Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Gastrodin Attenuates Colitis and Prevents Tumorigenesis in Mice by Interrupting TLR4/MD2/NF-κB Signaling Transduction

Author(s): Zhilun Yu, Bei Yue, Ruiyang Gao, Beibei Zhang, Xiaolong Geng, Cheng Lv, Hao Wang, Ziyi Wang, Zhengtao Wang* and Wei Dou*

Volume 24, Issue 11, 2024

Published on: 05 April, 2024

Page: [853 - 866] Pages: 14

DOI: 10.2174/0118715206286233240328045215

Price: $65

Abstract

Introduction: Chronic inflammation is one of the causative factors for tumorigenesis. Gastrodin is a main active ingredient isolated from Gastrodia elata Blume, a famous medicinal herb with a long edible history.

Aim: This study aimed to explore the effects of gastrodin on colitis-associated carcinogenesis (CRC) in mice and to elucidate its potential molecular mechanisms.

Methods: Balb/c mice were induced with azoxymethane (AOM) and dextran sulfate sodium (DSS) for 12 weeks. Gastrodin (50 mg/kg) was administered via oral gavage three times per week until the end of the experiment. Disease indexes, including body weight, bloody diarrhea, colon length, histopathological score, and tumor size, were measured. Tumor cell proliferation was evaluated by BrdU incorporation assay and tumor cell cytotoxicity was assessed by cell counting kit (CCK-8). The expression levels of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling molecules, NF-κB luciferase, and pro-inflammatory cytokines were determined by real-time fluorescence quantitative polymerase chain reaction (RT-qPCR), immunoblotting, immunohistochemistry (IHC), enzyme-linked immunosorbent assay (ELISA), or reporter gene assays. The binding affinity between gastrodin and myeloid differentiation protein-2 (MD2) was analyzed by molecular docking and cellular thermal shift assay (CETSA).

Results: Gastrodin administration was demonstrated to mitigate various CRC-related symptoms in mice, including weight loss, diarrhea, and tissue abnormalities. Notably, gastrodin suppressed tumor cell growth during colitis- associated tumorigenesis, resulting in fewer and smaller adenomas in the colon. Unlike irinotecan, a broadspectrum antitumor drug, gastrodin did not exhibit apparent cytotoxicity in various colorectal adenocarcinoma cell lines. Additionally, gastrodin downregulated TLR4/NF-κB signaling molecules and pro-inflammatory mediators in mice and macrophages. Molecular docking and CETSA experiments suggested that gastrodin binds to the MD2 protein, potentially interfering with the recognition of lipopolysaccharide (LPS) by TLR4, leading to NF-κB pathway inhibition.

Conclusion: This study provides evidence for the first time that gastrodin attenuated colitis and prevented colitisrelated carcinogenesis in mice, at least partially, by diminishing tumor-promoting cytokines through the interruption of TLR4/MD2/NF-κB signaling transduction.

Graphical Abstract

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Sperling, D.; Jandorf, L.; Sriphanlop, P.; Martinez, C.; Brown, K.L.; Soper, E.R.; Hiraki, S.; Itzkowitz, S.H. Co-Care: A registry for individuals at increased risk for colorectal cancer. J. Registry Manag., 2017, 44(1), 11-16.
[PMID: 29595940]
[3]
Waldner, M.J.; Neurath, M.F. Mechanisms of immune signaling in colitis-associated cancer. Cell. Mol. Gastroenterol. Hepatol., 2015, 1(1), 6-16.
[http://dx.doi.org/10.1016/j.jcmgh.2014.11.006] [PMID: 28247866]
[4]
Amini-Khoei, H.; Momeny, M.; Abdollahi, A.; Dehpour, A.R.; Amiri, S.; Haj-Mirzaian, A.; Tavangar, S.M.; Ghaffari, S.H.; Rahimian, R.; Mehr, S.E. Tropisetron suppresses colitis-associated cancer in a mouse model in the remission stage. Int. Immunopharmacol., 2016, 36, 9-16.
[http://dx.doi.org/10.1016/j.intimp.2016.04.014] [PMID: 27104313]
[5]
Tammali, R.; Reddy, A.B.M.; Ramana, K.V.; Petrash, J.M.; Srivastava, S.K. Aldose reductase deficiency in mice prevents azoxymethane-induced colonic preneoplastic aberrant crypt foci formation. Carcinogenesis, 2009, 30(5), 799-807.
[http://dx.doi.org/10.1093/carcin/bgn246] [PMID: 19028703]
[6]
Feng, Y.; Wang, J.; Tan, D.; Cheng, P.; Wu, A. Relationship between circulating inflammatory factors and glioma risk and prognosis: A meta-analysis. Cancer Med., 2019, 8(17), 7454-7468.
[http://dx.doi.org/10.1002/cam4.2585] [PMID: 31599129]
[7]
Zhang, Y.; Pu, W.; Bousquenaud, M.; Cattin, S.; Zaric, J.; Sun, L.; Rüegg, C. Emodin inhibits inflammation, carcinogenesis, and cancer progression in the AOM/DSS model of colitis-associated intestinal tumorigenesis. Front. Oncol., 2021, 10, 564674.
[http://dx.doi.org/10.3389/fonc.2020.564674] [PMID: 33489875]
[8]
Gaitantzi, H.; Karch, J.; Germann, L.; Cai, C.; Rausch, V.; Birgin, E.; Rahbari, N.; Seitz, T.; Hellerbrand, C.; König, C.; Augustin, H.G.; Mogler, C.; de la Torre, C.; Gretz, N.; Itzel, T.; Teufel, A.; Ebert, M.P.A.; Breitkopf-Heinlein, K. BMP-9 modulates the hepatic responses to LPS. Cells, 2020, 9(3), 617.
[http://dx.doi.org/10.3390/cells9030617] [PMID: 32143367]
[9]
Martyanov, A.A.; Maiorov, A.S.; Filkova, A.A.; Ryabykh, A.A.; Svidelskaya, G.S.; Artemenko, E.O.; Gambaryan, S.P.; Panteleev, M.A.; Sveshnikova, A.N. Effects of bacterial lipopolysaccharides on platelet function: Inhibition of weak platelet activation. Sci. Rep., 2020, 10(1), 12296.
[http://dx.doi.org/10.1038/s41598-020-69173-x] [PMID: 32704001]
[10]
Zhao, J.; Zhang, X.; Dong, L.; Wen, Y.; Zheng, X.; Zhang, C.; Chen, R.; Zhang, Y.; Li, Y.; He, T.; Zhu, X.; Li, L. Cinnamaldehyde inhibits inflammation and brain damage in a mouse model of permanent cerebral ischaemia. Br. J. Pharmacol., 2015, 172(20), 5009-5023.
[http://dx.doi.org/10.1111/bph.13270] [PMID: 26234631]
[11]
Deguchi, A.; Tomita, T.; Ohto, U.; Takemura, K.; Kitao, A.; Akashi-Takamura, S.; Miyake, K.; Maru, Y. Eritoran inhibits S100A8-mediated TLR4/MD-2 activation and tumor growth by changing the immune microenvironment. Oncogene, 2016, 35(11), 1445-1456.
[http://dx.doi.org/10.1038/onc.2015.211] [PMID: 26165843]
[12]
Shen, Y.; Zhang, X.; Wang, Y.; Cao, F.; Uzan, G.; Peng, B.; Zhang, D. Celastrol targets IRAKs to block Toll-like receptor 4-mediated nuclear factor-κB activation. J. Integr. Med., 2016, 14(3), 203-208.
[http://dx.doi.org/10.1016/S2095-4964(16)60257-1] [PMID: 27181127]
[13]
Rafa, H.; Benkhelifa, S. AitYounes, S.; Saoula, H.; Belhadef, S.; Belkhelfa, M.; Boukercha, A.; Toumi, R.; Soufli, I.; Moralès, O.; de Launoit, Y.; Mahfouf, H.; Nakmouche, M.; Delhem, N.; Touil-Boukoffa, C. All-trans retinoic acid modulates TLR4/NF- κ B signaling pathway targeting TNF- α and nitric oxide synthase 2 expression in colonic mucosa during ulcerative colitis and colitis associated cancer. Mediators Inflamm., 2017, 2017, 1-16.
[http://dx.doi.org/10.1155/2017/7353252] [PMID: 28408791]
[14]
Zhang, R.; Zhao, J.; Xu, J.; Jiao, D.X.; Wang, J.; Gong, Z.Q.; Jia, J.H. Andrographolide suppresses proliferation of human colon cancer SW620 cells through the TLR4/NF-κB/MMP-9 signaling pathway. Oncol. Lett., 2017, 14(4), 4305-4310.
[http://dx.doi.org/10.3892/ol.2017.6669] [PMID: 28943944]
[15]
Chen, C.Y.; Kao, C.L.; Liu, C.M. The cancer prevention, anti-inflammatory and anti-oxidation of bioactive phytochemicals targeting the TLR4 signaling pathway. Int. J. Mol. Sci., 2018, 19(9), 2729.
[http://dx.doi.org/10.3390/ijms19092729] [PMID: 30213077]
[16]
Zhao, S.; Li, N.; Zhen, Y.; Ge, M.; Li, Y.; Yu, B.; He, H.; Shao, R. Protective effect of gastrodin on bile duct ligation-induced hepatic fibrosis in rats. Food Chem. Toxicol., 2015, 86, 202-207.
[http://dx.doi.org/10.1016/j.fct.2015.10.010] [PMID: 26498411]
[17]
Xi, Z.; Qiao, Y.; Wang, J.; Su, H.; Bao, Z.; Li, H.; Liao, X.; Zhong, X. Retracted: gastrodin relieves inflammation injury induced by lipopolysaccharides in MRC-5 cells by up-regulation of miR-103. J. Cell. Mol. Med., 2020, 24(2), 1451-1459.
[http://dx.doi.org/10.1111/jcmm.14826] [PMID: 31769187]
[18]
Cheng, J.; Fang, Z.Z.; Nagaoka, K.; Okamoto, M.; Qu, A.; Tanaka, N.; Kimura, S.; Gonzalez, F.J. Activation of intestinal human pregnane X receptor protects against azoxymethane/dextran sulfate sodium-induced colon cancer. J. Pharmacol. Exp. Ther., 2014, 351(3), 559-567.
[http://dx.doi.org/10.1124/jpet.114.215913] [PMID: 25277138]
[19]
Di Martino, L.; Dave, M.; Menghini, P.; Xin, W.; Arseneau, K.O.; Pizarro, T.T.; Cominelli, F. Protective role for TWEAK/Fn14 in regulating acute intestinal inflammation and colitis-associated tumorigenesis. Cancer Res., 2016, 76(22), 6533-6542.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0400] [PMID: 27634763]
[20]
Qu, L.L.; Yu, B.; Li, Z.; Jiang, W.X.; Jiang, J.D.; Kong, W.J. Gastrodin ameliorates oxidative stress and proinflammatory response in nonalcoholic fatty liver disease through the AMPK/Nrf2 pathway. Phytother. Res., 2016, 30(3), 402-411.
[http://dx.doi.org/10.1002/ptr.5541] [PMID: 26634892]
[21]
Zaki, M.H.; Boyd, K.L.; Vogel, P.; Kastan, M.B.; Lamkanfi, M.; Kanneganti, T.D. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity, 2010, 32(3), 379-391.
[http://dx.doi.org/10.1016/j.immuni.2010.03.003] [PMID: 20303296]
[22]
Dou, W.; Zhang, J.; Zhang, E.; Sun, A.; Ding, L.; Chou, G.; Wang, Z.; Mani, S. Chrysin ameliorates chemically induced colitis in the mouse through modulation of a PXR/NF-κB signaling pathway. J. Pharmacol. Exp. Ther., 2013, 345(3), 473-482.
[http://dx.doi.org/10.1124/jpet.112.201863] [PMID: 23536316]
[23]
Luo, X.; Yu, Z.; Deng, C.; Zhang, J.; Ren, G.; Sun, A.; Mani, S.; Wang, Z.; Dou, W. Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice. Sci. Rep., 2017, 7(1), 16374.
[http://dx.doi.org/10.1038/s41598-017-12562-6] [PMID: 29180692]
[24]
Dou, W.; Zhang, J.; Li, H.; Kortagere, S.; Sun, K.; Ding, L.; Ren, G.; Wang, Z.; Mani, S. Plant flavonol isorhamnetin attenuates chemically induced inflammatory bowel disease via a PXR-dependent pathway. J. Nutr. Biochem., 2014, 25(9), 923-933.
[http://dx.doi.org/10.1016/j.jnutbio.2014.04.006] [PMID: 24913217]
[25]
Rehman, S.U.; Ali, T.; Alam, S.I.; Ullah, R.; Zeb, A.; Lee, K.W.; Rutten, B.P.F.; Kim, M.O. Ferulic acid rescues lps-induced neurotoxicity via modulation of the TLR4 receptor in the mouse hippocampus. Mol. Neurobiol., 2019, 56(4), 2774-2790.
[http://dx.doi.org/10.1007/s12035-018-1280-9] [PMID: 30058023]
[26]
Yuan, R.; Huang, L.; Du, L.J.; Feng, J.F.; Li, J.; Luo, Y.Y.; Xu, Q.M.; Yang, S.L.; Gao, H.; Feng, Y.L. Dihydrotanshinone exhibits an anti-inflammatory effect in vitro and in vivo through blocking TLR4 dimerization. Pharmacol. Res., 2019, 142, 102-114.
[http://dx.doi.org/10.1016/j.phrs.2019.02.017] [PMID: 30794925]
[27]
Han, S.; Li, S.; Li, J.; He, J.; Wang, Q.Q.; Gao, X.; Yang, S.; Li, J.; Yuan, R.; Zhong, G.; Gao, H. Hederasaponin C inhibits LPS -induced acute kidney injury in mice by targeting TLR4 and regulating the PIP2/NF-κB/NLRP3 signaling pathway. Phytother. Res., 2023, 37(12), 5974-5990.
[http://dx.doi.org/10.1002/ptr.8014] [PMID: 37778741]
[28]
Del Fabbro, S.; Calder, P.C.; Childs, C.E. Microbiota-independent immunological effects of non-digestible oligosaccharides in the context of inflammatory bowel diseases. Proc. Nutr. Soc., 2020, 79(4), 468-478.
[http://dx.doi.org/10.1017/S0029665120006953] [PMID: 32345388]
[29]
Wei, C.; Wang, J.Y.; Xiong, F.; Wu, B.H.; Luo, M.H.; Yu, Z.C.; Liu, T.T.; Li, D.F.; Tang, Q.; Li, Y.X.; Zhang, D.G.; Xu, Z.L.; Jin, H.T.; Wang, L.S.; Yao, J. Curcumin ameliorates DSS induced colitis in mice by regulating the Treg/Th17 signaling pathway. Mol. Med. Rep., 2020, 23(1), 1.
[http://dx.doi.org/10.3892/mmr.2020.11672] [PMID: 33179078]
[30]
Zhang, P.; Jiao, H.; Wang, C.; Lin, Y.; You, S. Chlorogenic acid ameliorates colitis and alters colonic microbiota in a mouse model of dextran sulfate sodium-induced colitis. Front. Physiol., 2019, 10, 325.
[http://dx.doi.org/10.3389/fphys.2019.00325] [PMID: 30971953]
[31]
Ma, N.; Liu, Q.; Hou, L.; Wang, Y.; Liu, Z. MDSCs are involved in the protumorigenic potentials of GM-CSF in colitis-associated cancer. Int. J. Immunopathol. Pharmacol., 2017, 30(2), 152-162.
[http://dx.doi.org/10.1177/0394632017711055] [PMID: 28534709]
[32]
Wang, W.; Li, J.; Ding, Z.; Li, Y.; Wang, J.; Chen, S.; Miao, J. Tanshinone I inhibits the growth and metastasis of osteosarcoma via suppressing JAK/STAT3 signalling pathway. J. Cell. Mol. Med., 2019, 23(9), 6454-6465.
[http://dx.doi.org/10.1111/jcmm.14539] [PMID: 31293090]
[33]
Yang, H.L.; Yang, T.Y.; Gowrisankar, Y.V.; Liao, C.H.; Liao, J.W.; Huang, P.J.; Hseu, Y.C. Suppression of LPS-induced inflammation by chalcone flavokawain a through activation of Nrf2/ARE-mediated antioxidant genes and inhibition of ROS/NF κ B signaling pathways in primary splenocytes. Oxid. Med. Cell. Longev., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/3476212] [PMID: 32617135]
[34]
Li, Y.; Dong, M.; Wu, Z.; Huang, Y.; Qian, H.; Huang, C. Activity screening of the herb Caesalpinia sappan and an analysis of its antitumor effects. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-13.
[http://dx.doi.org/10.1155/2021/9939345] [PMID: 34257693]
[35]
Sun, S.; Wang, Y.; Zhou, R.; Deng, Z.; Han, Y.; Han, X.; Tao, W.; Yang, Z.; Shi, C.; Hong, D.; Li, J.; Shi, D.; Zhang, Z. Targeting and regulating of an oncogene via nanovector delivery of microRNA using patient-derived xenografts. Theranostics, 2017, 7(3), 677-693.
[http://dx.doi.org/10.7150/thno.16357] [PMID: 28255359]
[36]
Gao, H.; Sun, W.; Zhao, J.; Wu, X.; Lu, J.J.; Chen, X.; Xu, Q.; Khan, I.A.; Yang, S. Tanshinones and diethyl blechnics with anti-inflammatory and anti-cancer activities from Salvia miltiorrhiza Bunge (Danshen). Sci. Rep., 2016, 6(1), 33720.
[http://dx.doi.org/10.1038/srep33720] [PMID: 27666387]
[37]
Jeong, S.Y. Im, Y.; Youm, J.; Lee, H.K.; Im, S.Y. l-glutamine attenuates dss-induced colitis via induction of MAPK phosphatase-1. Nutrients, 2018, 10(3), 288.
[http://dx.doi.org/10.3390/nu10030288] [PMID: 29494494]
[38]
Neurath, M.F. Animal models of inflammatory bowel diseases: Illuminating the pathogenesis of colitis, ileitis and cancer. Dig. Dis., 2012, 30, 91-94.
[http://dx.doi.org/10.1159/000341131] [PMID: 23075875]
[39]
Zhang, Y.; Liang, X.; Bao, X.; Xiao, W.; Chen, G. Toll-like receptor 4 (TLR4) inhibitors: Current research and prospective. Eur. J. Med. Chem., 2022, 235, 114291.
[http://dx.doi.org/10.1016/j.ejmech.2022.114291] [PMID: 35307617]
[40]
Chandrasekaran, B.; Pal, D.; Kolluru, V.; Tyagi, A.; Baby, B.; Dahiya, N.R.; Youssef, K.; Alatassi, H.; Ankem, M.K.; Sharma, A.K.; Damodaran, C. The chemopreventive effect of withaferin A on spontaneous and inflammation-associated colon carcinogenesis models. Carcinogenesis, 2018, 39(12), 1537-1547.
[http://dx.doi.org/10.1093/carcin/bgy109] [PMID: 30124785]
[41]
Liu, Y.; Zhao, J.; Zhao, Y.; Zong, S.; Tian, Y.; Chen, S.; Li, M.; Liu, H.; Zhang, Q.; Jing, X.; Sun, B.; Wang, H.; Sun, T.; Yang, C. Therapeutic effects of lentinan on inflammatory bowel disease and colitis-associated cancer. J. Cell. Mol. Med., 2019, 23(2), 750-760.
[http://dx.doi.org/10.1111/jcmm.13897] [PMID: 30472806]
[42]
Masferrer, J.L.; Leahy, K.M.; Koki, A.T.; Zweifel, B.S.; Settle, S.L.; Woerner, B.M.; Edwards, D.A.; Flickinger, A.G.; Moore, R.J.; Seibert, K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res., 2000, 60(5), 1306-1311. [From NLM.
[PMID: 10728691]
[43]
Wang, E.L.; Qian, Z.R.; Nakasono, M.; Tanahashi, T.; Yoshimoto, K.; Bando, Y.; Kudo, E.; Shimada, M.; Sano, T. High expression of Toll-like receptor 4/myeloid differentiation factor 88 signals correlates with poor prognosis in colorectal cancer. Br. J. Cancer, 2010, 102(5), 908-915.
[http://dx.doi.org/10.1038/sj.bjc.6605558] [PMID: 20145615]
[44]
Makkar, S.; Riehl, T.E.; Chen, B.; Yan, Y.; Alvarado, D.M.; Ciorba, M.A.; Stenson, W.F. Hyaluronic acid binding to TLR4 promotes proliferation and blocks apoptosis in colon cancer. Mol. Cancer Ther., 2019, 18(12), 2446-2456.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1225] [PMID: 31484704]
[45]
Yoon, J.; Cho, S.J.; Ko, Y.S.; Park, J.; Shin, D.H.; Hwang, I.C.; Han, S.Y.; Nam, S.Y.; Kim, M.A.; Chang, M.S.; Lee, H.S.; Kim, W.H.; Lee, B.L. A synergistic interaction between transcription factors nuclear factor-κB and signal transducers and activators of transcription 3 promotes gastric cancer cell migration and invasion. BMC Gastroenterol., 2013, 13(1), 29.
[http://dx.doi.org/10.1186/1471-230X-13-29] [PMID: 23402362]
[46]
Qiu, S.; Li, P.; Zhao, H.; Li, X. Maresin 1 alleviates dextran sulfate sodium-induced ulcerative colitis by regulating NRF2 and TLR4/NF-kB signaling pathway. Int. Immunopharmacol., 2020, 78, 106018.
[http://dx.doi.org/10.1016/j.intimp.2019.106018] [PMID: 31780371]
[47]
Dolcet, X.; Llobet, D.; Pallares, J.; Matias-Guiu, X. NF-kB in development and progression of human cancer. Virchows Arch., 2005, 446(5), 475-482.
[http://dx.doi.org/10.1007/s00428-005-1264-9] [PMID: 15856292]
[48]
Korneev, K.V.; Atretkhany, K.S.N.; Drutskaya, M.S.; Grivennikov, S.I.; Kuprash, D.V.; Nedospasov, S.A. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine, 2017, 89, 127-135.
[http://dx.doi.org/10.1016/j.cyto.2016.01.021] [PMID: 26854213]
[49]
Zou, Y.; Qin, F.; Chen, J.; Meng, J.; Wei, L.; Wu, C.; Zhang, Q.; Wei, D.; Chen, X.; Wu, H.; Chen, X.; Dai, S. sTLR4/MD-2 complex inhibits colorectal cancer in vitro and in vivo by targeting LPS. Oncotarget, 2016, 7(32), 52032-52044.
[http://dx.doi.org/10.18632/oncotarget.10496] [PMID: 27409669]
[50]
Wang, Y.; Shan, X.; Chen, G.; Jiang, L.; Wang, Z.; Fang, Q.; Liu, X.; Wang, J.; Zhang, Y.; Wu, W.; Liang, G. MD -2 as the target of a novel small molecule, L6H 21, in the attenuation of LPS -induced inflammatory response and sepsis. Br. J. Pharmacol., 2015, 172(17), 4391-4405.
[http://dx.doi.org/10.1111/bph.13221] [PMID: 26076332]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy