Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Zn[L-proline]2 as an Efficient Catalyst for the Synthesis of Dihydro Pyrano Thiazole Derivatives via Cycloaddition Reaction in Aqueous Medium

Author(s): Hany M. Abd El-Lateef*, Thomas Nady A. Eskander, Mohammad Saleh Hussein Alzubi, Mai M. Khalaf and Mahmoud Abd El Aleem Ali Ali El-Remaily*

Volume 28, Issue 9, 2024

Published on: 15 April, 2024

Page: [700 - 707] Pages: 8

DOI: 10.2174/0113852728295316240325041145

Price: $65

Abstract

In the current study, a zinc-linked amino acid complex was successfully synthesized as an efficient and recoverable catalyst for the synthesis of dihydro pyrano thiazole derivatives via the reaction of an aromatic aldehyde with malononitrile and rhodanine in one-pot, three-component reaction under green conditions. The structures of the new compounds were elucidated by elemental and spectral analyses. Environmental friendliness, low cost, operational simplicity, extensive reusability and applicability, and easy recovery of the catalyst using simple methods are the critical features of this methodology. Moreover, a series of dihydro pyrano thiazole derivatives were synthesized. This new procedure has presented remarkable advantages in terms of safety, simplicity, stability, mild conditions, short reaction time, excellent yields, and high purity without using any hazardous solvents.

Graphical Abstract

[1]
a) Bisai, V.; Bisai, A.; Singh, V.K. Enantioselective organocatalytic aldol reaction using small organic molecules. Tetrahedron, 2012, 68(24), 4541-4580.
[http://dx.doi.org/10.1016/j.tet.2012.03.099];
b) El-Remaily, M.A.A.; Elhady, O.M. Iron (III)-porphyrin complex FeTSPP as an efficient catalyst for synthesis of tetrazole derivatives via [2 + 3]cycloaddition reaction in aqueous medium. Appl. Organomet. Chem., 2019, 33, 4989.;
c) Thiyam, M.; Thaodem, D.R.; Laitonjam, S.W. Synthesis of biologically active 2-thio-5-arylbenzo [4,5] thiazolopyrimido [5,4-d] pyrimidin-4-one derivatives catalyzed by metal proline in water. Indian J. Chem B., 2021, 60(9), 1230.
[2]
a) Rohit, K.R.; Ujwaldev, S.M.; Krishnan, K.K.; Anilkumar, G. Recent developments and perspectives in the zinc‐catalysed michael addition. Asian J. Org. Chem., 2018, 7(1), 85-102.
[http://dx.doi.org/10.1002/ajoc.201700491];
b) Deng, W.; Wu, T.; Wu, Y.; Zheng, H.; Li, G.; Yang, M.; Zou, X.; Bai, Y.; Yang, Y.; Jing, M.; Wang, X. Single atomic Fe-pyridine N catalyst with dense active sites improve bifunctional electrocatalyst activity for rechargeable and flexible Zn-air batteries. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(39), 20993-21003.
[http://dx.doi.org/10.1039/D2TA06351D];
c) de Oliveira, A.R.; da Silva, C.D.G.; Katla, R.; Rocha, M.P.D.; Albuquerque, T.B.; Kupfer, V.L.; Rinaldi, A.W.; Domingues, N.L.C. A new procedure for addition of thiols to imines using Zn[(L)‐proline]2 as a catalyst under mild conditions. ChemistrySelect, 2017, 2(16), 4462-4465.
[http://dx.doi.org/10.1002/slct.201700752]
[3]
a) Poddar, R.; Jain, A.; Kidwai, M. Bis[(l)prolinate-N,O]Zn: A water-soluble and recycle catalyst for various organic transformations. J. Adv. Res., 2017, 8(3), 245-270.
[http://dx.doi.org/10.1016/j.jare.2016.12.005] [PMID: 28289549];
b) Deng, W.; Li, G.; Wu, T.; He, Li.; Wu, J.; Liu, J.; Zheng, H.; Li, X.; Yang, Y.; Jing, M.; Wang, Y.; Wang, X. Heteroatom functionalized double-layer carbon nanocages as highly efficient oxygen electrocatalyst for Zn-Air batteries. Carbon., 2022, 186, 589e598.
[http://dx.doi.org/10.1016/j.carbon.2021.10.057]
[4]
a) El-Remaily, M.A.E.A.A.A.; Ahmed, M.M.S.; Mohamed, E.K.; Nashwa, M.E.M.; Amerah, A.; Tarek, E.D.; Ahmed, M.A.D. Rapidly, highly yielded and green synthesis of dihydrotetrazolo[1,5-a]pyrimidine derivatives in aqueous media using recoverable Pd(II) thiazole catalyst accelerated by ultrasonic: Computational studies. Appl. Organomet. Chem., 2021, e6320.;
b) Keerthi, K.K.; Sankuviruthiyil, U.M.; Kallikkakam, S.S.; Anilkumar, G. Recent advances in the transition metal catalyzed etherification reactions. Tetrahedron., 2016, 72, 7393e7407.
[5]
a) Kumar, P.; Dwivedi, N. Proline catalyzed α-aminoxylation reaction in the synthesis of biologically active compounds. Acc. Chem. Res., 2013, 46(2), 289-299.
[http://dx.doi.org/10.1021/ar300135u] [PMID: 23148510];
b) Ahmed, E.; Khodairy, A. One-step, low-cost, operator-friendly, and scalable procedure to synthetize novel tetrazolo pyrimidinyl benzopyran-2-ones by benign protocol. Curr. Org. Chem., 2022, 26(24), 2215.
[6]
El-Remaily, M.A.E.A.A.A.; Elhady, O.; Abdou, A.; Alhashmialameer, D.; Eskander, T.N.A.; Abu-Dief, A.M. Development of new 2-(Benzothiazol-2-ylimino)-2,3-dihydro-1H-imidazol-4-ol complexes as a robust catalysts for synthesis of thiazole 6-carbonitrile derivatives supported by DFT studies. J. Mol. Struct., 2023, 1292, 136188.
[http://dx.doi.org/10.1016/j.molstruc.2023.136188]
[7]
El-Remaily, M.A.A.; Elhady, O.; Eskander, T.N.A.; Shaaban, M.K.; Abu-Dief, A.M. Development of novel guanidine iron (III) complexes as a powerful catalyst for the synthesis of tetrazolo[1,5-a]pyrimidine by green protocol. Sohag J. Sci., 2024, 9(1), 7-15.
[8]
Tahmassebi, D.; Blevins, J.E.; Gerardot, S.S. Zn(L‐proline)2 as an efficient and reusable catalyst for the multi‐component synthesis of pyran‐annulated heterocyclic compounds. Appl. Organomet. Chem., 2019, 33(4), e4807.
[http://dx.doi.org/10.1002/aoc.4807]
[9]
Remaily, A.E.M.A.E.A.A.; Soliman, A.M.M.; Elhady, O.M. Green method for the synthetic Ugi reaction by twin screw extrusion without a solvent and catalyst. ACS Omega, 2020, 5(11), 6194-6198.
[http://dx.doi.org/10.1021/acsomega.0c00369] [PMID: 32226904]
[10]
Abu-Dief, A.M.; Musa, A.S.; Elhady, O.M.; Alahmadi, N.; Alzahrani, S.; Eskander, T.N.A.; Remaily, E.M.A.A. Designing of some novel Pd(II), Ni(II) and Fe(III) complexes: Synthesis, structural elucidation, biomedical applications, DFT and docking approaches against Covid-19. Inorg. Chem. Commun., 2023, 2023, 110955.
[11]
Abu-Dief, A.M.; Said, M.A.; Elhady, O.; Al-Abdulkarim, H.A.; Alzahrani, S.; Eskander, T.N.A.; El-Remaily, M.A.E.A.A.A. Innovation of Fe(III), Ni(II), and Pd(II) complexes derived from benzothiazole imidazolidin‐4‐ol ligand: Geometrical elucidation, theoretical calculation, and pharmaceutical studies. Appl. Organomet. Chem., 2023, 37(8), e7162.
[http://dx.doi.org/10.1002/aoc.7162]
[12]
Shaaban, S.; Adam, M.S.S.; El-Metwaly, N.M. Novel organoselenium-based N-mealanilic acid and its zinc (II) chelate: Catalytic, anticancer, antimicrobial, antioxidant, and computational assessments. J. Mol. Liq., 2022, 363, 119907.
[http://dx.doi.org/10.1016/j.molliq.2022.119907]
[13]
Rostamnia, S.; Doustkhah, E.; Zeynizadeh, B. Exfoliation effect of PEG-type surfactant on Pd supported GO (SE-Pd(nanoparticle)/GO) in cascade synthesis of amides: A comparison with Pd(nanoparticle). Rgo. J. Mol. Catal. A Chem., 2016, 02, 024.
[14]
Dekamin, M.G.; Kazemi, E.; Karimi, Z.; Mohammadalipoor, M.; Jamal, N.M.R. Chitosan: An efficient biomacromolecule support for synergic catalyzing of Hantzsch esters by CuSO4. Int. J. Biol. Macromol., 2016, 93(Pt A), 767-774.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.09.012] [PMID: 27608546]
[15]
Vahdat, S.M.; Zolfigol, M.A.; Baghery, S. Straightforward Hantzsch four‐ and three‐component condensation in the presence of triphenyl(propyl‐3‐sulfonyl)phosphoniumtrifluoromethanesulfonate [TPPSP]OTf as a reusable and green mild ionic liquid catalyst. Appl. Organomet. Chem., 2016, 30(5), 311-317.
[http://dx.doi.org/10.1002/aoc.3433]
[16]
Zeynizadeh, B.; Rahmani, S.; Eghbali, E. Anchored sulfonic acid on silica-layered NiFe2O4: A magnetically reusable nanocatalyst for Hantzsch synthesis of 1,4-dihydropyridines. Polyhedron, 2019, 168, 57-66.
[http://dx.doi.org/10.1016/j.poly.2019.04.035]
[17]
Geary, W.J. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord. Chem. Rev., 1971, 7(1), 81-122.
[http://dx.doi.org/10.1016/S0010-8545(00)80009-0]
[18]
Kidwai, M.; Jain, A.; Poddar, R. Zn[(L)proline]2 in water: A new easily accessible and recyclable catalytic system for the synthesis of pyrazoles. Appl. Organomet. Chem., 1944, 2011(696), 1939e.
[19]
Freeman, E.S.; Carroll, B. The application of thermoanalytical techniques to reaction kinetics: The thermogravimetric evaluation of the kinetics of the decomposition of calcium oxalate monohydrate. J. Phys. Chem., 1958, 62(4), 394-397.
[http://dx.doi.org/10.1021/j150562a003]
[20]
a) Dief, A.A.M.; Said, M.A.; Elhady, O.; Alzahrani, S.; Aljohani, F.S.; Eskander, T.N.A.; Remaily, A.E.M.A.E.A.A. Design, structural inspection of some new metal chelates based on benzothiazol-pyrimidin-2-ylidene ligand: Biomedical studies and molecular docking approach. Inorg. Chem. Commun., 2023, 158, 111587.
[http://dx.doi.org/10.1016/j.inoche.2023.111587];
b) Kofstad, P. Oxidation of metals: Determination of activation energies. Nature, 1957, 179(4574), 1362-1363.
[http://dx.doi.org/10.1038/1791362a0]
[21]
Wendlandt, W.W. Thermal Methods of Analysis; Wiley: New York, 1974, p. p. 1.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy