Abstract
Background: Crisaborole (CB), a boron-based compound, is the first topical PDE4 inhibitor to be approved by the US Food and Drug Administration (2016) for the treatment of Atopic Dermatitis. It is marketed as a 2% ointment (Eucrisa, Pfizer). However, CB is insoluble in water; therfore, CB glycersomes were formulated to enhance its permeation flux across the skin.
Objective: We developed a glycerosomal gel of CB and compared its in vitro release and permeation flux with the 2% conventional ointment.
Methods: Glycerosomes were prepared using thin film hydration method employing CB, soya phosphatidylcholine, and cholesterol. The formed film was further hydrated employing a mixture of phosphate buffer pH 7.4 /glycerin solution containing varying percentages (20,30, 40, and 50 %) of glycerol. The glycerosomes obtained were characterized by their size, polydispersity index (PDI), and Zeta potential. The entrapment efficiency of the optimized formulation (F1) was determined. The in vitro release of F1 was compared with its 2% conventional ointment. F1 was further incorporated into carbopol 934 P gel. The gel was characterized by pH, viscosity, spreadability, and drug content. The permeability flux of the glycerosomal gel was compared with its 2% conventional ointment.
Results: The optimized CB glycerosomes had a vesicle size of 137.5 ± 50.58 nm, PDI 0.342, and zeta potential -65.4 ± 6.75 mV. CB glycerosomal gel demonstrated a 2.13-fold enhancement in the permeation flux.
Conclusion: It can thereby be concluded that glycerosomes can be an effective delivery system to enhance the penetration of CB across the skin.
Graphical Abstract
[1]
Leite-Silva VR, de Almeida MM, Fradin A, Grice JE, Roberts MS. Delivery of drugs applied topically to the skin. Expert Rev Dermatol 2012; 7(4): 383-97.
[http://dx.doi.org/10.1586/edm.12.32]
[http://dx.doi.org/10.1586/edm.12.32]
[2]
Gupta M, Agrawal U, Vyas SP. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin Drug Deliv 2012; 9(7): 783-804.
[http://dx.doi.org/10.1517/17425247.2012.686490] [PMID: 22559240]
[http://dx.doi.org/10.1517/17425247.2012.686490] [PMID: 22559240]
[3]
Ananthapadmanabhan KP, Mukherjee S, Chandar P. Stratum corneum fatty acids: Their critical role in preserving barrier integrity during cleansing. Int J Cosmet Sci 2013; 35(4): 337-45.
[http://dx.doi.org/10.1111/ics.12042] [PMID: 23363400]
[http://dx.doi.org/10.1111/ics.12042] [PMID: 23363400]
[4]
Bolzinger MA, Briançon S, Pelletier J, Chevalier Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr Opin Colloid Interface Sci 2012; 17(3): 156-65.
[http://dx.doi.org/10.1016/j.cocis.2012.02.001]
[http://dx.doi.org/10.1016/j.cocis.2012.02.001]
[5]
Jhawat VC, Saini V, Kamboj S, Maggon N. Transdermal drug delivery systems: Approaches and advancements in drug absorption through skin. Int J Pharm Sci Rev Res 2013; 20(1): 47-56.
[6]
Flynn GL, Stewart B. Percutaneous drug penetration: Choosing candidates for transdermal development. Drug Dev Res 1988; 13(2-3): 169-85.
[http://dx.doi.org/10.1002/ddr.430130209]
[http://dx.doi.org/10.1002/ddr.430130209]
[7]
Ceschel G, Bergamante V, Maffei P, et al. Solubility and transdermal permeation properties of a dehydroepiandrosterone cyclodextrin complex from hydrophilic and lipophilic vehicles. Drug Deliv 2005; 12(5): 275-80.
[http://dx.doi.org/10.1080/10717540500176563] [PMID: 16188726]
[http://dx.doi.org/10.1080/10717540500176563] [PMID: 16188726]
[8]
Abraham MH, Chadha HS, Mitchell RC. The factors that influence skin penetration of solutes. J Pharm Pharmacol 2011; 47(1): 8-16.
[http://dx.doi.org/10.1111/j.2042-7158.1995.tb05725.x]
[http://dx.doi.org/10.1111/j.2042-7158.1995.tb05725.x]
[9]
Liu X, Testa B, Fahr A. Lipophilicity and its relationship with passive drug permeation. Pharm Res 2011; 28(5): 962-77.
[http://dx.doi.org/10.1007/s11095-010-0303-7] [PMID: 21052797]
[http://dx.doi.org/10.1007/s11095-010-0303-7] [PMID: 21052797]
[10]
Couto A, Fernandes R, Cordeiro MNS, Reis SS, Ribeiro RT, Pessoa AM. Dermic diffusion and stratum corneum: A state of the art review of mathematical models. J Control Release 2014; 177: 74-83.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.005] [PMID: 24362041]
[http://dx.doi.org/10.1016/j.jconrel.2013.12.005] [PMID: 24362041]
[11]
Barbeiro S, Ferreira JA. Coupled vehicle–skin models for drug release. Comput Methods Appl Mech Eng 2009; 198(27-29): 2078-86.
[http://dx.doi.org/10.1016/j.cma.2009.02.002]
[http://dx.doi.org/10.1016/j.cma.2009.02.002]
[12]
Nielsen JB, Benfeldt E, Holmgaard R. Penetration through the skin barrier. Curr Probl Dermatol 2016; 49: 103-11.
[http://dx.doi.org/10.1159/000441549] [PMID: 26844902]
[http://dx.doi.org/10.1159/000441549] [PMID: 26844902]
[13]
Bolla PK, Clark BA, Juluri A, Cheruvu HS, Renukuntla J. Evaluation of formulation parameters on permeation of ibuprofen from topical formulations using Strat-M® membrane. Pharmaceutics 2020; 12(2): 151.
[http://dx.doi.org/10.3390/pharmaceutics12020151] [PMID: 32069850]
[http://dx.doi.org/10.3390/pharmaceutics12020151] [PMID: 32069850]
[14]
Narula A, Sabra R, Li N. Mechanisms and extent of enhanced passive permeation by colloidal drug particles. Mol Pharm 2022; 19(9): 3085-99.
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00124] [PMID: 35998304]
[http://dx.doi.org/10.1021/acs.molpharmaceut.2c00124] [PMID: 35998304]
[15]
Yang Y, Sunoqrot S, Stowell C, et al. Effect of size, surface charge, and hydrophobicity of poly(amidoamine) dendrimers on their skin penetration. Biomacromolecules 2012; 13(7): 2154-62.
[http://dx.doi.org/10.1021/bm300545b] [PMID: 22621160]
[http://dx.doi.org/10.1021/bm300545b] [PMID: 22621160]
[16]
Yu YQ, Yang X, Wu XF, Fan YB. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front Bioeng Biotechnol 2021; 9: 646554.
[http://dx.doi.org/10.3389/fbioe.2021.646554] [PMID: 33855015]
[http://dx.doi.org/10.3389/fbioe.2021.646554] [PMID: 33855015]
[17]
Chatterjee B, Reddy A, Santra M, Khamanga S. Amorphization of drugs for transdermal delivery-a recent update. Pharmaceutics 2022; 14(5): 983.
[http://dx.doi.org/10.3390/pharmaceutics14050983] [PMID: 35631568]
[http://dx.doi.org/10.3390/pharmaceutics14050983] [PMID: 35631568]
[18]
Bhutani P, Joshi G, Raja N, et al. US FDA approved drugs from 2015–June 2020: A perspective. J Med Chem 2021; 64(5): 2339-81.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01786] [PMID: 33617716]
[http://dx.doi.org/10.1021/acs.jmedchem.0c01786] [PMID: 33617716]
[19]
Zane LT, Chanda S, Jarnagin K, Nelson DB, Spelman L, Gold LFS. Crisaborole and its potential role in treating atopic dermatitis: Overview of early clinical studies. Immunotherapy 2016; 8(8): 853-66.
[http://dx.doi.org/10.2217/imt-2016-0023] [PMID: 27283509]
[http://dx.doi.org/10.2217/imt-2016-0023] [PMID: 27283509]
[20]
Paton DM. Crisaborole: Phosphodiesterase inhibitor for treatment of atopic dermatitis. Drugs Today 2017; 53(4): 239-45.
[http://dx.doi.org/10.1358/dot.2017.53.4.2604174] [PMID: 28492291]
[http://dx.doi.org/10.1358/dot.2017.53.4.2604174] [PMID: 28492291]
[21]
Cheape AC, Murrell DF. 2% Crisaborole topical ointment for the treatment of mild-to-moderate atopic dermatitis. Expert Rev Clin Immunol 2017; 13(5): 415-23.
[http://dx.doi.org/10.1080/1744666X.2017.1304820] [PMID: 28290219]
[http://dx.doi.org/10.1080/1744666X.2017.1304820] [PMID: 28290219]
[22]
Ansari MN, Soliman GA, Rehman NU, Anwer MK. Crisaborole loaded nanoemulsion based chitosan gel: Formulation, physicochemical characterization and wound healing studies. Gels 2022; 8(5): 318.
[http://dx.doi.org/10.3390/gels8050318] [PMID: 35621616]
[http://dx.doi.org/10.3390/gels8050318] [PMID: 35621616]
[23]
Fantini A, Demurtas A, Nicoli S, Padula C, Pescina S, Santi P. In vitro skin retention of crisaborole after topical application. Pharmaceutics 2020; 12(6): 491.
[http://dx.doi.org/10.3390/pharmaceutics12060491] [PMID: 32481663]
[http://dx.doi.org/10.3390/pharmaceutics12060491] [PMID: 32481663]
[24]
Roy P, Ghosh A. Progress on cocrystallization of poorly soluble NME’s in the last decade. CrystEngComm 2020; 22(42): 6958-74.
[http://dx.doi.org/10.1039/D0CE01276A]
[http://dx.doi.org/10.1039/D0CE01276A]
[25]
Ramanunny AK, Wadhwa S, Gulati M, et al. Nanocarriers for treatment of dermatological diseases: Principle, perspective and practices. Eur J Pharmacol 2021; 890: 173691.
[http://dx.doi.org/10.1016/j.ejphar.2020.173691] [PMID: 33129787]
[http://dx.doi.org/10.1016/j.ejphar.2020.173691] [PMID: 33129787]
[26]
Khan N, Harun M, Nawaz A, Harjoh N, Wong T. Nanocarriers and their actions to improve skin permeability and transdermal drug delivery. Curr Pharm Des 2015; 21(20): 2848-66.
[http://dx.doi.org/10.2174/1381612821666150428145216] [PMID: 25925113]
[http://dx.doi.org/10.2174/1381612821666150428145216] [PMID: 25925113]
[27]
Korting HC, Schäfer-Korting M. Carriers in the topical treatment of skin disease. Handb Exp Pharmacol 2010; 197(197): 435-68.
[http://dx.doi.org/10.1007/978-3-642-00477-3_15] [PMID: 20217539]
[http://dx.doi.org/10.1007/978-3-642-00477-3_15] [PMID: 20217539]
[28]
Cláudia Paiva-Santos A, Gama M, Peixoto D, et al. Nanocarrier based dermopharmaceutical formulations for the topical management of atopic dermatitis. Int J Pharm 2022; 618: 121656.
[http://dx.doi.org/10.1016/j.ijpharm.2022.121656] [PMID: 35278601]
[http://dx.doi.org/10.1016/j.ijpharm.2022.121656] [PMID: 35278601]
[29]
Vogt A, Wischke C, Neffe AT, Ma N, Alexiev U, Lendlein A. Nanocarriers for drug delivery into and through the skin — Do existing technologies match clinical challenges? J Control Release 2016; 242: 3-15.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.027] [PMID: 27449743]
[http://dx.doi.org/10.1016/j.jconrel.2016.07.027] [PMID: 27449743]
[30]
Zhou X, Hao Y, Yuan L, et al. Nano-formulations for transdermal drug delivery: A review. Chin Chem Lett 2018; 29(12): 1713-24.
[http://dx.doi.org/10.1016/j.cclet.2018.10.037]
[http://dx.doi.org/10.1016/j.cclet.2018.10.037]
[31]
Sala M, Diab R, Elaissari A, Fessi H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int J Pharm 2018; 535(1-2): 1-17.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.046] [PMID: 29111097]
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.046] [PMID: 29111097]
[32]
Priya S, Desai VM, Singhvi G. Surface modification of lipid-based nanocarriers: A potential approach to enhance targeted drug delivery. ACS Omega 2023; 8(1): 74-86.
[http://dx.doi.org/10.1021/acsomega.2c05976] [PMID: 36643539]
[http://dx.doi.org/10.1021/acsomega.2c05976] [PMID: 36643539]
[33]
Khan MS, Mohapatra S, Gupta V, et al. Potential of lipid-based nanocarriers against two major barriers to drug delivery—skin and blood–brain barrier. Membranes 2023; 13(3): 343.
[http://dx.doi.org/10.3390/membranes13030343] [PMID: 36984730]
[http://dx.doi.org/10.3390/membranes13030343] [PMID: 36984730]
[34]
Singh R, Zeeshan F, Srivastava D, Awasthi H. A discursive review of recent development and patents on glycerosomes. Recent Pat Nanotechnol 2023; 17(3): 183-9.
[http://dx.doi.org/10.2174/1872210516666220328124450] [PMID: 35346018]
[http://dx.doi.org/10.2174/1872210516666220328124450] [PMID: 35346018]
[35]
Manca ML, Zaru M, Manconi M, et al. Glycerosomes: A new tool for effective dermal and transdermal drug delivery. Int J Pharm 2013; 455(1-2): 66-74.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.060] [PMID: 23911913]
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.060] [PMID: 23911913]
[36]
Lai F, Caddeo C, Manca ML, Manconi M, Sinico C, Fadda AM. What’s new in the field of phospholipid vesicular nanocarriers for skin drug delivery. Int J Pharm 2020; 583: 119398.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119398] [PMID: 32376441]
[http://dx.doi.org/10.1016/j.ijpharm.2020.119398] [PMID: 32376441]
[37]
Jha A, Kumar M, Bharti K. Glycerosomes: A new tool for effective drug delivery, Systems of Nanovesicular Drug Delivery. Elsevier 2022; pp. 277-91.
[http://dx.doi.org/10.1016/B978-0-323-91864-0.00010-3]
[http://dx.doi.org/10.1016/B978-0-323-91864-0.00010-3]
[38]
Mohammed YB, Alqahtani A, Lakshmi S, Gnanaprakash K, Kumarappan CT. Studies on formulation development and evaluation of tolnaftate-loaded glycerosomes. Mater Res Innov 2021; 25(4): 233-42.
[http://dx.doi.org/10.1080/14328917.2020.1779168]
[http://dx.doi.org/10.1080/14328917.2020.1779168]
[39]
Sharma D, Rani A, Singh VD, Shah P, Sharma S. Glycerosomes: Novel nano-vesicles for efficient delivery of therapeutics. Recent Pat Drug Deliv Formul 2023; 17(3): 173-82.
[40]
Gupta P, Mazumder R. Glycerosomes: Advanced liposomal drug delivery system. Indian J Pharm Sci 2020; 82(3)
[41]
Manca ML, Cencetti C, Matricardi P, et al. Glycerosomes: Use of hydrogenated soy phosphatidylcholine mixture and its effect on vesicle features and diclofenac skin penetration. Int J Pharm 2016; 511(1): 198-204.
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.009] [PMID: 27418567]
[http://dx.doi.org/10.1016/j.ijpharm.2016.07.009] [PMID: 27418567]
[42]
Manca ML, Manconi M, Zaru M, et al. Glycerosomes: Investigation of role of 1,2-dimyristoyl-sn-glycero-3-phosphatidycholine (DMPC) on the assembling and skin delivery performances. Int J Pharm 2017; 532(1): 401-7.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.026] [PMID: 28917990]
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.026] [PMID: 28917990]
[43]
Salem HF, Ali AA, Rabea YK, El-Ela FIA, Khallaf RA. Glycerosomal thermosensitive in situ gel of duloxetine HCl as a novel nanoplatform for rectal delivery: In vitro optimization and in vivo appraisal. Drug Deliv Transl Res 2022; 12(12): 3083-103.
[http://dx.doi.org/10.1007/s13346-022-01172-z] [PMID: 35622235]
[http://dx.doi.org/10.1007/s13346-022-01172-z] [PMID: 35622235]
[44]
Kataria S, Roy S, Chaurasia M, et al. Crisaborole loaded nanoemulgel for the mitigation of atopic dermatitis in mice model. Drug Dev Ind Pharm 2023; 49(8): 521-35.
[http://dx.doi.org/10.1080/03639045.2023.2244075] [PMID: 37551739]
[http://dx.doi.org/10.1080/03639045.2023.2244075] [PMID: 37551739]
[45]
El-Leithy ES, Makky AM, Khattab AM, Hussein DG. Optimization of nutraceutical coenzyme Q10 nanoemulsion with improved skin permeability and anti-wrinkle efficiency. Drug Dev Ind Pharm 2018; 44(2): 316-28.
[http://dx.doi.org/10.1080/03639045.2017.1391836] [PMID: 29096550]
[http://dx.doi.org/10.1080/03639045.2017.1391836] [PMID: 29096550]
[46]
Mzoughi J. Smart rolled-up capsules for drug release control. Université de Haute Alsace-Mulhouse 2022.
[47]
Chauhan S, Gulati N, Nagaich U. Fabrication and evaluation of ultra deformable vesicles for atopic dermatitis as topical delivery. Int J Polym Mater 2019; 68(5): 266-77.
[http://dx.doi.org/10.1080/00914037.2018.1443932]
[http://dx.doi.org/10.1080/00914037.2018.1443932]
[48]
Tan Q, Liu W, Guo C, Zhai G. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int J Nanomedicine 2011; 6: 1621-30.
[PMID: 21904452]
[PMID: 21904452]
[49]
Sakran W, Abdel-Rashid RS, Saleh F, Abdel-Monem R. Ethosomal gel for rectal transmucosal delivery of domperidone: design of experiment, in vitro, and in vivo evaluation. Drug Deliv 2022; 29(1): 1477-91.
[http://dx.doi.org/10.1080/10717544.2022.2072542] [PMID: 35543451]
[http://dx.doi.org/10.1080/10717544.2022.2072542] [PMID: 35543451]
[50]
Mahtab A, Anwar M, Mallick N, Naz Z, Jain GK, Ahmad FJ. Transungual delivery of ketoconazole nanoemulgel for the effective management of onychomycosis. AAPS PharmSciTech 2016; 17(6): 1477-90.
[http://dx.doi.org/10.1208/s12249-016-0488-0] [PMID: 26857516]
[http://dx.doi.org/10.1208/s12249-016-0488-0] [PMID: 26857516]
[51]
Zaki RM, Alfadhel MM, Alossaimi MA, et al. Central composite optimization of glycerosomes for the enhanced oral bioavailability and brain delivery of quetiapine fumarate. Pharmaceuticals 2022; 15(8): 940.
[http://dx.doi.org/10.3390/ph15080940] [PMID: 36015089]
[http://dx.doi.org/10.3390/ph15080940] [PMID: 36015089]
[52]
Zhang K, Zhang Y, Li Z, Li N, Feng N. Essential oil-mediated glycerosomes increase transdermal paeoniflorin delivery: optimization, characterization, and evaluation in vitro and in vivo. Int J Nanomedicine 2017; 12: 3521-32.
[http://dx.doi.org/10.2147/IJN.S135749] [PMID: 28503066]
[http://dx.doi.org/10.2147/IJN.S135749] [PMID: 28503066]
[53]
Manconi M, Petretto G, D’hallewin G, et al. Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids Surf B Biointerfaces 2018; 171: 115-22.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.021] [PMID: 30025373]
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.021] [PMID: 30025373]
[54]
AbouSamra MM, Farouk F, Abdelhamed FM, Emam KAF, Abdeltawab NF, Salama AH. Synergistic approach for acne vulgaris treatment using glycerosomes loaded with lincomycin and lauric acid: Formulation, in silico, in vitro, LC-MS/MS skin deposition assay and in vivo evaluation. Int J Pharm 2023; 646: 123487.
[http://dx.doi.org/10.1016/j.ijpharm.2023.123487] [PMID: 37805147]
[http://dx.doi.org/10.1016/j.ijpharm.2023.123487] [PMID: 37805147]
[55]
Ramadon D, Wirarti GA, Anwar E. Novel transdermal ethosomal gel containing green tea (Camellia sinensis L. Kuntze) leaves extract: Formulation and in vitro penetration study. J Young Pharm 2017; 9(3): 336-40.
[http://dx.doi.org/10.5530/jyp.2017.9.67]
[http://dx.doi.org/10.5530/jyp.2017.9.67]
[56]
Md S, Alhakamy NA, Aldawsari HM, et al. Plumbagin-loaded glycerosome gel as topical delivery system for skin cancer therapy. Polymers 2021; 13(6): 923.
[http://dx.doi.org/10.3390/polym13060923] [PMID: 33802819]
[http://dx.doi.org/10.3390/polym13060923] [PMID: 33802819]
[57]
Ammar HO, Tadros M, Salam N, Ghoneim A. Ethosome-derived invasomes as a potential transdermal delivery system for vardenafil hydrochloride: Development, optimization and application of physiologically based pharmacokinetic modeling in adults and geriatrics. Int J Nanomedicine 2020; 15: 5671-85.
[http://dx.doi.org/10.2147/IJN.S261764] [PMID: 32821096]
[http://dx.doi.org/10.2147/IJN.S261764] [PMID: 32821096]
[58]
Khan DH, Bashir S, Figueiredo P, Santos HA, Khan MI, Peltonen L. Process optimization of ecological probe sonication technique for production of rifampicin loaded niosomes. J Drug Deliv Sci Technol 2019; 50: 27-33.
[http://dx.doi.org/10.1016/j.jddst.2019.01.012]
[http://dx.doi.org/10.1016/j.jddst.2019.01.012]
[59]
Teixeira MI, Lopes CM, Gonçalves H, et al. Formulation, characterization, and cytotoxicity evaluation of lactoferrin functionalized lipid nanoparticles for riluzole delivery to the brain. Pharmaceutics 2022; 14(1): 185.
[http://dx.doi.org/10.3390/pharmaceutics14010185] [PMID: 35057079]
[http://dx.doi.org/10.3390/pharmaceutics14010185] [PMID: 35057079]
[60]
Pires PC, Fernandes M, Nina F, et al. Innovative aqueous nanoemulsion prepared by phase inversion emulsification with exceptional homogeneity. Pharmaceutics 2023; 15(7): 1878.
[http://dx.doi.org/10.3390/pharmaceutics15071878] [PMID: 37514064]
[http://dx.doi.org/10.3390/pharmaceutics15071878] [PMID: 37514064]
[61]
Ali A, Ali S, Aqil M, Imam SS, Ahad A, Qadir A. Thymoquinone loaded dermal lipid nano particles: Box Behnken design optimization to preclinical psoriasis assessment. J Drug Deliv Sci Technol 2019; 52: 713-21.
[http://dx.doi.org/10.1016/j.jddst.2019.05.041]
[http://dx.doi.org/10.1016/j.jddst.2019.05.041]
[62]
Awadeen RH, Boughdady MF, Meshali MM. Quality by design approach for preparation of zolmitriptan/chitosan nanostructured lipid carrier particles – formulation and pharmacodynamic assessment. Int J Nanomedicine 2020; 15: 8553-68.
[http://dx.doi.org/10.2147/IJN.S274352] [PMID: 33173292]
[http://dx.doi.org/10.2147/IJN.S274352] [PMID: 33173292]
[63]
Li J, Wang X, Zhang T, Wang C, Huang Z, Luo X. A review on phospholipids and their main applications in drug delivery systems. Asian J Pharm Sci 2015; 10(2): 81-98.
[64]
Salem HF, Kharshoum RM, Sayed OM, Abdel Hakim LF. Formulation design and optimization of novel soft glycerosomes for enhanced topical delivery of celecoxib and cupferron by Box–Behnken statistical design. Drug Dev Ind Pharm 2018; 44(11): 1871-84.
[http://dx.doi.org/10.1080/03639045.2018.1504963] [PMID: 30044654]
[http://dx.doi.org/10.1080/03639045.2018.1504963] [PMID: 30044654]
[65]
Mohamed Idris Z, Hameed BH, Ye L, Hajizadeh S, Mattiasson B, Mohd Din AT. Amino-functionalised silica-grafted molecularly imprinted polymers for chloramphenicol adsorption. J Environ Chem Eng 2020; 8(5): 103981.
[http://dx.doi.org/10.1016/j.jece.2020.103981]
[http://dx.doi.org/10.1016/j.jece.2020.103981]
[66]
Bilas R, Sriram K, Maheswari PU, Sheriffa Begum KMM. Highly biocompatible chitosan with super paramagnetic calcium ferrite (CaFe2O4) nanoparticle for the release of ampicillin. Int J Biol Macromol 2017; 97: 513-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.036] [PMID: 28087449]
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.036] [PMID: 28087449]
[67]
Heredia NS, Vizuete K, Flores-Calero M, et al. Comparative statistical analysis of the release kinetics models for nanoprecipitated drug delivery systems based on poly(lactic-co-glycolic acid). PLoS One 2022; 17(3): e0264825.
[http://dx.doi.org/10.1371/journal.pone.0264825] [PMID: 35271644]
[http://dx.doi.org/10.1371/journal.pone.0264825] [PMID: 35271644]
[68]
Moolakkadath T, Aqil M, Ahad A, et al. Preparation and optimization of fisetin loaded glycerol based soft nanovesicles by Box-Behnken design. Int J Pharm 2020; 578: 119125.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119125] [PMID: 32036010]
[http://dx.doi.org/10.1016/j.ijpharm.2020.119125] [PMID: 32036010]
[69]
Chaudhary H, Kohli K, Amin S, Rathee P, Kumar V. Optimization and formulation design of gels of Diclofenac and Curcumin for transdermal drug delivery by Box-Behnken statistical design. J Pharm Sci 2011; 100(2): 580-93.
[http://dx.doi.org/10.1002/jps.22292] [PMID: 20669331]
[http://dx.doi.org/10.1002/jps.22292] [PMID: 20669331]
[70]
Shah P, Goodyear B, Dholaria N, Puri V, Michniak-Kohn B. Nanostructured non-ionic surfactant carrier-based gel for topical delivery of desoximetasone. Int J Mol Sci 2021; 22(4): 1535.
[http://dx.doi.org/10.3390/ijms22041535] [PMID: 33546426]
[http://dx.doi.org/10.3390/ijms22041535] [PMID: 33546426]
[71]
Lee CH, Moturi V, Lee Y. Thixotropic property in pharmaceutical formulations. J Control Release 2009; 136(2): 88-98.
[http://dx.doi.org/10.1016/j.jconrel.2009.02.013] [PMID: 19250955]
[http://dx.doi.org/10.1016/j.jconrel.2009.02.013] [PMID: 19250955]
[73]
Safta DA, Bogdan C, Moldovan ML. Vesicular nanocarriers for phytocompounds in wound care: Preparation and characterization. Pharmaceutics 2022; 14(5): 991.
[http://dx.doi.org/10.3390/pharmaceutics14050991] [PMID: 35631577]
[http://dx.doi.org/10.3390/pharmaceutics14050991] [PMID: 35631577]
[74]
Miatmoko A, Ayunin Q, Soeratri W. Ultradeformable vesicles: Concepts and applications relating to the delivery of skin cosmetics. Ther Deliv 2021; 12(10): 739-56.
[http://dx.doi.org/10.4155/tde-2021-0044] [PMID: 34519219]
[http://dx.doi.org/10.4155/tde-2021-0044] [PMID: 34519219]
[75]
Akombaetwa N, Ilangala AB, Thom L, Memvanga PB, Witika BA, Buya AB. Current advances in lipid nanosystems intended for topical and transdermal drug delivery applications. Pharmaceutics 2023; 15(2): 656.
[http://dx.doi.org/10.3390/pharmaceutics15020656] [PMID: 36839978]
[http://dx.doi.org/10.3390/pharmaceutics15020656] [PMID: 36839978]