Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Determination of Pralsetinib in Human Plasma and Cerebrospinal Fluid for Therapeutic Drug Monitoring by Ultra-performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS)

Author(s): Zichen Zhao, Qianlun Pu, Tonglin Sun, Qian Huang, Liping Tong, Ting Fan, Jingyue Kang, Yuhong Chen and Yan Zhang*

Volume 24, Issue 11, 2024

Published on: 04 April, 2024

Page: [867 - 877] Pages: 11

DOI: 10.2174/0118715206290110240326071909

Price: $65

Abstract

Background: Ultra-performance Liquid Chromatography-tandem Mass Spectrometry (UPLC-MS/MS) is widely used for concentration detection of many Tyrosine Kinase Inhibitors (TKIs), including afatinib, crizotinib, and osimertinib. In order to analyze whether pralsetinib takes effect in Rearranged during Transfection (RET)-positive patients with central nervous system metastasis, we aimed to develop a method for the detection of pralsetinib concentrations in human plasma and Cerebrospinal Fluid (CSF) by UPLC-MS/MS.

Methods: The method was developed using the external standard method, and method validation included precision, accuracy, stability, extraction recovery, and matrix effect. Working solutions were all obtained based on stock solutions of pralsetinib of 1mg/mL. The plasma/CSF samples were precipitated by acetonitrile for protein precipitation and then separated on an ACQUITY UPLC HSS T3 column (2.1×100 mm, 1.8 μm) with a gradient elution using 0.1% formic acid (solution A) and acetonitrile (solution B) as mobile phases at a flow rate of 0.4 mL/min. The tandem mass spectrometry was performed by a triple quadrupole linear ion trap mass spectrometry system (QTRAPTM 6500+) with an electrospray ion (ESI) source and Analyst 1.7.2 data acquisition system. Data were collected in Multiple Reaction Monitoring (MRM) and positive ionization mode.

Results: A good linear relationship of pralsetinib in both plasma and CSF was successfully established, and the calibration ranges were found to be 1.0-64.0 μg/mL and 50.0ng/mL-12.8 μg/mL for pralsetinib in the plasma and CSF, respectively. Validation was performed, including calibration assessment, selectivity, precision, accuracy, matrix effect, extraction recovery, and stability, and all results have been found to be acceptable. The method has been successfully applied to pralsetinib concentration detection in a clinical sample, and the concentrations have been found to be 475 ng/mL and 61.55 μg/mL in the CSF and plasma, respectively.

Conclusion: We have developed a quick and effective method for concentration detection in both plasma and CSF, and it can be applied for drug monitoring in clinical practice. The method can also provide a reference for further optimization.

Graphical Abstract

[1]
Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet, 2017, 389(10066), 299-311.
[http://dx.doi.org/10.1016/S0140-6736(16)30958-8] [PMID: 27574741]
[2]
Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183] [PMID: 29364287]
[3]
Nicholson, A.G.; Tsao, M.S.; Beasley, M.B.; Borczuk, A.C.; Brambilla, E.; Cooper, W.A.; Dacic, S.; Jain, D.; Kerr, K.M.; Lantuejoul, S.; Noguchi, M.; Papotti, M.; Rekhtman, N.; Scagliotti, G.; van Schil, P.; Sholl, L.; Yatabe, Y.; Yoshida, A.; Travis, W.D. The 2021 WHO classification of lung tumors: Impact of advances since 2015. J. Thorac. Oncol., 2022, 17(3), 362-387.
[http://dx.doi.org/10.1016/j.jtho.2021.11.003] [PMID: 34808341]
[4]
Wang, M.; Herbst, R.S.; Boshoff, C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med., 2021, 27(8), 1345-1356.
[http://dx.doi.org/10.1038/s41591-021-01450-2] [PMID: 34385702]
[5]
Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.M.E.; Lee, C.K.; Sebastian, M.; Templeton, A.; Mann, H.; Marotti, M.; Ghiorghiu, S.; Papadimitrakopoulou, V.A. Osimertinib or platinum–pemetrexed in EGFR T790M–positive lung cancer. N. Engl. J. Med., 2017, 376(7), 629-640.
[http://dx.doi.org/10.1056/NEJMoa1612674] [PMID: 27959700]
[6]
Remon, J.; Steuer, C.E.; Ramalingam, S.S.; Felip, E. Osimertinib and other third-generation EGFR TKI in EGFR-mutant NSCLC patients. Ann. Oncol., 2018, 29(Suppl. 1), i20-i27.
[http://dx.doi.org/10.1093/annonc/mdx704] [PMID: 29462255]
[7]
Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; Nishiwaki, Y.; Ohe, Y.; Yang, J.J.; Chewaskulyong, B.; Jiang, H.; Duffield, E.L.; Watkins, C.L.; Armour, A.A.; Fukuoka, M. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med., 2009, 361(10), 947-957.
[http://dx.doi.org/10.1056/NEJMoa0810699] [PMID: 19692680]
[8]
Felip, E.; Shaw, A.T.; Bearz, A.; Camidge, D.R.; Solomon, B.J.; Bauman, J.R.; Bauer, T.M.; Peters, S.; Toffalorio, F.; Abbattista, A.; Thurm, H.; Peltz, G.; Wiltshire, R.; Besse, B. Intracranial and extracranial efficacy of lorlatinib in patients with ALK-positive non-small-cell lung cancer previously treated with second-generation ALK TKIs. Ann. Oncol., 2021, 32(5), 620-630.
[http://dx.doi.org/10.1016/j.annonc.2021.02.012] [PMID: 33639216]
[9]
Song, Z.; Lv, D.; Chen, S.Q.; Huang, J.; Li, Y.; Ying, S.; Wu, X.; Hua, F.; Wang, W.; Xu, C.; Bei, T.; Gao, C.; Sun, Z.; Zhang, Y.; Lu, S. Pyrotinib in patients with HER2-amplified advanced non–small cell lung cancer: A Prospective, Multicenter, Single-Arm Trial. Clin. Cancer Res., 2022, 28(3), 461-467.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-2936] [PMID: 34753778]
[10]
Rochette, L.; Zeller, M.; Cottin, Y.; Vergely, C. Insights into mechanisms of GDF15 and receptor GFRAL: Therapeutic targets. Trends Endocrinol. Metab., 2020, 31(12), 939-951.
[http://dx.doi.org/10.1016/j.tem.2020.10.004] [PMID: 33172749]
[11]
Engelmann, D.; Koczan, D.; Ricken, P.; Rimpler, U.; Pahnke, J.; Li, Z.; Pützer, B.M. Transcriptome analysis in mouse tumors induced by Ret-MEN2/FMTC mutations reveals subtype-specific role in survival and interference with immune surveillance. Endocr. Relat. Cancer, 2009, 16(1), 211-224.
[http://dx.doi.org/10.1677/ERC-08-0158] [PMID: 18984779]
[12]
Li, A.Y.; McCusker, M.G.; Russo, A.; Scilla, K.A.; Gittens, A.; Arensmeyer, K.; Mehra, R.; Adamo, V.; Rolfo, C. RET fusions in solid tumors. Cancer Treat. Rev., 2019, 81, 101911.
[http://dx.doi.org/10.1016/j.ctrv.2019.101911] [PMID: 31715421]
[13]
Servetto, A.; Esposito, D.; Ferrara, R.; Signorelli, D.; Belli, S.; Napolitano, F.; Santaniello, A.; Ciciola, P.; Formisano, L.; Bianco, R. RET rearrangements in non-small cell lung cancer: Evolving treatment landscape and future challenges. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(6), 188810.
[http://dx.doi.org/10.1016/j.bbcan.2022.188810] [PMID: 36202311]
[14]
Wang, R.; Hu, H.; Pan, Y.; Li, Y.; Ye, T.; Li, C.; Luo, X.; Wang, L.; Li, H.; Zhang, Y.; Li, F.; Lu, Y.; Lu, Q.; Xu, J.; Garfield, D.; Shen, L.; Ji, H.; Pao, W.; Sun, Y.; Chen, H. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J. Clin. Oncol., 2012, 30(35), 4352-4359.
[http://dx.doi.org/10.1200/JCO.2012.44.1477] [PMID: 23150706]
[15]
Drilon, A.; Lin, J.J.; Filleron, T.; Ni, A.; Milia, J.; Bergagnini, I.; Hatzoglou, V.; Velcheti, V.; Offin, M.; Li, B.; Carbone, D.P.; Besse, B.; Mok, T.; Awad, M.M.; Wolf, J.; Owen, D.; Camidge, D.R.; Riely, G.J.; Peled, N.; Kris, M.G.; Mazieres, J.; Gainor, J.F.; Gautschi, O. Frequency of brain metastases and multikinase inhibitor outcomes in patients with RET–rearranged lung cancers. J. Thorac. Oncol., 2018, 13(10), 1595-1601.
[http://dx.doi.org/10.1016/j.jtho.2018.07.004] [PMID: 30017832]
[16]
Subbiah, V.; Gainor, J.F.; Rahal, R.; Brubaker, J.D.; Kim, J.L.; Maynard, M.; Hu, W.; Cao, Q.; Sheets, M.P.; Wilson, D.; Wilson, K.J.; DiPietro, L.; Fleming, P.; Palmer, M.; Hu, M.I.; Wirth, L.; Brose, M.S.; Ou, S.H.I.; Taylor, M.; Garralda, E.; Miller, S.; Wolf, B.; Lengauer, C.; Guzi, T.; Evans, E.K. Precision targeted therapy with BLU-667 for RET -driven cancers. Cancer Discov., 2018, 8(7), 836-849.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0338] [PMID: 29657135]
[17]
Gainor, J.F.; Curigliano, G.; Kim, D.W.; Lee, D.H.; Besse, B.; Baik, C.S.; Doebele, R.C.; Cassier, P.A.; Lopes, G.; Tan, D.S.W.; Garralda, E.; Paz-Ares, L.G.; Cho, B.C.; Gadgeel, S.M.; Thomas, M.; Liu, S.V.; Taylor, M.H.; Mansfield, A.S.; Zhu, V.W.; Clifford, C.; Zhang, H.; Palmer, M.; Green, J.; Turner, C.D.; Subbiah, V. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): A multi-cohort, open-label, phase 1/2 study. Lancet Oncol., 2021, 22(7), 959-969.
[http://dx.doi.org/10.1016/S1470-2045(21)00247-3] [PMID: 34118197]
[18]
Griesinger, F.; Curigliano, G.; Thomas, M.; Subbiah, V.; Baik, C.S.; Tan, D.S.W.; Lee, D.H.; Misch, D.; Garralda, E.; Kim, D.W.; van der Wekken, A.J.; Gainor, J.F.; Paz-Ares, L.; Liu, S.V.; Kalemkerian, G.P.; Houvras, Y.; Bowles, D.W.; Mansfield, A.S.; Lin, J.J.; Smoljanovic, V.; Rahman, A.; Kong, S.; Zalutskaya, A.; Louie-Gao, M.; Boral, A.L.; Mazières, J. Safety and efficacy of pralsetinib in RET fusion–positive non-small-cell lung cancer including as first-line therapy: Update from the ARROW trial. Ann. Oncol., 2022, 33(11), 1168-1178.
[http://dx.doi.org/10.1016/j.annonc.2022.08.002] [PMID: 35973665]
[19]
Subbiah, V.; Hu, M.I.; Wirth, L.J.; Schuler, M.; Mansfield, A.S.; Curigliano, G.; Brose, M.S.; Zhu, V.W.; Leboulleux, S.; Bowles, D.W.; Baik, C.S.; Adkins, D.; Keam, B.; Matos, I.; Garralda, E.; Gainor, J.F.; Lopes, G.; Lin, C.C.; Godbert, Y.; Sarker, D.; Miller, S.G.; Clifford, C.; Zhang, H.; Turner, C.D.; Taylor, M.H. Pralsetinib for patients with advanced or metastatic RET-altered thyroid cancer (ARROW): A multi-cohort, open-label, registrational, phase 1/2 study. Lancet Diabetes Endocrinol., 2021, 9(8), 491-501.
[http://dx.doi.org/10.1016/S2213-8587(21)00120-0] [PMID: 34118198]
[20]
Subbiah, V.; Hu, M.I.; Mansfield, A.S.; Taylor, M.H.; Schuler, M.; Zhu, V.W.; Hadoux, J.; Curigliano, G.; Wirth, L.; Gainor, J.F.; Alonso, G.; Adkins, D.; Godbert, Y.; Ahn, M.J.; Cassier, P.A.; Cho, B.C.; Lin, C.C.; Zalutskaya, A.; Barata, T.; Trask, P.; Scalori, A.; Bordogna, W.; Heinzmann, S.; Brose, M.S. Pralsetinib in Patients with advanced/metastatic Rearranged During Transfection (RET)-altered thyroid cancer: Updated efficacy and safety data from the ARROW study. Thyroid, 2024, 34(1), 26-40.
[http://dx.doi.org/10.1089/thy.2023.0363] [PMID: 38009200]
[21]
Russo, G.L.; Bironzo, P.; Bennati, C.; Bonanno, L.; Catino, A.; Metro, G.; Petrini, I.; Russano, M.; Passaro, A. Clinical evidence and adverse event management update of patients with RET- rearranged advanced non-small-cell lung cancer (NSCLC) treated with pralsetinib. Crit. Rev. Oncol. Hematol., 2024, 194, 104243.
[http://dx.doi.org/10.1016/j.critrevonc.2023.104243] [PMID: 38135019]
[22]
Reis, R.; Labat, L.; Allard, M.; Boudou-Rouquette, P.; Chapron, J.; Bellesoeur, A.; Thomas-Schoemann, A.; Arrondeau, J.; Giraud, F.; Alexandre, J.; Vidal, M.; Goldwasser, F.; Blanchet, B. Liquid chromatography-tandem mass spectrometric assay for therapeutic drug monitoring of the EGFR inhibitors afatinib, erlotinib and osimertinib, the ALK inhibitor crizotinib and the VEGFR inhibitor nintedanib in human plasma from non-small cell lung cancer patients. J. Pharm. Biomed. Anal., 2018, 158, 174-183.
[http://dx.doi.org/10.1016/j.jpba.2018.05.052] [PMID: 29883880]
[23]
Sparidans, R.W.; Rosing, H.; Rood, J.J.M.; Schellens, J.H.M.; Beijnen, J.H. Liquid chromatography-tandem mass spectrometric assay for therapeutic drug monitoring of the B-Raf inhibitor encorafenib, the EGFR inhibitors afatinib, erlotinib and gefitinib and the O-desmethyl metabolites of erlotinib and gefitinib in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1033-1034, 390-398.
[http://dx.doi.org/10.1016/j.jchromb.2016.09.012] [PMID: 27639128]
[24]
Bustillo, M.; Zabala, A.; Querejeta, I.; Carton, J.I.; Mentxaka, O.; González-Pinto, A.; García, S.; Meana, J.J.; Eguiluz, J.I.; Segarra, R. Therapeutic drug monitoring of second-generation antipsychotics for the estimation of early drug effect in first-episode psychosis: A cross-sectional assessment. Ther. Drug Monit., 2018, 40(2), 257-267.
[http://dx.doi.org/10.1097/FTD.0000000000000480] [PMID: 29369974]
[25]
Haouala, A.; Zanolari, B.; Rochat, B.; Montemurro, M.; Zaman, K.; Duchosal, M.A.; Ris, H.B.; Leyvraz, S.; Widmer, N.; Decosterd, L.A. Therapeutic Drug Monitoring of the new targeted anticancer agents imatinib, nilotinib, dasatinib, sunitinib, sorafenib and lapatinib by LC tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(22), 1982-1996.
[http://dx.doi.org/10.1016/j.jchromb.2009.04.045] [PMID: 19505856]
[26]
Huang, R.S.; Ratain, M.J. Pharmacogenetics and pharmacogenomics of anticancer agents. CA Cancer J. Clin., 2009, 59(1), 42-55.
[http://dx.doi.org/10.3322/caac.20002] [PMID: 19147868]
[27]
Yan, S.; Yang, L.; Lu, L.; Guo, Q.; Hu, X.; Yuan, Y.; Li, Y.; Wu, M.; Zhang, J. Improved pharmacokinetic characteristics and bioactive effects of anticancer enzyme delivery systems. Expert Opin. Drug Metab. Toxicol., 2018, 14(9), 951-960.
[http://dx.doi.org/10.1080/17425255.2018.1505863] [PMID: 30058385]
[28]
Widmer, N.; Bardin, C.; Chatelut, E.; Paci, A.; Beijnen, J.; Levêque, D.; Veal, G.; Astier, A. Review of therapeutic drug monitoring of anticancer drugs part two – Targeted therapies. Eur. J. Cancer, 2014, 50(12), 2020-2036.
[http://dx.doi.org/10.1016/j.ejca.2014.04.015] [PMID: 24928190]
[29]
Panda, S.S. Bioanalysis of anticancer agents: Evaluating LC-MS/MS procedures with greenness metrics. Trac-Trend. Anal. Chem., 2023, 169, 117394.
[30]
Li, Y.; Meng, L.; Ma, Y.; Li, Y.; Xing, X.; Guo, C.; Dong, Z. Determination of osimertinib, aumolertinib, and furmonertinib in human plasma for therapeutic drug monitoring by UPLC-MS/MS. Molecules, 2022, 27(14), 4474.
[http://dx.doi.org/10.3390/molecules27144474] [PMID: 35889345]
[31]
Seyfinejad, B.; Jouyban, A. Overview of therapeutic drug monitoring of immunosuppressive drugs: Analytical and clinical practices. J. Pharm. Biomed. Anal., 2021, 205, 114315.
[http://dx.doi.org/10.1016/j.jpba.2021.114315] [PMID: 34399192]
[32]
Pieri, M.; Miraglia, N.; Polichetti, G.; Tarantino, G.; Acampora, A.; Capone, D. Analytical and pharmacological aspects of therapeutic drug monitoring of mTOR inhibitors. Curr. Drug Metab., 2011, 12(3), 253-267.
[http://dx.doi.org/10.2174/138920011795101868] [PMID: 21342112]
[33]
Pardi, J.; Ford, S.; Cooper, G. Validation of an analytical method for quantitation of metonitazene and isotonitazene in plasma, blood, urine, liver and brain and application to authentic postmortem casework in New York City. J. Anal. Toxicol., 2023, 47(8), 648-655.
[http://dx.doi.org/10.1093/jat/bkad062] [PMID: 37638699]
[34]
Qi, Y.; Liu, G. Ultra-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of antipsychotic drugs in human plasma and its application in therapeutic drug monitoring. Drug Des. Devel. Ther., 2021, 15, 463-479.
[http://dx.doi.org/10.2147/DDDT.S290963] [PMID: 33613026]
[35]
Li, G.; Zhao, M.; Zhao, L. Ultra-performance liquid chromatography-tandem mass spectrometry for simultaneous determination of 12 anti-tumor drugs in human plasma and its application in therapeutic drug monitoring. J. Pharm. Biomed. Anal., 2021, 206, 114380.
[http://dx.doi.org/10.1016/j.jpba.2021.114380] [PMID: 34607204]
[36]
Lu, S.; Zhao, M.; Zhao, L.; Li, G. Development of a UPLC–MS/MS method for simultaneous therapeutic drug monitoring of anti-hepatocellular carcinoma drugs and analgesics in human plasma. Front. Pharmacol., 2023, 14, 1136735.
[http://dx.doi.org/10.3389/fphar.2023.1136735] [PMID: 37324468]
[37]
Ye, Z.; Wu, L.; Zhang, X.; Hu, Y.; Zheng, L. Quantification of sorafenib, lenvatinib, and apatinib in human plasma for therapeutic drug monitoring by UPLC-MS/MS. J. Pharm. Biomed. Anal., 2021, 202, 114161.
[http://dx.doi.org/10.1016/j.jpba.2021.114161] [PMID: 34052550]
[38]
Gu, E.M.; Liu, Y.N.; Pan, L.; Hu, Y.; Ye, X.; Luo, P. A high throughput method for Monitoring of Sorafenib, regorafenib, cabozantinib and their metabolites with UPLC-MS/MS in rat plasma. Front. Pharmacol., 2022, 13, 955263.
[http://dx.doi.org/10.3389/fphar.2022.955263] [PMID: 36160432]
[39]
Yu, M.; Liu, A.; Liu, S.; Wu, X.; Zhang, X.; Li, H.; Wang, H. Development and validation of a UPLC–MS/MS method for determination of SYHA1807 in a first-in-human study. Bioanalysis, 2023, 15(24), 1489-1501.
[http://dx.doi.org/10.4155/bio-2023-0143] [PMID: 37991204]
[40]
Veerman, G.D.M.; Lam, M.H.; Mathijssen, R.H.J.; Koolen, S.L.W.; de Bruijn, P. Quantification of afatinib, alectinib, crizotinib and osimertinib in human plasma by liquid chromatography/triple-quadrupole mass spectrometry; focusing on the stability of osimertinib. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1113, 37-44.
[http://dx.doi.org/10.1016/j.jchromb.2019.03.011] [PMID: 30889498]
[41]
Roberts, M.S.; Turner, D.C.; Broniscer, A.; Stewart, C.F. Determination of crizotinib in human and mouse plasma by liquid chromatography electrospray ionization–tandem mass spectrometry (LC-ESI–MS/MS). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 960, 151-157.
[http://dx.doi.org/10.1016/j.jchromb.2014.04.035] [PMID: 24811158]
[42]
Rood, J.J.M.; van Bussel, M.T.J.; Schellens, J.H.M.; Beijnen, J.H.; Sparidans, R.W. Liquid chromatography–tandem mass spectrometric assay for the T790M mutant EGFR inhibitor osimertinib (AZD9291) in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1031, 80-85.
[http://dx.doi.org/10.1016/j.jchromb.2016.07.037] [PMID: 27469903]
[43]
Heinig, K.; Miya, K.; Kamei, T.; Guerini, E.; Fraier, D.; Yu, L.; Bansal, S.; Morcos, P.N. Bioanalysis of alectinib and metabolite M4 in human plasma, cross-validation and impact on PK assessment. Bioanalysis, 2016, 8(14), 1465-1479.
[http://dx.doi.org/10.4155/bio-2016-0068] [PMID: 27329641]
[44]
Nave, O.P. Modification of semi-analytical method applied system of ODE. Mod. Appl. Sci., 2020, 14(6), 75.
[http://dx.doi.org/10.5539/mas.v14n6p75]
[45]
Rood, J.J.M.; Schellens, J.H.M.; Beijnen, J.H.; Sparidans, R.W. Recent developments in the chromatographic bioanalysis of approved kinase inhibitor drugs in oncology. J. Pharm. Biomed. Anal., 2016, 130, 244-263.
[http://dx.doi.org/10.1016/j.jpba.2016.06.037] [PMID: 27460293]
[46]
Wang, Y.; Sparidans, R.W.; Potters, S.; Lebre, M.C.; Beijnen, J.H.; Schinkel, A.H. ABCB1 and ABCG2, but not CYP3A4 limit oral availability and brain accumulation of the RET inhibitor pralsetinib. Pharmacol. Res., 2021, 172, 105850.
[http://dx.doi.org/10.1016/j.phrs.2021.105850] [PMID: 34450308]
[47]
Zhao, Z.; Su, C.; Xiu, W.; Wang, W.; Zeng, S.; Huang, M.; Gong, Y.; Lu, Y.; Zhang, Y. Response to Pralsetinib Observed in Meningeal-Metastatic EGFR-Mutant NSCLC With Acquired RET Fusion: A Brief Report. JTO Clinical and Research Reports, 2022, 3(6), 100343.
[http://dx.doi.org/10.1016/j.jtocrr.2022.100343] [PMID: 35711719]
[48]
Pan, K.; Concannon, K.; Li, J.; Zhang, J.; Heymach, J.V.; Le, X. Emerging therapeutics and evolving assessment criteria for intracranial metastases in patients with oncogene-driven non-small-cell lung cancer. Nat. Rev. Clin. Oncol., 2023, 20(10), 716-732.
[http://dx.doi.org/10.1038/s41571-023-00808-4] [PMID: 37592034]
[49]
Li, D.; Song, Z.; Dong, B.; Song, W. cheng, C.; Zhang, Y.; Zhang, W. Advances in targeted therapy in non-small cell lung cancer with actionable mutations and leptomeningeal metastasis. J. Clin. Pharm. Ther., 2022, 47(1), 24-32.
[http://dx.doi.org/10.1111/jcpt.13489] [PMID: 34309914]
[50]
Ozcan, G.; Singh, M.; Vredenburgh, J.J. Leptomeningeal metastasis from non–small cell lung cancer and current landscape of treatments. Clin. Cancer Res., 2023, 29(1), 11-29.
[http://dx.doi.org/10.1158/1078-0432.CCR-22-1585] [PMID: 35972437]
[51]
Şentürk, R.; Wang, Y.; Schinkel, A.H.; Beijnen, J.H.; Sparidans, R.W. Quantitative bioanalytical assay for the selective RET inhibitors selpercatinib and pralsetinib in mouse plasma and tissue homogenates using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2020, 1147, 122131.
[http://dx.doi.org/10.1016/j.jchromb.2020.122131] [PMID: 32416592]
[52]
Verheijen, R.B.; Yu, H.; Schellens, J.H.M.; Beijnen, J.H.; Steeghs, N.; Huitema, A.D.R. Practical recommendations for therapeutic drug monitoring of kinase inhibitors in oncology. Clin. Pharmacol. Ther., 2017, 102(5), 765-776.
[http://dx.doi.org/10.1002/cpt.787] [PMID: 28699160]
[53]
Mueller-Schoell, A.; Groenland, S.L.; Scherf-Clavel, O.; van Dyk, M.; Huisinga, W.; Michelet, R.; Jaehde, U.; Steeghs, N.; Huitema, A.D.R.; Kloft, C. Therapeutic drug monitoring of oral targeted antineoplastic drugs. Eur. J. Clin. Pharmacol., 2021, 77(4), 441-464.
[http://dx.doi.org/10.1007/s00228-020-03014-8] [PMID: 33165648]
[54]
Brodie, R.R.; Hill, H.M. Validation issues arising from the new FDA guidance for industry on bioanalytical method validation. Chromatographia, 2002, 55(S1), S91-S94.
[http://dx.doi.org/10.1007/BF02493361]
[55]
Bevers, L.A.H. van Ewijk - Beneken Kolmer, E.W.J.; Te Brake, H.M.L.; Burger, D.M. Development, validation and clinical implementation of a UPLC-MS/MS bioanalytical method for simultaneous quantification of cabotegravir and rilpivirine E-isomer in human plasma. J. Pharm. Biomed. Anal., 2024, 238, 115832.
[http://dx.doi.org/10.1016/j.jpba.2023.115832] [PMID: 37976991]
[56]
Qin, C.; Feng, W.; Chu, Y.; Lee, J.B.; Berton, M.; Bettonte, S.; Teo, Y.Y.; Stocks, M.J.; Fischer, P.M.; Gershkovich, P. Development and validation of a cost-effective and sensitive bioanalytical HPLC-UV method for determination of lopinavir in rat and human plasma. Biomed. Chromatogr., 2020, 34(11), e4934.
[http://dx.doi.org/10.1002/bmc.4934] [PMID: 32598032]
[57]
Wang, H.; Wang, Z.; Zhang, G.; Zhang, M.; Zhang, X.; Li, H.; Zheng, X.; Ma, Z. Driver genes as predictive indicators of brain metastasis in patients with advanced NSCLC: EGFR, ALK, and RET gene mutations. Cancer Med., 2020, 9(2), 487-495.
[http://dx.doi.org/10.1002/cam4.2706] [PMID: 31769228]
[58]
Evans, E.; Hu, W.; Cao, F.; Hoeflich, K.; Dorsch, M. Pralsetinib (BLU-667) demonstrates robust activity in RET fusion-driven intracranial tumor models. J. Thorac. Oncol., 2019, 14(10), S701.
[59]
Passaro, A.; Russo, G.L.; Passiglia, F.; D’Arcangelo, M.; Sbrana, A.; Russano, M.; Bonanno, L.; Giusti, R.; Metro, G.; Bertolini, F.; Grisanti, S.; Carta, A.; Cecere, F.; Montrone, M.; Massa, G.; Perrone, F.; Simionato, F.; Guaitoli, G.; Scotti, V.; Genova, C.; Lugini, A.; Bonomi, L.; Attili, I.; de Marinis, F. Pralsetinib in RET fusion-positive non-small-cell lung cancer: A real-world data (RWD) analysis from the Italian expanded access program (EAP). Lung Cancer, 2022, 174, 118-124.
[http://dx.doi.org/10.1016/j.lungcan.2022.11.005] [PMID: 36379124]
[60]
Subbiah, V.; Berry, J.; Roxas, M.; Guha-Thakurta, N.; Subbiah, I.M.; Ali, S.M.; McMahon, C.; Miller, V.; Cascone, T.; Pai, S.; Tang, Z.; Heymach, J.V. Systemic and CNS activity of the RET inhibitor vandetanib combined with the mTOR inhibitor everolimus in KIF5B-RET re-arranged non-small cell lung cancer with brain metastases. Lung Cancer, 2015, 89(1), 76-79.
[http://dx.doi.org/10.1016/j.lungcan.2015.04.004] [PMID: 25982012]
[61]
Subbiah, V.; Gainor, J.F.; Oxnard, G.R.; Tan, D.S.W.; Owen, D.H.; Cho, B.C.; Loong, H.H.; McCoach, C.E.; Weiss, J.; Kim, Y.J.; Bazhenova, L.; Park, K.; Daga, H.; Besse, B.; Gautschi, O.; Rolfo, C.; Zhu, E.Y.; Kherani, J.F.; Huang, X.; Kang, S.; Drilon, A. Intracranial efficacy of selpercatinib in RET fusion-positive non–small cell lung cancers on the LIBRETTO-001 trial. Clin. Cancer Res., 2021, 27(15), 4160-4167.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-0800] [PMID: 34088726]
[62]
Levin, V.A.; Ellingson, B.M. Understanding brain penetrance of anticancer drugs. Neuro-oncol., 2018, 20(5), 589-596.
[http://dx.doi.org/10.1093/neuonc/noy018] [PMID: 29474640]
[63]
Angeli, E.; Nguyen, T.T.; Janin, A.; Bousquet, G. How to make anticancer drugs cross the blood–brain barrier to treat brain metastases. Int. J. Mol. Sci., 2019, 21(1), 22.
[http://dx.doi.org/10.3390/ijms21010022] [PMID: 31861465]
[64]
Lockman, P.R.; Mittapalli, R.K.; Taskar, K.S.; Rudraraju, V.; Gril, B.; Bohn, K.A.; Adkins, C.E.; Roberts, A.; Thorsheim, H.R.; Gaasch, J.A.; Huang, S.; Palmieri, D.; Steeg, P.S.; Smith, Q.R. Heterogeneous blood-tumor barrier permeability determines drug efficacy in experimental brain metastases of breast cancer. Clin. Cancer Res., 2010, 16(23), 5664-5678.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-1564] [PMID: 20829328]
[65]
Li, W.; Sparidans, R.W.; Wang, Y.; Lebre, M.C.; Beijnen, J.H.; Schinkel, A.H. P-glycoprotein and breast cancer resistance protein restrict brigatinib brain accumulation and toxicity, and, alongside CYP3A, limit its oral availability. Pharmacol. Res., 2018, 137, 47-55.
[http://dx.doi.org/10.1016/j.phrs.2018.09.020] [PMID: 30253203]
[66]
Wang, Y.; Sparidans, R.W.; Li, W.; Lebre, M.C.; Beijnen, J.H.; Schinkel, A.H. OATP1A/1B, CYP3A, ABCB1, and ABCG2 limit oral availability of the NTRK inhibitor larotrectinib, while ABCB1 and ABCG2 also restrict its brain accumulation. Br. J. Pharmacol., 2020, 177(13), 3060-3074.
[http://dx.doi.org/10.1111/bph.15034] [PMID: 32087611]
[67]
Perez de Souza, L.; Alseekh, S.; Scossa, F.; Fernie, A.R. Ultra-high-performance liquid chromatography high-resolution mass spectrometry variants for metabolomics research. Nat. Methods, 2021, 18(7), 733-746.
[http://dx.doi.org/10.1038/s41592-021-01116-4] [PMID: 33972782]
[68]
Liu, G.; Snapp, H.M.; Ji, Q.C.; Arnold, M.E. Strategy of accelerated method development for high-throughput bioanalytical assays using ultra high-performance liquid chromatography coupled with mass spectrometry. Anal. Chem., 2009, 81(22), 9225-9232.
[http://dx.doi.org/10.1021/ac901316w] [PMID: 19856950]
[69]
Jemal, M.; Ouyang, Z.; Xia, Y.Q. Systematic LC-MS/MS bioanalytical method development that incorporates plasma phospholipids risk avoidance, usage of incurred sample and well thought-out chromatography. Biomed. Chromatogr., 2010, 24(1), 2-19.
[http://dx.doi.org/10.1002/bmc.1373] [PMID: 20017121]
[70]
Forcisi, S.; Moritz, F.; Kanawati, B.; Tziotis, D.; Lehmann, R.; Schmitt-Kopplin, P. Liquid chromatography–mass spectrometry in metabolomics research: Mass analyzers in ultra high pressure liquid chromatography coupling. J. Chromatogr. A, 2013, 1292, 51-65.
[http://dx.doi.org/10.1016/j.chroma.2013.04.017] [PMID: 23631876]
[71]
Liu, C.C.; Liang, L.H.; Yang, Y.; Yu, H.L.; Yan, L.; Li, X.S.; Chen, B.; Liu, S.L.; Xi, H.L. Direct acetonitrile-assisted trypsin digestion method combined with LC–MS/MS-targeted peptide analysis for unambiguous identification of intact ricin. J. Proteome Res., 2021, 20(1), 369-380.
[http://dx.doi.org/10.1021/acs.jproteome.0c00458] [PMID: 33108200]
[72]
Ondrej, M.; Rehulka, P.; Rehulkova, H.; Kupcik, R.; Tichy, A. Fractionation of enriched phosphopeptides using pH/Acetonitrile-gradient-reversed-phase microcolumn separation in combination with LC–MS/MS analysis. Int. J. Mol. Sci., 2020, 21(11), 3971.
[http://dx.doi.org/10.3390/ijms21113971] [PMID: 32492839]
[73]
Zhang, M.; Liu, X.; Chen, Z.; Jiang, S.; Wang, L.; Tao, M.; Miao, L. Method development and validation for simultaneous determination of six tyrosine kinase inhibitors and two active metabolites in human plasma/serum using UPLC–MS/MS for therapeutic drug monitoring. J. Pharm. Biomed. Anal., 2022, 211, 114562.
[http://dx.doi.org/10.1016/j.jpba.2021.114562] [PMID: 35124453]
[74]
De Jong, L.A.W.; Sparidans, R.W.; van den Heuvel, M.M. Cerebrospinal fluid concentration of the RET inhibitor pralsetinib: A case report. Case Rep. Oncol., 2023, 16(1), 1579-1585.
[http://dx.doi.org/10.1159/000535172] [PMID: 38094038]
[75]
Sparidans, R.W.; Li, W.; Schinkel, A.H.; Beijnen, J.H. Bioanalytical assay for the novel TRK inhibitor selitrectinib in mouse plasma and tissue homogenates using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1122-1123, 78-82.
[http://dx.doi.org/10.1016/j.jchromb.2019.05.026] [PMID: 31163324]
[76]
Dogan-Topal, B.; Li, W.; Schinkel, A.H.; Beijnen, J.H.; Sparidans, R.W. Quantification of FGFR4 inhibitor BLU-554 in mouse plasma and tissue homogenates using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2019, 1110-1111, 116-123.
[http://dx.doi.org/10.1016/j.jchromb.2019.02.017] [PMID: 30802754]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy