Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Research Article

Synthesis, Structure, and Antimicrobial Properties of New Cobalt(II) Complexes with 1-Propargylimidazoles

Author(s): Irina V. Sterkhova*, Lidiya N. Parshina, Lyudmila A. Grishchenko, Tatyana N. Borodina, Lyudmila A. Belovezhets and Valentin A. Semenov

Volume 28, Issue 9, 2024

Published on: 05 April, 2024

Page: [708 - 715] Pages: 8

DOI: 10.2174/0113852728295396240314054651

Price: $65

Abstract

Complexes of cobalt(II) chloride with 1-propargylimidazole, 1-propargyl-2-methylimidazole, and 1- propargylbenzimidazole ligands were synthesized and studied by FTIR spectroscopy and X-ray analysis. According to the X-ray analysis, the crystal molecules of compounds were connected by non-covalent interactions, such as halogen bonds and π-stacking. The nature and energy of coordination metal-ligand and noncovalent bonds for structures under study were estimated in the frame of QTAIM (Quantum Theory “Atoms In Molecules”). The antimicrobial activity of obtained cobalt(II) chloride complexes was evaluated in relation to microorganisms E. durans, B. subtilis, and E. coli. Complexes of 1-propargyl-2-methylimidazole and 1- propargylbenzimidazole with cobalt(II) chloride demonstrated high activity against E. coli and E. durans relatively and could be recommended as antimicrobial drugs.

Graphical Abstract

[1]
Fouzia, K.; Akhtar, M.N.; Ali, A.; Babar Taj, M.; Shahid, M.; Khan, A.; Imran, M.; Shahid, M. Cobalt and iron-based heteroleptic complexes of imidazole: Synthesis, antibacterial and hemolytic potential. Indian J. Pharma. Edu. Res., 2022, 56(3s), s515-s521.
[http://dx.doi.org/10.5530/ijper.56.3s.161]
[2]
Wani, M.Y.; Bhat, A.R.; Azam, A.; Athar, F.; Sobral, A.J.F.N. New transition metal complexes containing imidazole rings endowed with potential antiamoebic activity. MedChemComm, 2016, 7(5), 982-989.
[http://dx.doi.org/10.1039/C6MD00013D]
[3]
Kalita, R.M.; Baruah, R.S.; Medhi, C. Synthesis, crystal structure, spectroscopic and antimicrobial properties of ruthenium complexes of vinyl imidazole and 4-ethylaminomethyl pyridine ligands. Asian J. Chem., 2021, 33(4), 859-866.
[http://dx.doi.org/10.14233/ajchem.2021.23099]
[4]
Kostova, I. The role of complexes of biogenic metals in living organisms. Inorganics, 2023, 11(2), 56.
[http://dx.doi.org/10.3390/inorganics11020056]
[5]
Hernández-Romero, D.; Rosete-Luna, S.; López-Monteon, A.; Chávez-Piña, A.; Pérez-Hernández, N.; Marroquín-Flores, J. First-row transition metal compounds containing benzimidazole ligands: An overview of the anticancer and antitumor activity. Coord. Chem. Rev., 2021, 439, 213930.
[http://dx.doi.org/10.1016/j.ccr.2021.213930]
[6]
Parshina, L.N.; Trofimov, B.A. Metal complexes with N-alkenylimidazoles: synthesis, structures, and biological activity. Russ. Chem. Bull., 2011, 60(4), 601-614.
[http://dx.doi.org/10.1007/s11172-011-0096-9]
[7]
Aliev, G.; Li, Y.; Chubarev, V.N.; Lebedeva, S.A.; Parshina, L.N.; Trofimov, B.A.; Sologova, S.S.; Makhmutova, A.; Avila-Rodriguez, M.F.; Klochkov, S.G.; Galenko-Yaroshevsky, P.A.; Tarasov, V.V. Application of acyzol in the context of zinc deficiency and perspectives. Int. J. Mol. Sci., 2019, 20(9), 2104.
[http://dx.doi.org/10.3390/ijms20092104] [PMID: 31035445]
[8]
Parshina, L.N.; Grishchenko, L.A.; Smirnov, V.I.; Borodina, T.N.; Shakhmardanova, S.A.; Tarasov, V.V.; Apartsin, K.A.; Kireeva, V.V.; Trofimov, B.A. Synthesis, characterization and biological evaluation of Zn(II) and Co(II) complexes of N-allylimidazole as potential hypoxia-targeting agents. Polyhedron, 2019, 161, 126-131.
[http://dx.doi.org/10.1016/j.poly.2019.01.005]
[9]
Parshina, L.N.; Grishchenko, L.A.; Khilko, M.Y.; Gusarova, N.K.; Trofimov, B.A. Environmentally benign (green) synthesis of Cobazole, an efficient erythropoiesis-stimulating agent. Dokl. Chem., 2016, 471(2), 360-361.
[http://dx.doi.org/10.1134/S001250081612003X]
[10]
Yamada, K. Cobalt: Its role in health and disease. Met. Ions Life Sci., 2013, 13, 295-320.
[http://dx.doi.org/10.1007/978-94-007-7500-8_9] [PMID: 24470095]
[11]
Śmiłowicz, D.; Metzler-Nolte, N. Bioconjugates of Co(III) complexes with Schiff base ligands and cell penetrating peptides: Solid phase synthesis, characterization and antiproliferative activity. J. Inorg. Biochem., 2020, 206, 111041.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111041] [PMID: 32120161]
[12]
Sterkhova, I.V.; Parshina, L.N.; Grishchenko, L.A.; Borodina, T.N.; Belovezhets, L.A.; Semenov, V.A. Complexes of zinc(II) chloride and acetate with propargylimidazoles: Synthesis, structure and non-covalent interactions. Struct. Chem., 2023, 34(6), 2249-2262.
[http://dx.doi.org/10.1007/s11224-023-02245-6]
[13]
Krasnovskaya, O.O.; Fedorov, Y.V.; Gerasimov, V.M.; Skvortsov, D.A.; Moiseeva, A.A.; Mironov, A.V.; Beloglazkina, E.K.; Zyk, N.V.; Majouga, A.G. Novel 2-aminoimidazole-4-one complexes of copper(II) and cobalt(II): Synthesis, structural characterization and cytotoxicity. Arab. J. Chem., 2019, 12(6), 835-846.
[http://dx.doi.org/10.1016/j.arabjc.2016.04.013]
[14]
Hvastijová, M.; Kohout, J.; Kožíšek, J.; Jäger, L.; Díaz, J.G. Cyanamidonitrate-nickel(II) and -cobalt(II) complexes of imidazole ligands: X-ray crystallography and spectroscopic investigation. Polyhedron, 2000, 19(8), 1021-1027.
[http://dx.doi.org/10.1016/S0277-5387(00)00367-3]
[15]
Świderski, G.; Łaźny, R.; Sienkiewicz, M.; Kalinowska, M.; Świsłocka, R.; Acar, A.O.; Golonko, A.; Matejczyk, M.; Lewandowski, W. Synthesis, spectroscopic, and theoretical study of copper and cobalt complexes with dacarbazine. Materials, 2021, 14(12), 3274.
[http://dx.doi.org/10.3390/ma14123274] [PMID: 34199318]
[16]
Pan, R.K.; Song, J.L.; Li, G.B.; Lu, C.Y.; Liu, S.G. Synthesis, crystal structure, redox property, and cytotoxic activity of a dinuclear cobalt(II) complex bearing a tetradentate benzimidazole ligand. Monatsh. Chem., 2019, 150(8), 1453-1459.
[http://dx.doi.org/10.1007/s00706-019-02477-5]
[17]
Lu, J.F.; Yu, X.H.; Zhou, K.; Kumar Roy, S.; Yue, S.Y.; Li, L.; Zhao, C.B.; Jin, L.X. Cobalt(II) and cobalt(III) coordination polymers constructed from flexible bis-imidazole and polycarboxyl co-ligands: Syntheses, crystal structures and properties. Trans. Met. Chem., 2019, 44(7), 641-647.
[http://dx.doi.org/10.1007/s11243-019-00328-0]
[18]
Gałczyńska, K.; Ciepluch, K.; Madej, Ł.; Kurdziel, K.; Maciejewska, B.; Drulis-Kawa, Z.; Węgierek-Ciuk, A.; Lankoff, A.; Arabski, M. Selective cytotoxicity and antifungal properties of copper(II) and cobalt(II) complexes with imidazole-4-acetate anion or 1-allylimidazole. Sci. Rep., 2019, 9(1), 9777.
[http://dx.doi.org/10.1038/s41598-019-46224-6] [PMID: 31278366]
[19]
Arzybaev, M.; Isakova, K.S.; Shytyeva, N.; Malabaeva, A.M. Pharmacological screening of new imidazole complex compounds for anthelmintic activity. Bull. Osh State Univ., 2020, 2-5, 46-52.
[20]
Çiftçi, E.; Alp Arıcı, T.; Arıcı, M.; Erer, H.; Yeşilel, O.Z. Synthesis, characterization and dye adsorption properties of a 3-fold interpenetrated cobalt(II)-metal organic framework based on (E)-5,5′-(but-2-ene-1,4-diylbis(oxy))diisophthalate and 1,4-bis(imidazole-1-yl)butane ligands. J. Solid State Chem., 2022, 311, 123111.
[http://dx.doi.org/10.1016/j.jssc.2022.123111]
[21]
Xie, Y.; Fan, L.; Liu, W.; Zhang, Q.; Huang, G. Synthesis of Mn/Co-MOF for effective removal of U(VI) from aqueous solution. Particuology, 2023, 72, 134-144.
[http://dx.doi.org/10.1016/j.partic.2022.03.004]
[22]
Yu, X.; Gao, E.; Yao, W.; Fedin, V.P.; Potapov, A.S. Zinc(II) and cobalt(II) complexes with unusual coordination of mixed imidazole-1,2,4-triazole ligand in a protonated cationic form. Polyhedron, 2022, 217, 115741.
[http://dx.doi.org/10.1016/j.poly.2022.115741]
[23]
Li, Z.; Xi, Y.; Zhao, A.; Jiang, J.; Li, B.; Yang, X.; He, J.; Li, F. Cobalt-imidazole metal-organic framework loaded with luminol for paper-based chemiluminescence detection of catechol with use of a smartphone. Anal. Bioanal. Chem., 2021, 413(13), 3541-3550.
[http://dx.doi.org/10.1007/s00216-021-03305-8] [PMID: 33782733]
[24]
Bouchouit, M.; Bouraiou, A.; Bouacida, S.; Belfaitah, A.; Merazig, H. Structural characterization of a new cobalt(II) complex of 1-benzyl-5-methyl-1H-imidazole. J. Struct. Chem., 2016, 57(4), 835-839.
[http://dx.doi.org/10.1134/S0022476616040338]
[25]
Burlov, A.S.; Divaeva, L.N.; Vlasenko, V.G.; Koshchienko, Yu.V.; Chaltsev, B.V.; Mashchenko, S.A.; Kiskin, M.A. Synthesis and crystal structure of the cobalt(II) complex with 1-{1-[2-(otolyloxy)ethyl]-1h-benzimidazole-2-yl}ethan-1-ol. J. Struct. Chem., 2022, 63(8), 1284-1290.
[http://dx.doi.org/10.1134/S0022476622080091]
[26]
Sánchez-Guadarrama, O.; López-Sandoval, H.; Sánchez-Bartéz, F.; Gracia-Mora, I.; Höpfl, H.; Barba-Behrens, N. Cytotoxic activity, X-ray crystal structures and spectroscopic characterization of cobalt(II), copper(II) and zinc(II) coordination compounds with 2-substituted benzimidazoles. J. Inorg. Biochem., 2009, 103(9), 1204-1213.
[http://dx.doi.org/10.1016/j.jinorgbio.2009.05.018] [PMID: 19628280]
[27]
Idešicová, M.; Dlháň, Ľ.; Moncoľ, J.; Titiš, J.; Boča, R. Zero-field splitting in tetracoordinate Co(II) complexes. Polyhedron, 2012, 36(1), 79-84.
[http://dx.doi.org/10.1016/j.poly.2012.01.023]
[28]
Yoe-Reyes, F.J.; Bernès, S.; Barba-Behrens, N. Dichlorobis(1H-benzimidazole-κ N3)cobalt(II). Acta Crystallogr. Sect. E Struct. Rep. Online, 2005, 61(5), m875-m877.
[http://dx.doi.org/10.1107/S1600536805010718]
[29]
Zhuang, R.; Jian, F.; Wang, K. Synthesis, characterization and performance of two new Co(II) complexes as electrocatalyst of hydrogen peroxide and trichloroacetic acid. J. Mol. Struct., 2009, 938(1-3), 254-258.
[http://dx.doi.org/10.1016/j.molstruc.2009.09.036]
[30]
Şahin, N.; Yıldırım, İ.; Özdemir, N.; Gürbüz, N.; Özdemir, İ. First used of alkylbenzimidazole-Cobalt(II) complexes as a catalyst for the N-Alkylation of amines with alcohols under solvent-free medium. J. Organomet. Chem., 2020, 918, 121285.
[http://dx.doi.org/10.1016/j.jorganchem.2020.121285]
[31]
Shan, Y.; Cádiz, M.E.; Sánchez, P.L.; Huang, S.D. Dichlorobis(1-methyl-1H-benzimidazole-N3)cobalt(II). Acta Crystallogr. C, 1999, 55(8), 1262-1263.
[http://dx.doi.org/10.1107/S0108270199004904] [PMID: 10483705]
[32]
Herdtweck, E.; Zeller, A.; Strassner, T. Bis(1-tert-butyl-1H-imidazole-κ N3) dichloridocobalt (II). Acta Crystallogr. C, 2012, 68(6), m166-m168.
[http://dx.doi.org/10.1107/S0108270112020884] [PMID: 22669189]
[33]
Şırecı, N.; Yilmaz, Ü.; Küçükbay, H.; Akkurt, M.; Baktir, Z.; Türktekın, S.; Büyükgüngör, O. Synthesis of 1-substituted benzimidazole metal complexes and structural characterization of dichlorobis(1-phenyl-1H-benzimidazole- κN3)cobalt(II) and dichlorobis (1-phenyl-1H-benzimidazole-κN3)zinc(II). J. Coord. Chem., 2011, 64(11), 1894-1902.
[http://dx.doi.org/10.1080/00958972.2011.584620]
[34]
Antti, C.J.; Lundberg, B.K.S.; Haugen, T.; Haaland, A.; Pilotti, Å. The molecular and crystal structure of diimidazole cobalt(II) dichloride, Co(C3H4N2)2Cl2. Acta Chem. Scand., 1972, 26, 3995-4000.
[http://dx.doi.org/10.3891/acta.chem.scand.26-3995]
[35]
Bondi, A. van der Waals volumes and radii. J. Phys. Chem., 1964, 68(3), 441-451.
[http://dx.doi.org/10.1021/j100785a001]
[36]
Raghavendra, B.; Mandal, P.K.; Arunan, E. Ab initio and AIM theoretical analysis of hydrogen-bond radius of HD (D = F, Cl, Br, CN, HO, HS and CCH) donors and some acceptors. Phys. Chem. Chem. Phys., 2006, 8(45), 5276-5286.
[http://dx.doi.org/10.1039/b611033a] [PMID: 19810406]
[37]
Steinborn, D.; Schwieger, S. How strong are hydrogen bonds in metalla-beta-diketones? Chemistry, 2007, 13(34), 9668-9678.
[http://dx.doi.org/10.1002/chem.200700666] [PMID: 17896335]
[38]
Zhang, J.; Li, X. Intramolecular hydrogen bonding, π-π stacking interactions, and substituent effects of 8-hydroxyquinoline derivative supermolecular structures: A theoretical study. J. Mol. Model., 2019, 25(8), 241-249.
[http://dx.doi.org/10.1007/s00894-019-4140-2] [PMID: 31338608]
[39]
Gnanasekar, S.P.; Arunan, E. Inter/intramolecular bonds in TH5+ (T = C/Si/Ge): H2 as tetrel bond acceptor and the uniqueness of carbon bonds. J. Phys. Chem. A, 2019, 123(6), 1168-1176.
[http://dx.doi.org/10.1021/acs.jpca.8b09778] [PMID: 30407822]
[40]
Bader, R.F.W. Atoms in Molecules. A Quantum Theory; Clarendron Press: Oxford, 1990.
[http://dx.doi.org/10.1093/oso/9780198551683.001.0001]
[41]
Bader, R.F.W. A Bond Path: A universal indicator of bonded interactions. J. Phys. Chem. A, 1998, 102(37), 7314-7323.
[http://dx.doi.org/10.1021/jp981794v]
[42]
Bader, R.F.W.; Matta, C.F. Atoms in molecules as non-overlapping, bounded, space-filling open quantum systems. Found. Chem., 2013, 15(3), 253-276.
[http://dx.doi.org/10.1007/s10698-012-9153-1]
[43]
Gramajo Feijoo, M.; Fernández-Liencres, M.P.; Gil, D.M.; Gómez, M.I.; Ben Altabef, A.; Navarro, A.; Tuttolomondo, M.E. A detailed study of intermolecular interactions, electronic and vibrational properties of the metal complex bis(uracilato)diammine copper(ii) dihydrate. J. Mol. Struct., 2018, 1155, 424-433.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.030]
[44]
Baryshnikov, G.V.; Minaev, B.F.; Minaeva, V.A.; Podgornaya, A.T.; Ågren, H. Application of Bader’s atoms in molecules theory to the description of coordination bonds in the complex compounds of Ca2+ and Mg2+ with methylidene rhodanine and its anion. Russ. J. Gen. Chem., 2012, 82(7), 1254-1262.
[http://dx.doi.org/10.1134/S1070363212070122]
[45]
Rashidi, N.; Fard, M.J.S.; Hayati, P.; Janczak, J.; Yazdian, F.; Rouhani, S.; Msagati, T.A.M. Antibacterial and cytotoxicity assay of two new Zn(ii)complexes: Synthesis, characterization, X-Ray structure, topology, Hirshfeld surface and thermal analysis. J. Mol. Struct., 2021, 1231, 129947.
[http://dx.doi.org/10.1016/j.molstruc.2021.129947]
[46]
Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett., 1998, 285(3-4), 170-173.
[http://dx.doi.org/10.1016/S0009-2614(98)00036-0]
[47]
Siwach, A.; Verma, P.K. Synthesis and therapeutic potential of imidazole containing compounds. BMC Chem., 2021, 15(1), 12.
[http://dx.doi.org/10.1186/s13065-020-00730-1] [PMID: 33602331]
[48]
Kabi, A.K.; Sravani, S.; Gujjarappa, R.; Garg, A.; Vodnala, N.; Tyagi, U.; Kaldhi, D.; Velayutham, R.; Gupta, S.; Malakar, C.C. An introduction on evolution of azole derivatives in medicinal chemistry; Nanostructured Biomaterials, 2022, pp. 79-99.
[http://dx.doi.org/10.1007/978-981-16-8399-2_4]
[49]
Kabi, A.K.; Sravani, S.; Gujjarappa, R.; Garg, A.; Vodnala, N.; Tyagi, U.; Kaldhi, D.; Singh, V.; Gupta, S.; Malakar, C.C. An overview on biological activity of benzimidazole derivatives; Nanostructured Biomaterials, 2022, pp. 351-378.
[http://dx.doi.org/10.1007/978-981-16-8399-2_9]
[50]
Sheldrick, G.M. A short history of SHELX. Acta Cryst. Sec. A, 2008, 64, 112-122.
[http://dx.doi.org/10.1107/S0108767307043930]
[51]
Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst., 2009, 42(2), 339-341.
[http://dx.doi.org/10.1107/S0021889808042726]
[52]
Bruker. Bruker AXS Inc.: Madison, Wisconsin, USA , 2001.
[53]
Keith, T.A. Computational chemistry using the quantum theory of atoms in molecules (QTAIM). 2015. Available from: aim.tkgristmill.com
[54]
Cremer, D.; Kraka, E. Chemical bonds without bonding electron density - does the difference electron-density analysis suffice for a description of the chemical bond? Angew. Chem. Int. Ed. Engl., 1984, 23(8), 627-628.
[http://dx.doi.org/10.1002/anie.198406271]
[55]
Tenover, F.C. Antimicrobial susceptibility testing. Encyclopedia of microbiology, 4th ed; Schmidt, T.M., Ed.; , 2019, pp. 166-175.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.02486-7]
[56]
Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc., 2008, 3(2), 163-175.
[http://dx.doi.org/10.1038/nprot.2007.521] [PMID: 18274517]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy