Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Mini-Review Article

Endothelial versus Metabolic Insulin Resistance, A Descriptive Review

In Press, (this is not the final "Version of Record"). Available online 05 April, 2024
Author(s): Xiaohui Chen, Huajie Yao, Jiaqi Lai, Yanmei Chen, Xiaodong Li, Shanshan Li, Ling Li and Fazhong He*
Published on: 05 April, 2024

Article ID: e050424228674

DOI: 10.2174/0115733998288601240327065724

Price: $95

Abstract

Cardiovascular complications are a primary focus in the clinical management of type 2 diabetes, as they are the leading causes of disability and mortality in individuals with diabetes. Insulin resistance and endothelial dysfunction commonly coexist in diabetic patients. An increasing body of research indicates a reciprocal and interconnected association between endothelial function and insulin resistance. Insulin resistance can manifest in two distinct forms: endothelial and metabolic, with the former predominantly affecting vascular endothelial cells and the latter primarily impacting peripheral cells. The understanding of endothelial insulin resistance is crucial in comprehending the pathophysiology of cardiovascular complications in type 2 diabetes. Hence, the objective of this study is to examine the correlations, interplays, and molecular pathways linking endothelial insulin resistance and metabolic insulin resistance, with the aim of offering novel insights and scholarly resources for the prevention and management of diabetic vascular complications.

[1]
Holman N, Young B, Gadsby R. Current prevalence of Type 1 and Type 2 diabetes in adults and children in the UK. Diabet Med 2015; 32(9): 1119-20.
[http://dx.doi.org/10.1111/dme.12791] [PMID: 25962518]
[2]
Bruno G, Runzo C, Cavallo-Perin P, et al. Incidence of type 1 and type 2 diabetes in adults aged 30-49 years: The population-based registry in the province of Turin, Italy. Diabetes Care 2005; 28(11): 2613-9.
[http://dx.doi.org/10.2337/diacare.28.11.2613] [PMID: 16249528]
[3]
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 2018; 14(2): 88-98.
[http://dx.doi.org/10.1038/nrendo.2017.151] [PMID: 29219149]
[4]
Cersosimo E, DeFronzo RA. Insulin resistance and endothelial dysfunction: The road map to cardiovascular diseases. Diabetes Metab Res Rev 2006; 22(6): 423-36.
[http://dx.doi.org/10.1002/dmrr.634] [PMID: 16506274]
[5]
Kubota T, Kubota N, Kumagai H, et al. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab 2011; 13(3): 294-307.
[http://dx.doi.org/10.1016/j.cmet.2011.01.018] [PMID: 21356519]
[6]
Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014; 6(1): a009191.
[http://dx.doi.org/10.1101/cshperspect.a009191] [PMID: 24384568]
[7]
Montagnani M, Chen H, Barr VA, Quon MJ. Insulin-stimulated activation of eNOS is independent of Ca2+ but requires phosphorylation by Akt at Ser(1179). J Biol Chem 2001; 276(32): 30392-8.
[http://dx.doi.org/10.1074/jbc.M103702200] [PMID: 11402048]
[8]
Escudero CA, Herlitz K, Troncoso F, et al. Pro-angiogenic role of insulin: From physiology to pathology. Front Physiol 2017; 8: 204.
[http://dx.doi.org/10.3389/fphys.2017.00204] [PMID: 28424632]
[9]
Rask-Madsen C, Buonomo E, Li Q, et al. Hyperinsulinemia does not change atherosclerosis development in apolipoprotein E null mice. Arterioscler Thromb Vasc Biol 2012; 32(5): 1124-31.
[http://dx.doi.org/10.1161/ATVBAHA.111.239558] [PMID: 22426129]
[10]
Rask-Madsen C, Li Q, Freund B, et al. Loss of insulin signaling in vascular endothelial cells accelerates atherosclerosis in apolipoprotein E null mice. Cell Metab 2010; 11(5): 379-89.
[http://dx.doi.org/10.1016/j.cmet.2010.03.013] [PMID: 20444418]
[11]
Montagnani M, Golovchenko I, Kim I, et al. Inhibition of phosphatidylinositol 3-kinase enhances mitogenic actions of insulin in endothelial cells. J Biol Chem 2002; 277(3): 1794-9.
[http://dx.doi.org/10.1074/jbc.M103728200] [PMID: 11707433]
[12]
King GL, Park K, Li Q. Selective insulin resistance and the development of cardiovascular diseases in diabetes: The 2015 edwin bierman award lecture. Diabetes 2016; 65(6): 1462-71.
[http://dx.doi.org/10.2337/db16-0152] [PMID: 27222390]
[13]
Feener EP, King GL. Endothelial dysfunction in diabetes mellitus: Role in cardiovascular disease. Heart Fail Monit 2001; 1(3): 74-82.
[14]
Hsueh WA, Lyon CJ, Quiñones MJ. Insulin resistance and the endothelium. Am J Med 2004; 117(2): 109-17.
[http://dx.doi.org/10.1016/j.amjmed.2004.02.042] [PMID: 15234647]
[15]
Muniyappa R, Sowers JR. Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord 2013; 14(1): 5-12.
[http://dx.doi.org/10.1007/s11154-012-9229-1] [PMID: 23306778]
[16]
Kim J, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: Molecular and pathophysiological mechanisms. Circulation 2006; 113(15): 1888-904.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.563213] [PMID: 16618833]
[17]
Huang PL. eNOS, metabolic syndrome and cardiovascular disease. Trends Endocrinol Metab 2009; 20(6): 295-302.
[http://dx.doi.org/10.1016/j.tem.2009.03.005] [PMID: 19647446]
[18]
Muniyappa R, Chen H, Montagnani M, Sherman A, Quon MJ. Endothelial dysfunction due to selective insulin resistance in vascular endothelium: Insights from mechanistic modeling. Am J Physiol Endocrinol Metab 2020; 319(3): E629-46.
[http://dx.doi.org/10.1152/ajpendo.00247.2020] [PMID: 32776829]
[19]
Jiang ZY, Lin YW, Clemont A, et al. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest 1999; 104(4): 447-57.
[http://dx.doi.org/10.1172/JCI5971] [PMID: 10449437]
[20]
Caballero AE. Endothelial dysfunction, inflammation, and insulin resistance: A focus on subjects at risk for type 2 diabetes. Curr Diab Rep 2004; 4(4): 237-46.
[http://dx.doi.org/10.1007/s11892-004-0074-9] [PMID: 15265464]
[21]
Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol 2018; 34(5): 575-84.
[http://dx.doi.org/10.1016/j.cjca.2017.12.005] [PMID: 29459239]
[22]
Cooke JP. Flow, NO, and atherogenesis. Proc Natl Acad Sci 2003; 100(3): 768-70.
[http://dx.doi.org/10.1073/pnas.0430082100] [PMID: 12552094]
[23]
Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD. Insulin-mediated skeletal muscle vasodilation is nitric oxide dependent. A novel action of insulin to increase nitric oxide release. J Clin Invest 1994; 94(3): 1172-9.
[http://dx.doi.org/10.1172/JCI117433] [PMID: 8083357]
[24]
Isenovic ER, Divald A, Milivojevic N, Grgurevic T, Fisher SE, Sowers JR. Interactive effects of insulin-like growth factor-1 and β-estradiol on endothelial nitric oxide synthase activity in rat aortic endothelial cells. Metabolism 2003; 52(4): 482-7.
[http://dx.doi.org/10.1053/meta.2003.50079] [PMID: 12701063]
[25]
Muniyappa R, Sowers JR. Endothelial insulin and IGF-1 receptors: When yes means NO. Diabetes 2012; 61(9): 2225-7.
[http://dx.doi.org/10.2337/db12-0654] [PMID: 22923650]
[26]
Hill MA, Yang Y, Zhang L, et al. Insulin resistance, cardiovascular stiffening and cardiovascular disease. Metabolism 2021; 119: 154766.
[http://dx.doi.org/10.1016/j.metabol.2021.154766] [PMID: 33766485]
[27]
Conger JD. Endothelial regulation of vascular tone. Hosp Pract 1994; 29(10): 117-126, 125-126.
[http://dx.doi.org/10.1080/21548331.1994.11443095] [PMID: 7929667]
[28]
Baron AD, Tarshoby M, Hook G, et al. Interaction between insulin sensitivity and muscle perfusion on glucose uptake in human skeletal muscle: Evidence for capillary recruitment. Diabetes 2000; 49(5): 768-74.
[http://dx.doi.org/10.2337/diabetes.49.5.768] [PMID: 10905485]
[29]
Taguchi K, Hida M, Hasegawa M, Narimatsu H, Matsumoto T, Kobayashi T. Suppression of GRK2 expression reduces endothelial dysfunction by restoring glucose homeostasis. Sci Rep 2017; 7(1): 8436.
[http://dx.doi.org/10.1038/s41598-017-08998-5] [PMID: 28814745]
[30]
Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 2000; 49(7): 1231-8.
[http://dx.doi.org/10.2337/diabetes.49.7.1231] [PMID: 10909983]
[31]
Tsutsui M, Tanimoto A, Tamura M, et al. Significance of nitric oxide synthases: Lessons from triple nitric oxide synthases null mice. J Pharmacol Sci 2015; 127(1): 42-52.
[http://dx.doi.org/10.1016/j.jphs.2014.10.002] [PMID: 25704017]
[32]
Tooke J. The association between insulin resistance and endotheliopathy. Diabetes Obes Metab 1999; 1(S1): 17-22.
[http://dx.doi.org/10.1046/j.1463-1326.1999.0010s1017.x] [PMID: 11220284]
[33]
Quiñones MJ, Nicholas SB, Lyon CJ. Insulin resistance and the endothelium. Curr Diab Rep 2005; 5(4): 246-53.
[http://dx.doi.org/10.1007/s11892-005-0018-z] [PMID: 16033673]
[34]
Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414(6865): 799-806.
[http://dx.doi.org/10.1038/414799a] [PMID: 11742412]
[35]
Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 1999; 399(6736): 601-5.
[http://dx.doi.org/10.1038/21224] [PMID: 10376603]
[36]
Zeng G, Nystrom FH, Ravichandran LV, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 2000; 101(13): 1539-45.
[http://dx.doi.org/10.1161/01.CIR.101.13.1539] [PMID: 10747347]
[37]
Kahn CR. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 1994; 43(8): 1066-85.
[http://dx.doi.org/10.2337/diab.43.8.1066] [PMID: 8039601]
[38]
Ohkita M, Tawa M, Kitada K, Matsumura Y. Pathophysiological roles of endothelin receptors in cardiovascular diseases. J Pharmacol Sci 2012; 119(4): 302-13.
[http://dx.doi.org/10.1254/jphs.12R01CR] [PMID: 22863667]
[39]
Xu J, Zou MH. Molecular insights and therapeutic targets for diabetic endothelial dysfunction. Circulation 2009; 120(13): 1266-86.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.835223] [PMID: 19786641]
[40]
Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev 2007; 28(5): 463-91.
[http://dx.doi.org/10.1210/er.2007-0006] [PMID: 17525361]
[41]
Sáez T, Toledo F, Sobrevia L. Extracellular vesicles and insulin resistance: A potential interaction in vascular dysfunction. Curr Vasc Pharmacol 2019; 17(5): 491-7.
[http://dx.doi.org/10.2174/1570161116666181002095745] [PMID: 30277159]
[42]
Zhou Z, Collado A, Sun C, et al. Downregulation of erythrocyte miR-210 induces endothelial dysfunction in type 2 diabetes. Diabetes 2022; 71(2): 285-97.
[http://dx.doi.org/10.2337/db21-0093] [PMID: 34753800]
[43]
Xiong Y, Chen L, Yan C, et al. Circulating exosomal miR‐20b‐5p inhibition restores wnt9b signaling and reverses diabetes‐associated impaired wound healing. Small 2020; 16(3): 1904044.
[http://dx.doi.org/10.1002/smll.201904044] [PMID: 31867895]
[44]
Xiao X, Xu M, Yu H, et al. Mesenchymal stem cell-derived small extracellular vesicles mitigate oxidative stress-induced senescence in endothelial cells via regulation of miR-146a/Src. Signal Transduct Target Ther 2021; 6(1): 354.
[http://dx.doi.org/10.1038/s41392-021-00765-3] [PMID: 34675187]
[45]
Abdelsaid K, Sudhahar V, Harris RA, et al. Exercise improves angiogenic function of circulating exosomes in type 2 diabetes: Role of exosomal SOD3. FASEB J 2022; 36(3): e22177.
[http://dx.doi.org/10.1096/fj.202101323R] [PMID: 35142393]
[46]
Schinzari F, Cardillo C. Intricacies of the endothelin system in human obesity: role in the development of complications and potential as a therapeutic target. Can J Physiol Pharmacol 2020; 98(9): 563-9.
[http://dx.doi.org/10.1139/cjpp-2019-0651] [PMID: 32808824]
[47]
Seki T, Hosaka K, Fischer C, et al. Ablation of endothelial VEGFR1 improves metabolic dysfunction by inducing adipose tissue browning. J Exp Med 2018; 215(2): 611-26.
[http://dx.doi.org/10.1084/jem.20171012] [PMID: 29305395]
[48]
You M, Liu Y, Wang B, et al. Asprosin induces vascular endothelial-to-mesenchymal transition in diabetic lower extremity peripheral artery disease. Cardiovasc Diabetol 2022; 21(1): 25.
[http://dx.doi.org/10.1186/s12933-022-01457-0] [PMID: 35168605]
[49]
Han X, Wu Y, Liu X, et al. Adiponectin improves coronary no-reflow injury by protecting the endothelium in rats with type 2 diabetes mellitus. Biosci Rep 2017; 37(4): BSR20170282.
[http://dx.doi.org/10.1042/BSR20170282] [PMID: 28667102]
[50]
Inoguchi T, Umeda F, Watanabe J, Ibayashi H. Reduced serum-stimulatory activity on prostacyclin production by cultured aortic endothelial cells in diabetes mellitus. Pathophysiol Haemost Thromb 1986; 16(6): 447-52.
[http://dx.doi.org/10.1159/000215323] [PMID: 3556348]
[51]
Tsuji M, Takahashi T. Evaluation of plasma 6-keto-prostaglandin F1 alpha and thromboxane B2 in diabetic neuropathy. Endocrin J 1987; 63(1): 26-33.
[http://dx.doi.org/10.1507/endocrine1927.63.1_26] [PMID: 3556671]
[52]
Marei I, Chidiac O, Thomas B, et al. Angiogenic content of microparticles in patients with diabetes and coronary artery disease predicts networks of endothelial dysfunction. Cardiovasc Diabetol 2022; 21(1): 17.
[http://dx.doi.org/10.1186/s12933-022-01449-0] [PMID: 35109843]
[53]
Wang XL, Zhang W, Li Z, et al. Vascular damage effect of circulating microparticles in patients with ACS is aggravated by type 2 diabetes. Mol Med Rep 2021; 23(6): 474.
[http://dx.doi.org/10.3892/mmr.2021.12113] [PMID: 33899122]
[54]
Hirota T, Levy JH, Iba T. The influence of hyperglycemia on neutrophil extracellular trap formation and endothelial glycocalyx damage in a mouse model of type 2 diabetes. Microcirculation 2020; 27(5): e12617.
[http://dx.doi.org/10.1111/micc.12617] [PMID: 32125048]
[55]
Zeng M, Luo Y, Xu C, et al. Platelet-endothelial cell interactions modulate smooth muscle cell phenotype in an in vitro model of type 2 diabetes mellitus. Am J Physiol Cell Physiol 2019; 316(2): C186-97.
[http://dx.doi.org/10.1152/ajpcell.00428.2018] [PMID: 30517030]
[56]
Yu L, Liang Q, Zhang W, et al. HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation. Redox Biol 2019; 21: 101095.
[http://dx.doi.org/10.1016/j.redox.2018.101095] [PMID: 30640127]
[57]
Maqbool A, Watt NT, Haywood N, et al. Divergent effects of genetic and pharmacological inhibition of Nox2 NADPH oxidase on insulin resistance-related vascular damage. Am J Physiol Cell Physiol 2020; 319(1): C64-74.
[http://dx.doi.org/10.1152/ajpcell.00389.2019] [PMID: 32401607]
[58]
Lee JY, Lee YJ, Jeon HY, et al. The vicious cycle between transglutaminase 2 and reactive oxygen species in hyperglycemic memory–induced endothelial dysfunction. FASEB J 2019; 33(11): 12655-67.
[http://dx.doi.org/10.1096/fj.201901358RR] [PMID: 31462079]
[59]
Viswambharan H, Yuldasheva NY, Imrie H, et al. Novel paracrine action of endothelium enhances glucose uptake in muscle and fat. Circ Res 2021; 129(7): 720-34.
[http://dx.doi.org/10.1161/CIRCRESAHA.121.319517] [PMID: 34420367]
[60]
Mahdi A, Tengbom J, Alvarsson M, Wernly B, Zhou Z, Pernow J. Red blood cell peroxynitrite causes endothelial dysfunction in type 2 diabetes mellitus via arginase. Cells 2020; 9(7): 1712.
[http://dx.doi.org/10.3390/cells9071712] [PMID: 32708826]
[61]
Zhou Z, Mahdi A, Tratsiakovich Y, et al. Erythrocytes from patients with type 2 diabetes induce endothelial dysfunction via arginase I. J Am Coll Cardiol 2018; 72(7): 769-80.
[http://dx.doi.org/10.1016/j.jacc.2018.05.052] [PMID: 30092954]
[62]
Costantino S, Paneni F, Battista R, et al. Impact of glycemic variability on chromatin remodeling, oxidative stress, and endothelial dysfunction in patients with type 2 diabetes and with target HbA1c levels. Diabetes 2017; 66(9): 2472-82.
[http://dx.doi.org/10.2337/db17-0294] [PMID: 28634176]
[63]
Berra-Romani BR, Silva GA, Guadarrama VA, et al. Type 2 diabetes alters intracellular Ca2+ handling in native endothelium of excised rat aorta. Int J Mol Sci 2019; 21(1): 250.
[http://dx.doi.org/10.3390/ijms21010250] [PMID: 31905880]
[64]
Moore MC, Cherrington AD, Cline G, et al. Sources of carbon for hepatic glycogen synthesis in the conscious dog. J Clin Invest 1991; 88(2): 578-87.
[http://dx.doi.org/10.1172/JCI115342] [PMID: 1864968]
[65]
Leto D, Saltiel AR. Regulation of glucose transport by insulin: Traffic control of GLUT4. Nat Rev Mol Cell Biol 2012; 13(6): 383-96.
[http://dx.doi.org/10.1038/nrm3351] [PMID: 22617471]
[66]
Cross DAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378(6559): 785-9.
[http://dx.doi.org/10.1038/378785a0] [PMID: 8524413]
[67]
Newgard CB, Brady MJ, O’Doherty RM, Saltiel AR. Organizing glucose disposal: Emerging roles of the glycogen targeting subunits of protein phosphatase-1. Diabetes 2000; 49(12): 1967-77.
[http://dx.doi.org/10.2337/diabetes.49.12.1967] [PMID: 11117996]
[68]
Agius L. Role of glycogen phosphorylase in liver glycogen metabolism. Mol Aspects Med 2015; 46: 34-45.
[http://dx.doi.org/10.1016/j.mam.2015.09.002] [PMID: 26519772]
[69]
Dong XC, Copps KD, Guo S, et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab 2008; 8(1): 65-76.
[http://dx.doi.org/10.1016/j.cmet.2008.06.006] [PMID: 18590693]
[70]
Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr Physiol 2013; 3(1): 1-58.
[http://dx.doi.org/10.1002/cphy.c110062] [PMID: 23720280]
[71]
Rebrin K, Steil GM, Mittelman SD, Bergman RN. Causal linkage between insulin suppression of lipolysis and suppression of liver glucose output in dogs. J Clin Invest 1996; 98(3): 741-9.
[http://dx.doi.org/10.1172/JCI118846] [PMID: 8698866]
[72]
Kersten S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2001; 2(4): 282-6.
[http://dx.doi.org/10.1093/embo-reports/kve071] [PMID: 11306547]
[73]
Lee SH, Park SY, Choi CS. Insulin resistance: From mechanisms to therapeutic strategies. Diabetes Metab J 2022; 46(1): 15-37.
[http://dx.doi.org/10.4093/dmj.2021.0280] [PMID: 34965646]
[74]
Aiello LP, Cahill MT, Wong JS. Systemic considerations in the management of diabetic retinopathy. Am J Ophthalmol 2001; 132(5): 760-76.
[http://dx.doi.org/10.1016/S0002-9394(01)01124-2] [PMID: 11704039]
[75]
Roden M, Stingl H, Chandramouli V, et al. Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes 2000; 49(5): 701-7.
[http://dx.doi.org/10.2337/diabetes.49.5.701] [PMID: 10905476]
[76]
Perseghin G, Ghosh S, Gerow K, Shulman GI. Metabolic defects in lean nondiabetic offspring of NIDDM parents: A cross-sectional study. Diabetes 1997; 46(6): 1001-9.
[http://dx.doi.org/10.2337/diab.46.6.1001] [PMID: 9166672]
[77]
Kojta I, Chacińska M, Zabielska BA. Obesity, bioactive lipids, and adipose tissue inflammation in insulin resistance. Nutrients 2020; 12(5): 1305.
[http://dx.doi.org/10.3390/nu12051305] [PMID: 32375231]
[78]
Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 2010; 72(1): 219-46.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135846] [PMID: 20148674]
[79]
Dandona P, Ghanim H, Chaudhuri A, Dhindsa S, Kim SS. Macronutrient intake induces oxidative and inflammatory stress: Potential relevance to atherosclerosis and insulin resistance. Exp Mol Med 2010; 42(4): 245-53.
[http://dx.doi.org/10.3858/emm.2010.42.4.033] [PMID: 20200475]
[80]
Tanti JF, Ceppo F, Jager J, Berthou F. Implication of inflammatory signaling pathways in obesity-induced insulin resistance. Front Endocrinol 2013; 3: 181.
[http://dx.doi.org/10.3389/fendo.2012.00181] [PMID: 23316186]
[81]
Love KM, Barrett EJ, Malin SK, Reusch JEB, Regensteiner JG, Liu Z. Diabetes pathogenesis and management: The endothelium comes of age. J Mol Cell Biol 2021; 13(7): 500-12.
[http://dx.doi.org/10.1093/jmcb/mjab024] [PMID: 33787922]
[82]
Sudhahar V, Okur MN, Bagi Z, et al. Akt2 (Protein Kinase B Beta) stabilizes ATP7A, a copper transporter for extracellular superoxide dismutase, in vascular smooth muscle. Arterioscler Thromb Vasc Biol 2018; 38(3): 529-41.
[http://dx.doi.org/10.1161/ATVBAHA.117.309819] [PMID: 29301787]
[83]
Guo Z, Zhang Y, Liu C, Youn JY, Cai H. Toll-like receptor 2 (TLR2) knockout abrogates diabetic and obese phenotypes while restoring endothelial function via inhibition of NOX1. Diabetes 2021; 70(9): 2107-19.
[http://dx.doi.org/10.2337/db20-0591] [PMID: 34127487]
[84]
Mao H, Li L, Fan Q, et al. Loss of bone morphogenetic protein-binding endothelial regulator causes insulin resistance. Nat Commun 2021; 12(1): 1927.
[http://dx.doi.org/10.1038/s41467-021-22130-2] [PMID: 33772019]
[85]
Li X, Jin SJ, Su J, Li XX, Xu M. Acid sphingomyelinase down‐regulation alleviates vascular endothelial insulin resistance in diabetic rats. Basic Clin Pharmacol Toxicol 2018; 123(6): 645-59.
[http://dx.doi.org/10.1111/bcpt.13073] [PMID: 29923306]
[86]
Rehman K, Haider K, Jabeen K, Akash MSH. Current perspectives of oleic acid: Regulation of molecular pathways in mitochondrial and endothelial functioning against insulin resistance and diabetes. Rev Endocr Metab Disord 2020; 21(4): 631-43.
[http://dx.doi.org/10.1007/s11154-020-09549-6] [PMID: 32125563]
[87]
Martin CLN, Júnior GLT, Fernandes LAB, et al. Effect of vildagliptin versus glibenclamide on endothelial function and arterial stiffness in patients with type 2 diabetes and hypertension: A randomized controlled trial. Acta Diabetol 2018; 55(12): 1237-45.
[http://dx.doi.org/10.1007/s00592-018-1204-1] [PMID: 30094725]
[88]
Li Q, Lin Y, Wang S, Zhang L, Guo L. GLP-1 inhibits high-glucose-induced oxidative injury of vascular endothelial cells. Sci Rep 2017; 7(1): 8008.
[http://dx.doi.org/10.1038/s41598-017-06712-z] [PMID: 28808291]
[89]
Basu A, Charkoudian N, Schrage W, Rizza RA, Basu R, Joyner MJ. Beneficial effects of GLP-1 on endothelial function in humans: dampening by glyburide but not by glimepiride. Am J Physiol Endocrinol Metab 2007; 293(5): E1289-95.
[http://dx.doi.org/10.1152/ajpendo.00373.2007] [PMID: 17711996]
[90]
Wang ZJ, Chang LL, Wu J, et al. A novel rhynchophylline analog, Y396, inhibits endothelial dysfunction induced by oxidative stress in diabetes through epidermal growth factor receptor. Antioxid Redox Signal 2020; 32(11): 743-65.
[http://dx.doi.org/10.1089/ars.2018.7721] [PMID: 31892280]
[91]
Liu F, Fang S, Liu X, et al. Omentin-1 protects against high glucose-induced endothelial dysfunction via the AMPK/PPARδ signaling pathway. Biochem Pharmacol 2020; 174: 113830.
[http://dx.doi.org/10.1016/j.bcp.2020.113830] [PMID: 32001235]
[92]
Ying L, Li N, He Z, et al. Fibroblast growth factor 21 Ameliorates diabetes-induced endothelial dysfunction in mouse aorta via activation of the CaMKK2/AMPKα signaling pathway. Cell Death Dis 2019; 10(9): 665.
[http://dx.doi.org/10.1038/s41419-019-1893-6] [PMID: 31511499]
[93]
Ali M, Mali V, Haddox S, et al. Essential role of IL-12 in angiogenesis in type 2 diabetes. Am J Pathol 2017; 187(11): 2590-601.
[http://dx.doi.org/10.1016/j.ajpath.2017.07.021] [PMID: 28837799]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy