx.doi.org/10.1021/ci400352t] [PMID: 24303988]
[68]
Cornard, J.P.; Merlin, J.C. Spectroscopic and structural study of complexes of quercetin with Al(III). J. Inorg. Biochem., 2002, 92(1), 19-27.
[http://dx.doi.org/10.1016/S0162-0134(02)00469-5] [PMID: 12230984]
[69]
Minovski, N.; Perdih, A.; Novic, M.; Solmajer, T. Cluster‐based molecular docking study for in silico identification of novel 6‐fluoroquinolones as potential inhibitors against Mycobacterium tuberculosis. J. Comput. Chem., 2013, 34(9), 790-801.
[http://dx.doi.org/10.1002/jcc.23205] [PMID: 23280926]
[70]
Kumar, M.; Aggarwal, P.; Varol, M.; Sharma, S.; Rani, A.; Abbas, Z.; Prakash, V.; Tuli, H.S. Synthesis, spectral investigations, biological potential and molecular docking study of novel schiff base and its transition metal complexes. Antiinfect. Agents, 2022, 20(1), e041121197661.
[http://dx.doi.org/10.2174/2211352519666211104090749]
[71]
Ahsan, M.J.; Yusuf, M.; Salahuddin, M.A.; Bakht, M.; Taleuzzaman, B.; Vashishtha, A. Thiriveedhi. Green synthesis, biological evaluation, and molecular docking of 4′-(Substituted Phenyl) Spiro [Indoline-3, 3′-[1, 2, 4] Triazolidine]-2, 5′-Diones. Polycycl. Aromat. Compd., 2023, 43(6), 5391-5403.
[http://dx.doi.org/10.1080/10406638.2022.2101491]
[72]
Patil, T.D.; Amrutkar, S.V. Novel benzotriazole acetamide derivatives as benzo-fused five- membered nitrogen-containing heterocycles - in silico screening, molecular docking, and synthesis. Lett. Drug Des. Discov., 2022, 19(4), 337-349.
[http://dx.doi.org/10.2174/1570180818666211007110509]

© 2024 Bentham Science Publishers | Privacy Policy