Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Optimization of Lead-Free Cs2TiBr6 Green Perovskite Solar Cell for Future Renewable Energy Applications

In Press, (this is not the final "Version of Record"). Available online 17 April, 2024
Author(s): K.J. Jeepa*, T.D. Subash, K.S.J. Wilson, J. Ajayan and M. Batumalay
Published on: 17 April, 2024

DOI: 10.2174/0115734137286096240320075126

open access plus

Abstract

Introduction: A modern genre of solar technology is Perovskite solar cells (PSCs), which are growing rapidly because they work well. The composition of links within the hole transport materials, electron transport materials and the footprint on PSCs is perovskite.

Method: The traditional genre of lead halide perovskite can be swapped with a new perovskite compound called Cs2TiBr6. Cs2TiBr6 has better properties when it comes to light, electricity, and solar energy. When comparing the performance of various electron transport films (ETFs) for the effective operation of perovskite, TiO2 is recognized as an ETF as it has higher thermal stability, low-cost, and appropriate energy level.

Results: The most productive hole transport film (HTF) for these perovskite solar cells, compared to other HTFs, has been demonstrated as V2O5.

Conclusion: The various solar cell characteristics of the proposed device, the "Au/V2O5/Cs2TiBr6/TiO2/TCO" perovskite solar cell, are investigated in this examination by tuning the parameters such as temperature, series resistance, defect density, etc.

[1]
Chuang, T.H.; Chen, Y.H.; Sakalley, S.; Cheng, W.C.; Chan, C.K.; Chen, C.P.; Chen, S.C. Highly stable and enhanced performance of p–i–n perovskite solar cells via cuprous oxide hole-transport layers. Nanomaterials, 2023, 13(8), 1363.
[http://dx.doi.org/10.3390/nano13081363] [PMID: 37110948]
[2]
Ajayan, J.; Nirmal, D.; Mohankumar, P.; Saravanan, M.; Jagadesh, M.; Arivazhagan, L. A review of photovoltaic performance of organic/inorganic solar cells for future renewable and sustainable energy technologies. Superlattices Microstruct., 2020, 143, 106549.
[http://dx.doi.org/10.1016/j.spmi.2020.106549]
[3]
Millstein, D.; Wiser, R.; Bolinger, M.; Barbose, G. The climate and air-quality benefits of wind and solar power in the United States. Nat. Energy, 2017, 2(9), 17134.
[http://dx.doi.org/10.1038/nenergy.2017.134]
[4]
Martí, A.; Luque, A. Three-terminal heterojunction bipolar transistor solar cell for high-efficiency photovoltaic conversion. Nat. Commun., 2015, 6(1), 6902.
[http://dx.doi.org/10.1038/ncomms7902] [PMID: 25902374]
[5]
Endres, B.; Ciorga, M.; Schmid, M.; Utz, M.; Bougeard, D.; Weiss, D.; Bayreuther, G.; Back, C.H. Demonstration of the spin solar cell and spin photodiode effect. Nat. Commun., 2013, 4(1), 2068.
[http://dx.doi.org/10.1038/ncomms3068] [PMID: 23820766]
[6]
Guo, F.; Li, N.; Fecher, F.W.; Gasparini, N.; Quiroz, C.O.R.; Bronnbauer, C.; Hou, Y. A generic concept to overcome bandgap limitations for designing highly efficient multi-junction photovoltaic cells. Nat. Commun., 2015, 6, 7730.
[7]
Varache, R.; Aguila, O.N.; Valla, A.; Nguyen, N.; Munoz, D. Role of the front electron collector in rear emitter silicon heterojunction solar cells. IEEE J. Photovolt., 2015, 5(3), 711-717.
[http://dx.doi.org/10.1109/JPHOTOV.2015.2400226]
[8]
Ionescu, C.; Baracu, T.; Vlad, G.E.; Necula, H.; Badea, A. The historical evolution of the energy efficient buildings. Renew. Sustain. Energy Rev., 2015, 49, 243-253.
[http://dx.doi.org/10.1016/j.rser.2015.04.062]
[9]
Shukla, R.; Sumathy, K.; Erickson, P.; Gong, J. Recent advances in the solar water heating systems: A review. Renew. Sustain. Energy Rev., 2013, 19, 173-190.
[http://dx.doi.org/10.1016/j.rser.2012.10.048]
[10]
Kumar, S.N.; Naidu, C.B.K. A review on perovskite solar cells (PSCs), materials and applications. J Materiomics., 2021, 7(5), 940-956.
[http://dx.doi.org/10.1016/j.jmat.2021.04.002]
[11]
Miyamoto, Y.; Kusumoto, S.; Yokoyama, T.; Nishitani, Y.; Matsui, T.; Kouzaki, T.; Nishikubo, R.; Saeki, A.; Kaneko, Y. High current density sn-based perovskite solar cells via enhanced electron extraction in nanoporous electron transport layers. ACS Appl. Nano Mater., 2020, 3(11), 11650-11657.
[http://dx.doi.org/10.1021/acsanm.0c02890]
[12]
Roy, P.; Ghosh, A.; Barclay, F.; Khare, A.; Cuce, E. Perovskite solar cells: A review of the recent advances. Coatings, 2022, 12(8), 1089.
[http://dx.doi.org/10.3390/coatings12081089]
[13]
Muller, J.; Hinken, D.; Blankemeyer, S.; Kohlenberg, H.; Sonntag, U.; Bothe, K.; Dullweber, T.; Kontges, M.; Brendel, R. Resistive power loss analysis of PV modules made from halved 15.6 and 15.6 cm2 silicon PERC solar cells with efficiencies up to 20.0%. IEEE J. Photovolt., 2015, 5(1), 189-194.
[http://dx.doi.org/10.1109/JPHOTOV.2014.2367868]
[14]
Kiefer, F.; Ulzhöfer, C.; Brendemühl, T.; Harder, N.P.; Brendel, R.; Mertens, V.; Bordihn, S.; Peters, C.; Müller, J.W. High efficiency n-type emitter-wrap-through silicon solar cells. IEEE J. Photovolt., 2011, 1(1), 49-53.
[http://dx.doi.org/10.1109/JPHOTOV.2011.2164953]
[15]
Taguchi, M.; Yano, A.; Tohoda, S.; Matsuyama, K.; Nakamura, Y.; Nishiwaki, T.; Fujita, K.; Maruyama, E. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt., 2014, 4(1), 96-99.
[http://dx.doi.org/10.1109/JPHOTOV.2013.2282737]
[16]
Mercy, P.A.M.; Wilson, K.S.J. Design of an innovative high-performance lead-free and eco-friendly perovskite solar cell. Appl. Nanosci., 2023, 13(5), 3289-3300.
[http://dx.doi.org/10.1007/s13204-022-02745-7]
[17]
Rahman, SMd. Simulation based investigation of inverted planar perovskite solar cell with all metal oxide inorganic transport layers. 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 07-09 February 2019Cox'sBazar, Bangladesh, 2019, pp. 7-9.
[18]
Mercy, P.A.M.; Wilson, K.S.J. Development of environmental friendly high performance Cs2TiBr6 based perovskite solar cell using numerical simulation. Appl. Surf. Sci. Adv., 2023, 15, 100394.
[http://dx.doi.org/10.1016/j.apsadv.2023.100394]
[19]
Papageorgiou, N. New Record Efficiency Achieved by Dye-Sensitized Solar Cells; Ecole Polytechnique Fédérale de Lausanne SciTech Daily, 2022.
[20]
Cole, J.M.; Pepe, G.; Al Bahri, O.K.; Cooper, C.B. Cosensitization in dye-sensitized solar cells. Chem. Rev., 2019, 119(12), 7279-7327.
[http://dx.doi.org/10.1021/acs.chemrev.8b00632] [PMID: 31013076]
[21]
Ren, Y.; Zhang, D.; Suo, J.; Cao, Y.; Eickemeyer, F.T.; Vlachopoulos, N.; Zakeeruddin, S.M.; Hagfeldt, A.; Grätzel, M. Hydroxamic acid pre-adsorption raises the efficiency of cosensitized solar cells. Nature, 2023, 613(7942), 60-65.
[http://dx.doi.org/10.1038/s41586-022-05460-z] [PMID: 36288749]
[22]
Wehmeier, N.; Lim, B.; Merkle, A.; Tempez, A.; Legendre, S.; Wagner, H.; Nowack, A.; Dullweber, T.; Altermatt, P.P. PECVD BSG diffusion sources for simplified high-efficiency n-PERT BJ and BJBC solar cells. IEEE J. Photovolt., 2016, 6(1), 119-125.
[http://dx.doi.org/10.1109/JPHOTOV.2015.2493364]
[23]
Cast, S.P.; Benick, J.; Kania, D.; Weiss, L.; Hofmann, M.; Rentsch, J.; Preu, R.; Glunz, S.W. High-efficiency c-Si solar cells passivated with ALD and PECVD aluminum oxide. IEEE Electron Device Lett., 2010, 31(7), 695-697.
[http://dx.doi.org/10.1109/LED.2010.2049190]
[24]
Ebong, A.; Cooper, I.B.; Rounsaville, B.C.; Rohatgi, A.; Dovrat, M.; Kritchman, E.; Brusilovsky, D.; Benichou, A. Capitalizing on the glass-etching effect of silver plating chemistry to contact Si solar cells with homogeneous 100–110$\Omega/\hbox {sq} $ emitters. IEEE Electron Device Lett., 2011, 32(6), 779-781.
[http://dx.doi.org/10.1109/LED.2011.2131115]
[25]
Feifel, M.; Rachow, T.; Benick, J.; Ohlmann, J.; Janz, S.; Hermle, M.; Dimroth, F.; Lackner, D. Gallium phosphide window layer for silicon solar cells. IEEE J. Photovolt., 2016, 6(1), 384-390.
[http://dx.doi.org/10.1109/JPHOTOV.2015.2478062]
[26]
Ebong, A.; Cooper, I.B.; Rounsaville, B.; Rohatgi, A.; Dovrat, M.; Kritchman, E.; Brusilovsky, D.; Benichou, A. On the ink jetting of full front Ag gridlines for costeffective metallization of Si solar cells. IEEE Electron Device Lett., 2012, 33(5), 637-639.
[http://dx.doi.org/10.1109/LED.2012.2186553]
[27]
Wu, W.Q.; Chen, D.; Caruso, R.A.; Cheng, Y.B. Recent progress in hybrid perovskite solar cells based on n-type materials. J. Mater. Chem. A Mater. Energy Sustain., 2017, 5(21), 10092-10109.
[http://dx.doi.org/10.1039/C7TA02376F]
[28]
Efaz, E.T.; Rhaman, M.M.; Al Imam, S.; Bashar, K.L.; Kabir, F. A review of primary technologies of thin-film solar cells. Eng. Res. Express, 2021, 3, 032001.
[29]
Resalati, S.; Okoroafor, T.; Maalouf, A.; Saucedo, E.; Placidi, M. Life cycle assessment of different chalcogenide thin-film solar cells. Appl. Energy, 2022, 313, 118888.
[http://dx.doi.org/10.1016/j.apenergy.2022.118888]
[30]
Sivaraj, S.; Rathanasamy, R.; Kaliyannan, G.V.; Panchal, H.; Jawad, A.A.; Jaber, M.M.; Said, Z.; Memon, S. A comprehensive review on current performance, challenges and progress in thin-film solar cells. Energies, 2022, 15(22), 8688.
[http://dx.doi.org/10.3390/en15228688]
[31]
Liu, F.W. Recycling and recovery of perovskite solar cells. Mater. Today., 2021, 43, 185-197.
[32]
Tian, X. Life cycle assessment of recycling strategies for perovskite photovoltaic modules. Nat. Sustainab., 2021, 4(9), 821-829.
[33]
Yang, F.; Wang, S. Progress in recycling organic–inorganic perovskite solar cells for eco-friendly fabrication. J. Mater. Chem., 2021, 9(5), 2612-2627.
[34]
Yang, Q.H.; Wei, H.Q.; Li, G.H.; Huang, J.B.; Liu, X.; Cai, G.M. Recent developments of lead-free halide-perovskite Cs3Cu2X5 (X = Cl, Br, I): Synthesis, modifications, and applications. Mater. Today Phys., 2023, 36, 101143.
[http://dx.doi.org/10.1016/j.mtphys.2023.101143]
[35]
Emshadi, K. Metal halide perovskite nanomaterials for solar energy. In: Advanced electronic materials for clean energy applications; Elsevier, 2023; pp. 149-168.
[36]
Yun, S.; Zhou, X.; Even, J.; Hagfeldt, A. Recent progress of first principles calculations in ch3nh3pbi3 perovskite solar cells. Angew. Chem. Int. Ed., 2017, 56(50), 15806-15817.
[37]
Mehmood, U.; Al-Ahmed, A.; Afzaal, M.; Al-Sulaiman, F.A.; Daud, M. Recent progress and remaining challenges in organometallic halides based perovskite solar cells. Renew. Sustain. Energy Rev., 2017, 78, 1-14.
[http://dx.doi.org/10.1016/j.rser.2017.04.105]
[38]
Zhang, Q.; Ting, H.; Wei, S.; Huang, D.; Wu, C.; Sun, W.; Qu, B.; Wang, S.; Chen, Z.; Xiao, L. Recent progress in lead-free perovskite (-like) solar cells. Mater. Today Energy, 2018, 8, 157-165.
[http://dx.doi.org/10.1016/j.mtener.2018.03.001]
[39]
Becker, M.; Wark, M. Recent progress in the solution-based sequential deposition of planar perovskite solar cells. Cryst. Growth Des., 2018, 18(8), 4790-4806.
[http://dx.doi.org/10.1021/acs.cgd.8b00686]
[40]
Said, A.A.; Xie, J.; Zhang, Q. Recent progress in organic electron transport materials in inverted perovskite solar cells. Small, 2019, 15(27), 1900854.
[http://dx.doi.org/10.1002/smll.201900854] [PMID: 31069952]
[41]
Zhao, Y.; Ye, Q.; Chu, Z.; Gao, F.; Zhang, X.; You, J. Recent progress in high-efficiency planar-structure perovskite solar cells. Energy Environ. Mater., 2019, 2(2), 93-106.
[http://dx.doi.org/10.1002/eem2.12042]
[42]
Gil, B.; Yun, A.J.; Lee, Y.; Kim, J.; Lee, B.; Park, B. Recent progress in inorganic hole transport materials for efficient and stable perovskite solar cells. Electron. Mater. Lett., 2019, 15(5), 505-524.
[http://dx.doi.org/10.1007/s13391-019-00163-6]
[43]
Leijtens, T.; Bush, K.A.; Prasanna, R.; McGehee, M.D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy, 2018, 3(10), 828-838.
[http://dx.doi.org/10.1038/s41560-018-0190-4]
[44]
Li, G.; Chang, W.H.; Yang, Y. Low-bandgap conjugated polymers enabling solution-processable tandem solar cells. Nat. Rev. Mater., 2017, 2(8), 17043.
[http://dx.doi.org/10.1038/natrevmats.2017.43]
[45]
Park, J.S.; Kim, S.; Xie, Z.; Walsh, A. Point defect engineering in thin-film solar cells. Nat. Rev. Mater., 2018, 3(7), 194-210.
[http://dx.doi.org/10.1038/s41578-018-0026-7]
[46]
Yan, C.; Huang, J.; Sun, K.; Johnston, S.; Zhang, Y.; Sun, H.; Pu, A.; He, M.; Liu, F.; Eder, K.; Yang, L.; Cairney, J.M.; Ekins-Daukes, N.J.; Hameiri, Z.; Stride, J.A.; Chen, S.; Green, M.A.; Hao, X. Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy, 2018, 3(9), 764-772.
[http://dx.doi.org/10.1038/s41560-018-0206-0]
[47]
Kranz, L.; Gretener, C.; Perrenoud, J.; Schmitt, R.; Pianezzi, F.; La Mattina, F.; Blosch, P. Doping of polycrystalline CdTe for highefficiency solar cells on flexible metal foil. Nat. Commun., 2013, 4, 2306.
[48]
Tian, X.; Stranks, S.D.; You, F. Recycling next-generation solar panels fosters green planet. 2021. Available from: https://news.cornell.edu/stories/2021/06/recycling-next-generation-solar-panels-fosters-green-planet
[49]
Werner, J.; Barraud, L.; Walter, A.; Bräuninger, M.; Sahli, F.; Sacchetto, D.; Tétreault, N.; Salomon, P.B.; Moon, S.J.; Allebé, C.; Despeisse, M.; Nicolay, S.; De Wolf, S.; Niesen, B.; Ballif, C. Efficient near-infrared-transparent perovskite solar cells enabling direct comparison of 4-terminal and monolithic perovskite/silicon tandem cells. ACS Energy Lett., 2016, 1(2), 474-480.
[http://dx.doi.org/10.1021/acsenergylett.6b00254]
[50]
Giustino, F.; Snaith, H.J. Toward lead-free perovskite solar cells. ACS Energ. Lett., 2016, 6, 1233-1240.
[51]
Ghosh, P.; Sundaram, S. Influence of nanostructures in perovskite solar cells. Encycloped. Smart Mater., 2021, 2, 646-660.
[52]
Moore, K.; Wei, W. Applications of carbon nanomaterials in perovskite solar cells for solar energy conversion. Nano Mater Sci., 2021, 3(3), 276-290.
[53]
McDonald, C.; Ni, C.; Maguire, P.; Connor, P.; Irvine, J.T.S.; Mariotti, D.; Svrcek, V. Review- nanostructured perovskite solar cells. Nanomaterials, 2019, 9, 1481.
[54]
Madan, J.; Shivani, R.P.; Pandey, R.; Sharma, R. Device simulation of 17.3% efficient lead-free all-perovskite tandem solar cell. Sol. Energy, 2020, 197, 212-221.
[http://dx.doi.org/10.1016/j.solener.2020.01.006]
[55]
Yasodharan, R.; Senthilkumar, A.P.; Mohankuma, P.; Ajayan, J.; Sivabalakrishnan, R. Investigation and influence of layer composition of tandem perovskite solar cells for application in future renewable and sustainable energy. Optik, 2020, 212, 164723.
[56]
Euvrard, J.; Wang, X.; Li, T.; Yan, Y.; Mitzi, D.B. Is Cs2TiBr6 a promising Pb-free perovskite for solar energy applications. J. Mater. Chem. A, 2020, 8, 4049-4054.
[57]
Ju, M.; Chen, M.; Zhou, Y.; Hector, F. Earth-abundant nontoxic titanium(IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications. ACS Energy Lett., 2018, 3(2), 297-304.
[58]
Abdelaziz, S.; Zekry, A.; Shaker, A.; Abouelatta, M. Investigating the performance of formamidinium tin-based perovskite solar cell by SCAPS device simulation. Opt. Mater., 2020, 101, 109738.
[http://dx.doi.org/10.1016/j.optmat.2020.109738]
[59]
Fatima, Q.; Haidry, A.A.; Hussain, R.; Zhang, H. Device simulation of a thin-layer CsSnI3-based solar cell with enhanced 31.09% efficiency. Energy Fuels, 2023, 37(10), 7411-7423.
[http://dx.doi.org/10.1021/acs.energyfuels.3c00645]
[60]
Wang, K.; Olthof, S.; Subhani, W.S.; Jiang, X.; Cao, Y.; Duan, L.; Wang, H.; Du, M.; Liu, S. Novel inorganic electron transport layers for planar perovskite solar cells: Progress and prospective. Nano Energ., 2020, 68, 104289.
[61]
Verschraegen, J.; Burgelman, M. Numerical modeling of intra-band tunneling for heterojunction solar cells in SCAPS. Thin Solid Films, 2007, 515(15), 6276-6279.
[http://dx.doi.org/10.1016/j.tsf.2006.12.049]
[62]
Muhammeda, O.A.; Danladib, E. Modeling and simulation of lead-free perovskite solar cell using scaps-1d. East Eur. J. Phys., 2021, 2021(2), 146-154.
[63]
Pecunia, V.; Occhipinti, L.G.; Chakraborty, A.; Pan, Y.; Peng, Y. Lead-free halide perovskite photovoltaics: Challenges, open questions, and opportunities. APL Mater., 2020, 8(10), 100901.
[http://dx.doi.org/10.1063/5.0022271]
[64]
Grandhi, G.; Matuhina, A.; Liu, M.; Annurakshita, S.; Löytty, A.H.; Bautista, G.; Vivo, P. Lead-free cesium titanium bromide double perovskite nanocrystals. Nanomaterials, 2021, 11(6), 1458.
[http://dx.doi.org/10.3390/nano11061458] [PMID: 34072822]
[65]
Chen, K.; Hu, Q.; Liu, T.; Zhao, L.; Luo, D.; Wu, J.; Zhang, Y.; Zhang, W.; Liu, F.; Thomas, P. Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells. Adv. Mater., 2016, 28(48), 10718-10724.
[66]
Deepthi Jayan, K.; Sebastian, V. Comprehensive device modelling and performance analysis of MASnI3 based perovskite solar cells with diverse ETM, HTM and back metal contacts. Sol. Energy, 2021, 217, 40-48.
[http://dx.doi.org/10.1016/j.solener.2021.01.058]
[67]
Pitchaiya, S.; Nataraja, M.; Santhanam, A.; Asokan, V.; Yuvapragasam, A.; Ramakrishnan, V. M. A review on the classification of organic/inorganic/carbonaceous hole transporting materials for perovskite solar cell application. Arab. J. Chem., 2020, 13(1), 2526-2557.
[68]
Gu, P.Y.; Wang, N.; Wu, A.; Wang, Z.; Tian, M.; Fu, Z. An azaacene derivative as promising electron-transport layer for inverted perovskite solar cells. Chemist. Asian J., 2016, 11(15), 2135.
[69]
Giordano, F.; Abate, A.; Correa Baena, J.P.; Saliba, M.; Matsui, T.; Im, S.H.; Zakeeruddin, S.M.; Nazeeruddin, M.K.; Hagfeldt, A.; Graetzel, M. Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun., 2016, 7(1), 10379.
[http://dx.doi.org/10.1038/ncomms10379] [PMID: 26758549]
[70]
Najafi, M.; Giacomo, D.F.; Zhang, D.; Shanmugam, S.; Senes, A.; Verhees, W.; Hadipour, A.; Galagan, Y.; Aernouts, T.; Veenstra, S.; Andriessen, R. Highly efficient and stable flexible perovskite solar cells with metal oxides nanoparticle charge extraction layers. Small, 2018, 14(12), e1702775.
[http://dx.doi.org/10.1002/smll.201702775]
[71]
Ahmmed, S. Performance analysis of lead-free CsBi3I10-based perovskite solar cell through the numerical calculation. Solar. Energ., 2021, 226, 54-63.
[72]
Otoufi, M.K.; Ranjbar, M. Enhanced performance of planar perovskite solar cells using TiO2/SnO2 and TiO2/WO3 bilayer structures: Roles of the interfacial layers. Solar. Energy, 2020, 208, 697-707.
[73]
Li, S.; Cao, Y.L.; Li, W.H.; Bo, Z.S. A brief review of hole transporting materials commonly used in perovskite solar cell. Rare Metal., 2021, 40(10), 2712-2729.
[http://dx.doi.org/10.1007/s12598-020-01691-z]
[74]
Burgelman, M.; Nollet, P.; Degrave, S. Modelling polycrystalline semiconductor solar cells. Thin Solid Film., 2000, 361–362(6), 527-532.
[http://dx.doi.org/10.1016/S0040-6090(99)00825-1]
[75]
Kumar, A.; Singh, S. Numerical modeling of lead-free perovskite solar cell using inorganic charge transport materials. Material. Today: Proceed., 2020, 26(2), 2574-2581.
[76]
Rai, N.; Rai, S.; Singh, P.K.; Lohia, P.; Dwivedi, D.K. Analysis of various ETL materials for an efficient perovskite solar cell by numerical simulation. J. Mater. Sci. Mater. Electron., 2020, 31, 16269-16280.
[http://dx.doi.org/10.1007/s10854-020-04175-z]

© 2025 Bentham Science Publishers | Privacy Policy