Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

Management of Gingivitis: Contemporary Approaches and Recent Therapeutic Advancements

Author(s): Yuvraj Rameshrao Girbane, Pranay Wal, Riya Khare, Sanjiban Utpalkumar Sarkar, Manish Ramesh Bhise, Virendra Singh, Lalit Kumar Tyagi and Ankita Wal*

Volume 22, Issue 5, 2024

Published on: 04 April, 2024

Article ID: e040424228640 Pages: 19

DOI: 10.2174/0122113525287883240312084729

open access plus

Abstract

Background: Gingivitis, commonly known as gum disease, refers to several types of inflammatory diseases that impact the connective tissues that surround the teeth. Gingivitis causes swelling, redness, and bleeding of the gums in its early stages.

Objective: This article aims to describe the standard gingivitis medication. It emphasizes recent advancements in the initial therapy, treatment, and healing mechanisms of gingivitis for achievement in the clinical testing of medicines that promise to enable disease modification in patients. Also, it aims to review recent advancements and emerging therapeutic developments in the management of gingivitis, including gene-based therapies, nanotherapies, anti-cytokine therapies, stem cell-based therapies, and probiotic therapies.

Methods: The information for the review articles was acquired by using Google Scholar and PubMed as search engines, as well as a number of publishers, including Springer Nature, Bentham Science, Taylor & Francis, Elsevier, and Frontier.

Result and Discussion: Gingivitis is a gum disease and scaling root planning (SRP) is now the most common kind of periodontitis therapy available. It has the potential to deliver significant therapeutic success, but it can also have substantial problems that reduce the quality of life of a patient. Stem cell therapies, gingivitis genetic engineering, nuclear-based medicines, and other advances have given people hope that a wide range of illnesses, especially genetic disorders, can be cured.

Conclusion: The current gingivitis therapies are successful and continually evolving, with several drugs currently in clinical trials. These innovative medicines, when combined, may alter gingivitis treatment in the next few years. Finally, gingivitis therapy requires professional dental care and patient education on oral hygiene. Nonetheless, further research and clinical studies are necessary to validate the efficacy, safety, and long-term benefits of these novel treatment modalities.

Graphical Abstract

[1]
Mootha, A.; Malaiappan, S.; Jayakumar, N.D.; Varghese, S.S.; Toby Thomas, J. The effect of periodontitis on expression of interleukin-21: A systematic review. Int. J. Inflamm., 2016, 2016, 3507503.
[2]
Lokhande, R.; Ambekar, J.G.; Bhat, K.G.; Dongre, N.N. Evaluation of serum IL-21, TNF-α and hsC-reactive protein in patients with chronic periodontitis. Indian J. Public Health Res. Dev., 2019, 10(11), 584.
[http://dx.doi.org/10.5958/0976-5506.2019.03537.X]
[3]
Nibali, L. The periodontal diseases: microbial diseases or diseases of the host response? In: Human Microbiota and Chronic Disease: Dysbiosis as a Cause of Human Pathology; Berri Medical Library, 2016; 22, pp. 215-226.
[http://dx.doi.org/10.1002/9781118982907.ch13]
[4]
Ebersole, J.L.; Kirakodu, S.S.; Nguyen, L.M.; Gonzalez, O.A. Sex effects on gingival transcriptomic patterns during initiation, progression, and resolution of periodontitis. J. Periodontol., 2023, 94(8), 1018-1031.
[http://dx.doi.org/10.1002/JPER.23-0042] [PMID: 36853808]
[5]
Gibertoni, F.; Sommer, M.E.L.; Esquisatto, M.A.M.; Amaral, M.E.C.; Oliveira, C.A.; Andrade, T.A.M.; Mendonça, F.A.S. Santamaria-, M., Jr; Felonato, M. Evolution of periodontal disease: Immune response and RANK/RANKL/OPG system. Braz. Dent. J., 2017, 28(6), 679-687.
[http://dx.doi.org/10.1590/0103-6440201701407] [PMID: 29211121]
[6]
Wal, P.; Samal, H.B.; Khare, R.; Arora, K. Soni, M Aloe vera: A potential herb for periodontitis management. Curr. Tradit. Med., 2024, 10, e221023222516.
[7]
Balta, M.G.; Loos, B.G.; Nicu, E.A. Emerging concepts in the resolution of periodontal inflammation: A role for resolvin E1. Front. Immunol., 2017, 8, 1682.
[http://dx.doi.org/10.3389/fimmu.2017.01682] [PMID: 29312286]
[8]
Ramadan, D.E.; Hariyani, N.; Indrawati, R.; Ridwan, R.D.; Diyatri, I. Cytokines and chemokines in periodontitis. Eur. J. Dent., 2020, 14(3), 483-495.
[http://dx.doi.org/10.1055/s-0040-1712718] [PMID: 32575137]
[9]
Feres, M.; Figueiredo, L.C.; Soares, G.M.S.; Faveri, M. Systemic antibiotics in the treatment of periodontitis. Periodontol. 2000, 2015, 67(1), 131-186.
[http://dx.doi.org/10.1111/prd.12075] [PMID: 25494600]
[10]
Fleeman, R.M.; Debevec, G.; Antonen, K.; Adams, J.L.; Santos, R.G.; Welmaker, G.S.; Houghten, R.A.; Giulianotti, M.A.; Shaw, L.N. Identification of a novel polyamine scaffold with potent efflux pump inhibition activity toward multi-drug resistant bacterial pathogens. Front. Microbiol., 2018, 9(9), 1301.
[http://dx.doi.org/10.3389/fmicb.2018.01301] [PMID: 29963035]
[11]
Berlina, A.; Bartosh, A.; Zherdev, A.; Xu, C.; Dzantiev, B. Development of immunochromatographic assay for determination of tetracy-cline in human serum. Antibiotics, 2018, 7(4), 99.
[http://dx.doi.org/10.3390/antibiotics7040099] [PMID: 30428590]
[12]
Serbanescu, M.A.; Oveisi, M.; Sun, C.; Fine, N.; Bosy, A.; Glogauer, M. Metronidazole enhances killing of Porphyromonas gingivalis by human PMNs. Front. Oral Health, 2022, 3(3), 933997.
[http://dx.doi.org/10.3389/froh.2022.933997] [PMID: 36105174]
[13]
Loesche, W.J.; Giordano, J.R.; Hujoel, P.; Schwarcz, J.; Smith, B.A. Metronidazole in periodontitis: Reduced need for surgery. J. Clin. Periodontol., 1992, 19(2), 103-112.
[http://dx.doi.org/10.1111/j.1600-051X.1992.tb00448.x] [PMID: 1602034]
[14]
Theodoro, L.H.; Lopes, A.B.; Nuernberg, M.A.A.; Cláudio, M.M.; Miessi, D.M.J.; Alves, M.L.F.; Duque, C.; Mombelli, A.; Garcia, V.G. Comparison of repeated applications of aPDT with amoxicillin and metronidazole in the treatment of chronic periodontitis: A short-term study. J. Photochem. Photobiol. B, 2017, 174(174), 364-369.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.08.012] [PMID: 28863395]
[15]
Polymeri, A.; van der Horst, J.; Moin, A.D.; Wismeijer, D.; Loos, B.G.; Laine, M.L. Non‐surgical peri‐implantitis treatment with or without systemic antibiotics: A randomized controlled clinical trial. Clin. Oral Implants Res., 2022, 33(5), 548-557.
[http://dx.doi.org/10.1111/clr.13914] [PMID: 35238084]
[16]
Wilson, D.N. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol., 2014, 12(1), 35-48.
[http://dx.doi.org/10.1038/nrmicro3155] [PMID: 24336183]
[17]
Srinath, S. Management of periodontal disease with doxycycline: An update. Int. J. Pharm. Clin. Res., 2015, 7(4), 252-255.
[18]
Ardila, C.M.; García, B.J.A. Antimicrobial resistance of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythia in periodontitis patients. J. Glob. Antimicrob. Resist., 2020, 22(22), 215-218.
[http://dx.doi.org/10.1016/j.jgar.2020.02.024] [PMID: 32169683]
[19]
Kamble, P.S.; Gandhi, A.A.; Vhanmane, P.; Vijapure, S. Nanotechnology in periodontics revisited: A review. J. Pharm. Res. Int., 2021, 33(54B), 134-143.
[20]
Newman, M.G.; Takei, H.; Klokkevold, P.R.; Carranza, F.A. Newman and Carranza’s Clinical periodontology E-book; Elsevier Health Sciences, 2018, p. 29.
[21]
Cochrane, S.A.; Lohans, C.T. Breaking down the cell wall: Strategies for antibiotic discovery targeting bacterial transpeptidases. Eur. J. Med. Chem., 2020, 194(194), 112262.
[http://dx.doi.org/10.1016/j.ejmech.2020.112262] [PMID: 32248005]
[22]
Oppenheim, J.J. The future of the cytokine discipline. Cold Spring Harb. Perspect. Biol., 2018, 10(9), a028498.
[http://dx.doi.org/10.1101/cshperspect.a028498] [PMID: 28847901]
[23]
Kumar, P.; Prasanth, T.; Satisha, T.S.; Manandhar, S. Anticytokine therapy in periodontal diseases. Indian J Dent Adv., 2021, 12(2), 68-73.
[24]
Rangarao, S.; Govindarajan, K.; Muthukumar, S. Relationship between interleukin 1α levels in the gingival crevicular fluid in health and in inflammatory periodontal disease and periodontal inflamed surface area: A correlative study. J. Indian Soc. Periodontol., 2015, 19(6), 618-623.
[http://dx.doi.org/10.4103/0972-124X.162197] [PMID: 26941510]
[25]
Calderaro, D.C.; Corrêa, J.D.; Ferreira, G.A.; Barbosa, I.G.; Martins, C.C.; Silva, T.A.; Teixeira, A.L. Influence of periodontal treatment on rheumatoid arthritis: A systematic review and meta-analysis. Rev. Bras. Reumatol. Engl. Ed., 2017, 57(3), 238-244.
[http://dx.doi.org/10.1016/j.rbre.2016.11.011] [PMID: 28535896]
[26]
Souza, V.H.; Visentainer, J.E.L.; Zacarias, J.M.V.; Alencar, J.B.; Tsuneto, P.Y.; Silva, C.O.; Salmeron, S.; Colli, C.M.; Sell, A.M. Association of IL16 polymorphisms with periodontitis in Brazilians: A case- control study. PLoS One, 2020, 15(9), e0239101.
[http://dx.doi.org/10.1371/journal.pone.0239101] [PMID: 32915917]
[27]
Sheppard, M.; Laskou, F.; Stapleton, P.P.; Hadavi, S.; Dasgupta, B. Tocilizumab (Actemra). Hum. Vaccin. Immunother., 2017, 13(9), 1972-1988.
[http://dx.doi.org/10.1080/21645515.2017.1316909] [PMID: 28841363]
[28]
Xu, C.; Chen, X.; Zhang, X.; Zhao, D.; Dou, Z.; Xie, X.; Li, H.; Yang, H.; Li, Q.; Zhang, H.; Di, C. RNA-binding protein 39: A promising therapeutic target for cancer. Cell Death Discov., 2021, 7(1), 214.
[http://dx.doi.org/10.1038/s41420-021-00598-7] [PMID: 34389703]
[29]
Salinas, V.L.; Rodriguez, V.A.; Rodriguez, L.L.; Borca, M.V. The role of interleukin 6 during viral infections. Front. Microbiol., 2019, 10(10), 1057.
[http://dx.doi.org/10.3389/fmicb.2019.01057] [PMID: 31134045]
[30]
Oerlemans, R.; Berkers, C.R.; Assaraf, Y.G.; Scheffer, G.L.; Peters, G.J.; Verbrugge, S.E.; Cloos, J.; Slootstra, J.; Meloen, R.H.; Shoemaker, R.H.; Dijkmans, B.A.C.; Scheper, R.J.; Ovaa, H.; Jansen, G. Proteasome inhibition and mechanism of resistance to a synthetic, library-based hexapeptide. Invest. New Drugs, 2018, 36(5), 797-809.
[http://dx.doi.org/10.1007/s10637-018-0569-x] [PMID: 29442210]
[31]
Shakoory, B.; Carcillo, J.A.; Chatham, W.W.; Amdur, R.L.; Zhao, H.; Dinarello, C.A.; Cron, R.Q.; Opal, S.M. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of the macrophage activation syndrome: Re-analysis of a prior Phase III trial. Crit. Care Med., 2016, 44(2), 275-281.
[http://dx.doi.org/10.1097/CCM.0000000000001402] [PMID: 26584195]
[32]
Kadkhoda, Z.; Amirzargar, A.; Esmaili, Z.; Vojdanian, M.; Akbari, S. Effect of TNF-α blockade in gingival crevicular fluid on periodontal condition of patients with rheumatoid arthritis. Iran. J. Immunol., 2016, 13(3), 197-203.
[PMID: 27671511]
[33]
González-Osuna, L.; Sierra-Cristancho, A.; Cafferata, E.A.; Melgar-Rodríguez, S.; Rojas, C.; Carvajal, P.; Cortez, C.; Vernal, R. Senescent CD4+ CD28− T lymphocytes as a potential driver of Th17/treg imbalance and alveolar bone resorption during periodontitis. Int. J. Mol. Sci., 2022, 23(5), 2543.
[http://dx.doi.org/10.3390/ijms23052543] [PMID: 35269683]
[34]
Berraondo, P.; Sanmamed, M.F.; Ochoa, M.C.; Etxeberria, I.; Aznar, M.A.; Gracia, P.J.L. Cytokines in clinical cancer immunotherapy. Br. J. Cancer, 2019, 120(1), 6-15.
[http://dx.doi.org/10.1038/s41416-018-0328-y]
[35]
Coelho, A.; Alvites, R.D.; Branquinho, M.V.; Guerreiro, S.G.; Maurício, A.C. Mesenchymal stem cells (MSCs) as a potential therapeutic strategy in COVID-19 patients: literature research. Front. Cell Dev. Biol., 2020, 8(8), 602647.
[http://dx.doi.org/10.3389/fcell.2020.602647] [PMID: 33330498]
[36]
Zhou, L.; Liu, W.; Wu, Y.; Sun, W.; Dörfer, C.E.; El-Sayed, F.K.M. Oral mesenchymal stem/progenitor cells: The immunomodulatory masters. Stem Cells Int., 2020, 2020(27), 1-16.
[http://dx.doi.org/10.1155/2020/1327405] [PMID: 32184830]
[37]
Nuñez, J.; Vignoletti, F.; Caffesse, R.G.; Sanz, M. Cellular therapy in periodontal regeneration. Periodontol. 2000, 2019, 79(1), 107-116.
[http://dx.doi.org/10.1111/prd.12250] [PMID: 30892768]
[38]
Tomasello, L.; Mauceri, R.; Coppola, A.; Pitrone, M.; Pizzo, G.; Campisi, G. Mesenchymal stem cells derived from inflamed dental pulpal and gingival tissue: A potential application for bone formation. Stem Cell Res. Ther., 2017, 8(1), 179.
[http://dx.doi.org/10.1186/s13287-017-0633-z]
[39]
Hieke, C.; Kriebel, K.; Engelmann, R.; Müller-Hilke, B.; Lang, H.; Kreikemeyer, B. Human dental stem cells suppress PMN activity after infection with the periodontopathogens Prevotella intermedia and Tannerella forsythia. Sci. Rep., 2016, 6(1), 39096.
[http://dx.doi.org/10.1038/srep39096] [PMID: 27974831]
[40]
Zheng, W.; Wang, S.; Wang, J.; Jin, F. Periodontitis promotes the proliferation and suppresses the differentiation potential of human periodontal ligament stem cells. Int. J. Mol. Med., 2015, 36(4), 915-922.
[http://dx.doi.org/10.3892/ijmm.2015.2314] [PMID: 26310866]
[41]
Sun, J.; Dong, Z.; Zhang, Y.; He, X.; Fei, D.; Jin, F.; Yuan, L.; Li, B.; Jin, Y. Osthole improves function of periodontitis periodontal ligament stem cells via epigenetic modification in cell sheets engineering. Sci. Rep., 2017, 7(1), 5254.
[http://dx.doi.org/10.1038/s41598-017-05762-7] [PMID: 28701802]
[42]
Duan, Y.; An, W.; Wu, Y.; Wang, J. Tetramethylpyrazine reduces inflammation levels and the apoptosis of LPS stimulated human periodontal ligament cells via the downregulation of miR 302b. Int. J. Mol. Med., 2020, 45(6), 1918-1926.
[http://dx.doi.org/10.3892/ijmm.2020.4554] [PMID: 32236610]
[43]
Seo, B.M.; Miura, M.; Gronthos, S.; Mark Bartold, P.; Batouli, S.; Brahim, J.; Young, M.; Gehron Robey, P.; Wang, C.Y.; Shi, S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 2004, 364(9429), 149-155.
[http://dx.doi.org/10.1016/S0140-6736(04)16627-0] [PMID: 15246727]
[44]
Chen, Q.; Liu, X.; Wang, D.; Zheng, J.; Chen, L.; Xie, Q.; Liu, X.; Niu, S.; Qu, G.; Lan, J.; Li, J.; Yang, C.; Zou, D. Periodontal inflammation-triggered by periodontal ligament stem cell pyroptosis exacerbates periodontitis. Front. Cell Dev. Biol., 2021, 9(9), 663037.
[http://dx.doi.org/10.3389/fcell.2021.663037] [PMID: 33869229]
[45]
Zhang, Z.; Deng, M.; Hao, M.; Tang, J. Stem cell therapy in chronic periodontitis: Host limitations and strategies. Front Dent Med., 2022, 24(2), 101.
[46]
Liu, J.; Chen, B.; Bao, J.; Zhang, Y.; Lei, L.; Yan, F. Macrophage polarization in periodontal ligament stem cells enhanced periodontal regeneration. Stem Cell Res. Ther., 2019, 10(1), 320.
[http://dx.doi.org/10.1186/s13287-019-1409-4] [PMID: 31730019]
[47]
Shin, C.; Kim, M.; Han, J.A.; Choi, B.; Hwang, D.; Do, Y.; Yun, J.H. Human periodontal ligament stem cells suppress T‐cell proliferation via down‐regulation of non‐classical major histocompatibility complex‐like glycoprotein CD 1b on dendritic cells. J. Periodontal Res., 2017, 52(1), 135-146.
[http://dx.doi.org/10.1111/jre.12378] [PMID: 27021598]
[48]
Wang, Y.; Chen, X.; Cao, W.; Shi, Y. Plasticity of mesenchymal stem cells in immunomodulation: Pathological and therapeutic implications. Nat. Immunol., 2014, 15(11), 1009-1016.
[http://dx.doi.org/10.1038/ni.3002] [PMID: 25329189]
[49]
Liu, X.; Wang, Z.; Song, W.; Sun, W.; Hong, R.; Pothukuchi, A.; Xu, Q. Systematically transplanted human gingiva-derived mesenchymal stem cells regulate lipid metabolism and inflammation in hyperlipidemic mice with periodontitis. Exp. Ther. Med., 2020, 19(1), 672-682.
[PMID: 31885706]
[50]
Hong, R.; Wang, Z.; Sui, A.; Liu, X.; Fan, C.; Lipkind, S.; Xu, Q. Gingival mesenchymal stem cells attenuate pro-inflammatory macrophages stimulated with oxidized low-density lipoprotein and modulate lipid metabolism. Arch. Oral Biol., 2019, 98, 92-98.
[http://dx.doi.org/10.1016/j.archoralbio.2018.11.007] [PMID: 30468993]
[51]
Kim, D.; Lee, A.E.; Xu, Q.; Zhang, Q.; Le, A.D. Gingiva-derived mesenchymal stem cells: Potential application in tissue engineering and regenerative medicine-a comprehensive review. Front. Immunol., 2021, 12(12), 667221.
[http://dx.doi.org/10.3389/fimmu.2021.667221] [PMID: 33936109]
[52]
Jiang, C.M.; Liu, J.; Zhao, J.Y.; Xiao, L.; An, S.; Gou, Y.C.; Quan, H.X.; Cheng, Q.; Zhang, Y.L.; He, W.; Wang, Y.T.; Yu, W.J.; Huang, Y.F.; Yi, Y.T.; Chen, Y.; Wang, J. Effects of hypoxia on the immunomodulatory properties of human gingiva-derived mesenchymal stem cells. J. Dent. Res., 2015, 94(1), 69-77.
[http://dx.doi.org/10.1177/0022034514557671] [PMID: 25403565]
[53]
Wang, R.; Ji, Q.; Meng, C.; Liu, H.; Fan, C.; Lipkind, S.; Wang, Z.; Xu, Q. Role of gingival mesenchymal stem cell exosomes in macrophage polarization under inflammatory conditions. Int. Immunopharmacol., 2020, 81, 106030.
[http://dx.doi.org/10.1016/j.intimp.2019.106030] [PMID: 31796385]
[54]
Shang, L.; Shao, J.; Ge, S. Immunomodulatory functions of oral mesenchymal stem cells: Novel force for tissue regeneration and disease therapy. J. Leukoc. Biol., 2021, 110(3), 539-552.
[http://dx.doi.org/10.1002/JLB.3MR0321-766R] [PMID: 34184321]
[55]
Watanabe, Y.; Fukuda, T.; Hayashi, C.; Nakao, Y.; Toyoda, M.; Kawakami, K.; Shinjo, T.; Iwashita, M.; Yamato, H.; Yotsumoto, K.; Taketomi, T.; Uchiumi, T.; Sanui, T.; Nishimura, F. Extracellular vesicles derived from GMSCs stimulated with TNF-α and IFN-α promote M2 macrophage polarization via enhanced CD73 and CD5L expression. Sci. Rep., 2022, 12(1), 13344.
[http://dx.doi.org/10.1038/s41598-022-17692-0] [PMID: 35922474]
[56]
Yildirim, S.; Zibandeh, N.; Genc, D.; Ozcan, E.M.; Goker, K.; Akkoc, T. The comparison of the immunologic properties of stem cells isolated from human exfoliated deciduous teeth, dental pulp, and dental follicles. Stem Cells Int., 2016, 2016, 1-15.
[http://dx.doi.org/10.1155/2016/4682875] [PMID: 26770205]
[57]
Gong, F.; Zhang, Y.; Cheng, S.; Zhou, X.; Zhang, H.; Gao, J.; Li, X.; Ma, G.; Wu, J.; Zhang, B.; Xia, K.; Zhao, F. Inhibition of TGFβ1/Smad pathway by NF-κB induces inflammation leading to poor wound healing in high glucose. Cell Dev., 2022, 172(172), 203814.
[http://dx.doi.org/10.1016/j.cdev.2022.203814] [PMID: 36307062]
[58]
Ditto, A.J.; Shah, P.N.; Yun, Y.H. Non-viral gene delivery using nanoparticles. Expert Opin. Drug Deliv., 2009, 6(11), 1149-1160.
[http://dx.doi.org/10.1517/17425240903241796] [PMID: 19780712]
[59]
Yang, B.; Pang, X.; Li, Z.; Chen, Z.; Wang, Y. Immunomodulation in the treatment of periodontitis: Progress and perspectives. Front. Immunol., 2021, 12(12), 781378.
[http://dx.doi.org/10.3389/fimmu.2021.781378] [PMID: 34868054]
[60]
Latimer, J.M.; Maekawa, S.; Yao, Y.; Wu, D.T.; Chen, M.; Giannobile, W.V. Regenerative medicine technologies to treat dental, oral, and craniofacial defects. Front. Bioeng. Biotechnol., 2021, 9(9), 704048.
[http://dx.doi.org/10.3389/fbioe.2021.704048] [PMID: 34422781]
[61]
Goker, F.; Larsson, L.; Fabbro, D.M.; Asa’ad, F. Gene delivery therapeutics in the treatment of periodontitis and peri-implantitis: A state of the art review. Int. J. Mol. Sci., 2019, 20(14), 3551.
[http://dx.doi.org/10.3390/ijms20143551]
[62]
von Jonquieres, G.; Fröhlich, D.; Klugmann, C.B.; Wen, X.; Harasta, A.E.; Ramkumar, R.; Spencer, Z.H.T.; Housley, G.D.; Klugmann, M. Recombinant human myelin-associated glycoprotein promoter drives selective AAV-mediated transgene expression in oligodendrocytes. Front. Mol. Neurosci., 2016, 9(9), 13.
[http://dx.doi.org/10.3389/fnmol.2016.00013] [PMID: 26941604]
[63]
Xiang, L.; Xin, N.; Yuan, Y.; Hou, X.; Chen, J.; Wei, N.; Gong, P. Effect of follicular dendritic cell secreted protein on gene expression of human periodontal ligament cells. Arch. Oral Biol., 2017, 81(81), 151-159.
[http://dx.doi.org/10.1016/j.archoralbio.2017.05.005] [PMID: 28544936]
[64]
Zhu, S.Y.; Wang, P.L.; Liao, C.S.; Yang, Y.Q.; Yuan, C.Y.; Wang, S.; Dissanayaka, W.L.; Heng, B.C.; Zhang, C.F. Transgenic expression of ephrinB2 in periodontal ligament stem cells (PDLSC s) modulates osteogenic differentiation via signaling crosstalk between ephrinB2 and EphB4 in PDLSC s and between PDLSC s and preosteoblasts within co‐culture. J. Periodontal Res., 2017, 52(3), 562-573.
[http://dx.doi.org/10.1111/jre.12424] [PMID: 27763659]
[65]
Monje, A. López del, A.S.F. Application of biologics for ridge preservation/reconstruction after implant removal. Clinic. Adv. Periodontics, 2022, 12(4), 270-276.
[http://dx.doi.org/10.1002/cap.10218] [PMID: 35866264]
[66]
Lin, Z.; Rios, H.F.; Cochran, D.L. Emerging regenerative approaches for periodontal reconstruction: A systematic review from the AAP Regeneration Workshop. J. Periodontol., 2015, 86(S2), S134-S152.
[http://dx.doi.org/10.1902/jop.2015.130689] [PMID: 25644297]
[67]
Hosseinkhani, H.; Domb, A.J.; Sharifzadeh, G.; Nahum, V. Gene therapy for regenerative medicine. Pharmaceutics, 2023, 15(3), 856.
[http://dx.doi.org/10.3390/pharmaceutics15030856]
[68]
Dedhia, D.K.; Chandrasekaran, S.; Logaranjani, A.; Rajaram, V.; Kumari, B.N. Research in clinical periodontology-current concepts and future perspectives-an overview. Ann. Rom. Soc. Cell Biol., 2020, 30, 62-70.
[69]
Zhang, Y.; Ma, Y.; Wu, C.; Miron, R.J.; Cheng, X. Platelet-derived growth factor BB gene-released scaffolds: Biosynthesis and characteri-zation. J. Tissue Eng. Regen. Med., 2016, 10(10), E372-E381.
[http://dx.doi.org/10.1002/term.1825] [PMID: 24130059]
[70]
Plonka, A.B.; Khorsand, B.; Yu, N.; Sugai, J.V.; Salem, A.K.; Giannobile, W.V.; Elangovan, S. Effect of sustained PDGF nonviral gene delivery on repair of tooth-supporting bone defects. Gene Ther., 2017, 24(1), 31-39.
[http://dx.doi.org/10.1038/gt.2016.73] [PMID: 27824330]
[71]
Ao, M.; Chavez, M.B.; Chu, E.Y.; Hemstreet, K.C.; Yin, Y.; Yadav, M.C.; Millán, J.L.; Fisher, L.W.; Goldberg, H.A.; Somerman, M.J.; Foster, B.L. Overlapping functions of bone sialoprotein and pyrophosphate regulators in directing cementogenesis. Bone, 2017, 105(105), 134-147.
[http://dx.doi.org/10.1016/j.bone.2017.08.027] [PMID: 28866368]
[72]
Zhang, N.; Zhang, R.F.; Zhang, A.N.; Dong, G.X.; Suo, N.; Wu, Z.P. MiR-204 promotes fracture healing via enhancing cell viability of osteo-blasts. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(1), 29-35.
[73]
Xu, X.Y.; He, X.T.; Wang, J.; Li, X.; Xia, Y.; Tan, Y.Z. Role of the P2X7 receptor in inflammation-mediated changes in the osteogenesis of periodontal ligament stem cells. Cell Death Dis., 2019, 10(1), 20.
[http://dx.doi.org/10.1038/s41419-018-1253-y]
[74]
Ben Lagha, A.; Andrian, E.; Grenier, D. Resveratrol attenuates the pathogenic and inflammatory properties of Porphyromonas gingivalis. Mol. Oral Microbiol., 2019, 34(3), 118-130.
[http://dx.doi.org/10.1111/omi.12260] [PMID: 30950227]
[75]
Jekabsone, A.; Sile, I.; Cochis, A.; Kuka, M.M.; Laucaityte, G.; Makarova, E. Investigation of antibacterial and antiinflammatory activities of proanthocyanidins from pelargonium sidoides DC root extract. Nutrients, 2019, 11(11), 2829.
[http://dx.doi.org/10.3390/nu11112829]
[76]
Wei, Y.; Fu, J.; Wu, W.; Ma, P.; Ren, L.; Yi, Z.; Wu, J. Quercetin prevents oxidative stress-induced injury of periodontal ligament cells and alveolar bone loss in periodontitis. Drug Des. Devel. Ther., 2021, 15, 3509-3522.
[http://dx.doi.org/10.2147/DDDT.S315249] [PMID: 34408403]
[77]
Heidari, F.; Bahari, A.; Amarlou, A.; Fakheri, B.A. Fumaric acids as a novel antagonist of TLR-4 pathway mitigates arsenic-exposed inflammation in human monocyte-derived dendritic cells. Immunopharmacol. Immunotoxicol., 2019, 41(4), 513-520.
[78]
Bittner-Eddy, P.D.; Fischer, L.A.; Kaplan, D.H.; Thieu, K.; Costalonga, M. Mucosal langerhans cells promote differentiation of Th17 cells in a murine model of periodontitis but are not required for Porphyromonas gingivalis –driven alveolar bone destruction. J. Immunol., 2016, 197(4), 1435-1446.
[http://dx.doi.org/10.4049/jimmunol.1502693] [PMID: 27402698]
[79]
El-Awady, A.; de Sousa Rabelo, M.; Meghil, M.M.; Rajendran, M.; Elashiry, M.; Stadler, A.F.; Foz, A.M.; Susin, C.; Romito, G.A.; Arce, R.M.; Cutler, C.W. Polymicrobial synergy within oral biofilm promotes invasion of dendritic cells and survival of consortia members. nBM, 2019, 5(1), 11.
[http://dx.doi.org/10.1038/s41522-019-0084-7] [PMID: 32179736]
[80]
Marjanović, D.; Andjelković, Z.; Brkić, Z.; Videnović, G.; Šehalić, M.; Matvjenko, V.; Leštarević, S.; Djordjević, N. Quantification of mast cells in different stages of periodontal disease. Vojnosanit. Pregl., 2016, 73(5), 458-462.
[http://dx.doi.org/10.2298/VSP141222030M] [PMID: 27430110]
[81]
Ribeiro, L.S.F.E.; Santos, J.N.S.; Rocha, C.A.G.; Cury, P.R. Association between mast cells and collagen maturation in chronic periodontitis in humans. J. Histochem. Cytochem., 2018, 66, 467-475.
[http://dx.doi.org/10.1369/0022155418765131] [PMID: 29553869]
[82]
Tada, H.; Nishioka, T.; Takase, A.; Numazaki, K.; Bando, K.; Matsushita, K. Porphyromonas gingivalis induces the production of interleukin-31 by human mast cells, resulting in dysfunction of the gingival epithelial barrier. Cell. Microbiol., 2019, 21(3), e12972.
[http://dx.doi.org/10.1111/cmi.12972] [PMID: 30423602]
[83]
Huang, B.; Dai, Q.; Huang, S.G. Expression of Toll like receptor 4 on mast cells in gingival tissues of human chronic periodontitis. Mol. Med. Rep., 2018, 17(5), 6731-6735.
[http://dx.doi.org/10.3892/mmr.2018.8648] [PMID: 29488617]
[84]
Sheethal, H.S.; Hema, K.N.; Smitha, T.; Chauhan, K. Role of mast cells in inflammatory and reactive pathologies of pulp, periapical area and periodontium. J. Oral Maxillofac. Pathol., 2018, 22(1), 92-97.
[http://dx.doi.org/10.4103/jomfp.JOMFP_278_17] [PMID: 29731563]
[85]
Han, Y.; Jin, Y.; Miao, Y.; Shi, T.; Lin, X. Improved RANKL expression and osteoclastogenesis induction of CD27+CD38− memory B cells: A link between B cells and alveolar bone damage in periodontitis. J. Periodontal Res., 2019, 54(1), 73-80.
[http://dx.doi.org/10.1111/jre.12606] [PMID: 30346027]
[86]
Tedder, T.F. B10 cells: A functionally defined regulatory B cell subset. J. Immunol., 2015, 194(4), 1395-1401.
[http://dx.doi.org/10.4049/jimmunol.1401329] [PMID: 25663677]
[87]
Shi, T.; Jin, Y.; Miao, Y.; Wang, Y.; Zhou, Y.; Lin, X. IL-10 secreting B cells regulate periodontal immune response during periodontitis. Odontology, 2020, 108(3), 350-357.
[http://dx.doi.org/10.1007/s10266-019-00470-2] [PMID: 31701299]
[88]
Payne, J.B.; Golub, L.M.; Thiele, G.M.; Mikuls, T.R. The link between periodontitis and rheumatoid arthritis: a periodontist’s perspective. Curr. Oral Health Rep., 2015, 2(1), 20-29.
[http://dx.doi.org/10.1007/s40496-014-0040-9] [PMID: 25657894]
[89]
Kaur, M.; Krishan, K. Subantimicrobial dose doxycycline in treatment of periodontitis. Periodontol., 2017, 3, 1472-1483.
[90]
Forsythe, P.; Paterson, S. Ciclosporin 10 years on: Indications and efficacy. Vet. Rec., 2014, 174(S2), 13-21.
[http://dx.doi.org/10.1136/vr.102484] [PMID: 24682697]
[91]
Ganjoo, A.; Sharma, N.; Shafeeq, H.; Bhat, N.A.; Dubey, K.K.; Babu, V. Progress and challenges in the biofoundry of immunosuppressants: From process to practice. Biotechnol. Bioeng., 2022, 119(12), 3339-3369.
[http://dx.doi.org/10.1002/bit.28231] [PMID: 36110089]
[92]
Ranjan, M.K.; Kante, B.; Vuyyuru, S.K.; Kumar, P.; Mundhra, S.K.; Golla, R.; Sharma, R.; Sahni, P.; Das, P.; Makharia, G.; Kedia, S.; Ahuja, V. Minimal risk of lymphoma and non‐melanoma skin cancer despite long‐term use of thiopurines in patients with inflammatory bowel disease: A longitudinal cohort analysis from northern India. J. Gastroenterol. Hepatol., 2022, 37(8), 1544-1553.
[http://dx.doi.org/10.1111/jgh.15880] [PMID: 35501287]
[93]
Wang, M.; Xie, J.; Wang, C.; Zhong, D.; Xie, L.; Fang, H. Immunomodulatory properties of stem cells in periodontitis: Current status and future prospective. Stem Cells Int., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/9836518] [PMID: 32724318]
[94]
Wang, B.; Tontonoz, P. Liver X receptors in lipid signalling and membrane homeostasis. Nat. Rev. Endocrinol., 2018, 14(8), 452-463.
[http://dx.doi.org/10.1038/s41574-018-0037-x] [PMID: 29904174]
[95]
Yoon, Y-S.; Kim, S-Y.; Kim, M-J.; Lim, J-H.; Cho, M-S.; Kang, J.L. PPARγ activation following apoptotic cell instillation promotes resolution of lung inflammation and fibrosis via regulation of efferocytosis and proresolving cytokines. Mucosal Immunol., 2015, 8(5), 1031-1046.
[http://dx.doi.org/10.1038/mi.2014.130] [PMID: 25586556]
[96]
Uriarte, S.M.; Hajishengallis, G. Neutrophils in the periodontium: Interactions with pathogens and roles in tissue homeostasis and inflammation. Immunol. Rev., 2023, 314(1), 93-110.
[http://dx.doi.org/10.1111/imr.13152] [PMID: 36271881]
[97]
Yoo, T.; Ham, S.A.; Hwang, J.S.; Lee, W.J.; Paek, K.S.; Oh, J.W.; Kim, J.H.; Do, J.T.; Han, C.W.; Kim, J.H.; Seo, H.G. Peroxisome proliferator‐activated receptor δ inhibits Porphyromonas gingivalis lipopolysaccharide‐induced activation of matrix metalloproteinase‐2 by downregulating NADPH oxidase 4 in human gingival fibroblasts. Mol. Oral Microbiol., 2016, 31(5), 398-409.
[http://dx.doi.org/10.1111/omi.12137] [PMID: 26403493]
[98]
Gupta, N.; Gupta, N.D.; Gupta, A.; Khan, S.; Bansal, N. Role of salivary matrix metalloproteinase-8 (MMP-8) in chronic periodontitis diagnosis. Front. Med., 2015, 9(1), 72-76.
[http://dx.doi.org/10.1007/s11684-014-0347-x] [PMID: 25098434]
[99]
Xue, Y.; Enosi Tuipulotu, D.; Tan, W.H.; Kay, C.; Man, S.M. Emerging activators and regulators of inflammasomes and pyroptosis. Trends Immunol., 2019, 40(11), 1035-1052.
[http://dx.doi.org/10.1016/j.it.2019.09.005] [PMID: 31662274]
[100]
Liston, A.; Masters, S.L. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat. Rev. Immunol., 2017, 17(3), 208-214.
[http://dx.doi.org/10.1038/nri.2016.151] [PMID: 28163301]
[101]
Muñoz-Wolf, N.; Lavelle, E.C. Innate immune receptors. In: NLR Proteins. Methods in Molecular Biology; Di Virgilio, F.; Pelegrín, P., Eds.; Humana Press: New York, NY, 2016; Vol. 1417, .
[http://dx.doi.org/10.1007/978-1-4939-3566-6_1]
[102]
Malik, A.; Kanneganti, T.D. Inflammasome activation and assembly at a glance. J. Cell Sci., 2017, 130(23), 3955-3963.
[http://dx.doi.org/10.1242/jcs.207365] [PMID: 29196474]
[103]
Guo, H.; Callaway, J.B.; Ting, J.P.Y. Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat. Med., 2015, 21(7), 677-687.
[http://dx.doi.org/10.1038/nm.3893] [PMID: 26121197]
[104]
Evans, R.M.; Mangelsdorf, D.J. Nuclear receptors, RXR, and the big bang. Cell, 2014, 157(1), 255-266.
[http://dx.doi.org/10.1016/j.cell.2014.03.012] [PMID: 24679540]
[105]
Fadel, L.; Rehó, B.; Volkó, J.; Bojcsuk, D.; Kolostyák, Z.; Nagy, G.; Müller, G.; Simandi, Z.; Hegedüs, É.; Szabó, G.; Tóth, K.; Nagy, L.; Vámosi, G. Agonist binding directs dynamic competition among nuclear receptors for heterodimerization with retinoid X receptor. J. Biol. Chem., 2020, 295(29), 10045-10061.
[http://dx.doi.org/10.1074/jbc.RA119.011614] [PMID: 32513869]
[106]
Lin, Y.W.; Lien, L.M.; Yeh, T.S.; Wu, H.M.; Liu, Y.L.; Hsieh, R.H. 9-cis retinoic acid induces retinoid X receptor localized to the mitochondria for mediation of mitochondrial transcription. Biochem. Biophys. Res. Commun., 2008, 377(2), 351-354.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.122] [PMID: 18840407]
[107]
Massafra, V.; van Mil, S.W.C. Farnesoid X receptor: A “homeostat” for hepatic nutrient metabolism. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(1), 45-59.
[http://dx.doi.org/10.1016/j.bbadis.2017.10.003] [PMID: 28986309]
[108]
Alatshan, A.; Benkő, S. Nuclear receptors as multiple regulators of nlrp3 inflammasome function. Front. Immunol., 2021, 12(12), 630569.
[http://dx.doi.org/10.3389/fimmu.2021.630569] [PMID: 33717162]
[109]
Akula, M.K.; Shi, M.; Jiang, Z.; Foster, C.E.; Miao, D.; Li, A.S.; Zhang, X.; Gavin, R.M.; Forde, S.D.; Germain, G.; Carpenter, S.; Rosadini, C.V.; Gritsman, K.; Chae, J.J.; Hampton, R.; Silverman, N.; Gravallese, E.M.; Kagan, J.C.; Fitzgerald, K.A.; Kastner, D.L.; Golenbock, D.T.; Bergo, M.O.; Wang, D. Control of the innate immune response by the mevalonate pathway. Nat. Immunol., 2016, 17(8), 922-929.
[http://dx.doi.org/10.1038/ni.3487] [PMID: 27270400]
[110]
Yasuda, M.; Kishimoto, S.; Amano, M.; Fukushima, S. Comparison of pregnane X receptor antagonists for enhancing the antitumor effect of cisplatin. Anticancer Res., 2019, 39(9), 4749-4755.
[111]
Zhang, T.; Ikejima, T.; Li, L.; Wu, R.; Yuan, X.; Zhao, J. Impairment of mitochondrial biogenesis and dynamics involved in isoniazid-induced apoptosis of HepG2 cells was alleviated by p38 MAPK pathway. Front. Med., 2017, 8, 753.
[http://dx.doi.org/10.3389/fphar.2017.00753]
[112]
Xie, Q.; Zhang, J.; Liu, M.; Liu, P.; Wang, Z.; Zhu, L.; Jiang, L.; Jin, M.; Liu, X.; Liu, L.; Liu, X. Short-chain fatty acids exert opposite effects on the expression and function of p-glycoprotein and breast cancer resistance protein in rat intestine. Acta Pharmacol. Sin., 2021, 42(3), 470-481.
[http://dx.doi.org/10.1038/s41401-020-0402-x] [PMID: 32555444]
[113]
Wang, Y.; Nakajima, T.; Gonzalez, F.J.; Tanaka, N. PPARs as metabolic regulators in the liver: Lessons from liver-specific PPAR-null mice. Int. J. Mol. Sci., 2020, 21(6), 2061.
[http://dx.doi.org/10.3390/ijms21062061] [PMID: 32192216]
[114]
Bougarne, N.; Weyers, B.; Desmet, S.J.; Deckers, J.; Ray, D.W.; Staels, B.; De Bosscher, K. Molecular actions of PPAR α in lipid metabolism and inflammation. Endocr. Rev., 2018, 39(5), 760-802.
[http://dx.doi.org/10.1210/er.2018-00064] [PMID: 30020428]
[115]
Christofides, A.; Konstantinidou, E.; Jani, C.; Boussiotis, V.A. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism, 2021, 114(114), 154338.
[http://dx.doi.org/10.1016/j.metabol.2020.154338] [PMID: 32791172]
[116]
Karatas, O.; Yuce, H.B.; Taskan, M.M.; Gevrek, F.; Yarkac, F.U.; Cacan, E. Detection of nuclear receptors in gingival samples of diabetic and nondiabetic periodontitis patients. Niger. J. Clin. Pract., 2021, 24(2), 269-276.
[http://dx.doi.org/10.4103/njcp.njcp_216_20]
[117]
Daskalaki, I.; Tavernarakis, N. Mitochondrial biogenesis in organismal senescence and neurodegeneration. Mech. Ageing Dev., 2020, 191(191), 111345.
[http://dx.doi.org/10.1016/j.mad.2020.111345] [PMID: 32891602]
[118]
Luo, Y.; Hu, C.T.; Qiao, F.; Wang, X.D.; Qin, J.G.; Du, Z.Y.; Chen, L.Q. Gemfibrozil improves lipid metabolism in Nile tilapia Oreochromis niloticus fed a high-carbohydrate diet through peroxisome proliferator activated receptor-α activation. Gen. Comp. Endocrinol., 2020, 296(296), 113537.
[http://dx.doi.org/10.1016/j.ygcen.2020.113537] [PMID: 32540489]
[119]
Chen, H.; Zhang, Y.; Yu, T.; Song, G.; Xu, T.; Xin, T. Nano-based drug delivery systems for periodontal tissue regeneration. Pharmaceutics, 2022, 14(10), 2250.
[http://dx.doi.org/10.3390/pharmaceutics14102250]
[120]
Huangfu, H.; Du, S.; Zhang, H.; Wang, H.; Zhang, Y.; Yang, Z.; Zhang, X.; Ren, S.; Chen, S.; Wang, C.; Zhang, Y.; Zhou, Y. Facile engineering of resveratrol nanoparticles loaded with 20(S)-protopanaxadiol for the treatment of periodontitis by regulating the macrophage phenotype. Nanoscale, 2023, 15(17), 7894-7908.
[http://dx.doi.org/10.1039/D2NR06452A] [PMID: 37060139]
[121]
Li, Y.; Xiong, J.; Guo, W.; Jin, Y.; Miao, W.; Wang, C.; Zhang, H.; Hu, Y.; Huang, H. Decomposable black phosphorus nano-assembly for controlled delivery of cisplatin and inhibition of breast cancer metastasis. J. Control. Release, 2021, 335(335), 59-74.
[http://dx.doi.org/10.1016/j.jconrel.2021.05.013] [PMID: 33992704]
[122]
Coccè, V.; Franzè, S.; Brini, A.T.; Giannì, A.B.; Pascucci, L.; Ciusani, E. In vitro anticancer activity of extracellular vesicles (EVs) secreted by gingival mesenchymal stromal cells primed with paclitaxel. Pharmaceutics, 2019, 11(2), 61.
[123]
Huang, L.; Hu, S.; Gao, X. CD44-specific A6 nano-short peptide enhances the targeting and mechanism of doxorubicin on the surface of polymers for multiple myeloma. Mater. Express, 2020, 10(6), 877-882.
[http://dx.doi.org/10.1166/mex.2020.1710]
[124]
Kong, L.X.; Peng, Z.; Li, S.D.; Bartold, P.M. Nanotechnology and its role in the management of periodontal diseases. Periodontology., 2006, 40(1), 184.
[http://dx.doi.org/10.1111/j.1600-0757.2005.00143.x]
[125]
Laleman, I.; Teughels, W. Probiotics in the dental practice: A review. Quintessence Int., 2015, 46(3), 255-264.
[PMID: 25485319]
[126]
Maekawa, T.; Hajishengallis, G. Topical treatment with probiotic Lactobacillus brevisCD 2 inhibits experimental periodontal inflammation and bone loss. J. Periodontal Res., 2014, 49(6), 785-791.
[http://dx.doi.org/10.1111/jre.12164] [PMID: 24483135]
[127]
Gruner, D.; Paris, S.; Schwendicke, F. Probiotics for managing caries and periodontitis: Systematic review and meta-analysis. J. Dent., 2016, 48, 16-25.
[http://dx.doi.org/10.1016/j.jdent.2016.03.002] [PMID: 26965080]
[128]
Alshareef, A.; Attia, A.; Almalki, M.; Alsharif, F.; Melibari, A.; Mirdad, B.; Azab, E.; Youssef, A.R.; Dardir, A. Effectiveness of probiotic lozenges in periodontal management of chronic periodontitis patients: Clinical and immunological study. Eur. J. Dent., 2020, 14(2), 281-287.
[http://dx.doi.org/10.1055/s-0040-1709924] [PMID: 32438428]
[129]
Invernici, M.M.; Salvador, S.L.; Silva, P.H.F.; Soares, M.S.M.; Casarin, R.; Palioto, D.B.; Souza, S.L.S.; Taba, M., Jr; Novaes, A.B., Jr; Furlaneto, F.A.C.; Messora, M.R. Effects of Bifidobacterium probiotic on the treatment of chronic periodontitis: A randomized clinical trial. J. Clin. Periodontol., 2018, 45(10), 1198-1210.
[http://dx.doi.org/10.1111/jcpe.12995] [PMID: 30076613]
[130]
Invernici, M.M.; Furlaneto, F.A.C.; Salvador, S.L.; Ouwehand, A.C.; Salminen, S.; Mantziari, A.; Vinderola, G.; Ervolino, E.; Santana, S.I.; Silva, P.H.F.; Messora, M.R. Bifidobacterium animalis subsp lactis HN019 presents antimicrobial potential against periodontopathogens and modulates the immunological response of oral mucosa in periodontitis patients. PLoS One, 2020, 15(9), e0238425.
[http://dx.doi.org/10.1371/journal.pone.0238425] [PMID: 32960889]
[131]
İnce, G.; Gürsoy, H.; İpçi, Ş.D.; Cakar, G.; Alturfan, E.E.; Yılmaz, S. Clinical and biochemical evaluation of lozenges containing lactobacillus reuteri as an adjunct to non‐surgical periodontal therapy in chronic periodontitis. J. Periodontol., 2015, 86(6), 746-754.
[http://dx.doi.org/10.1902/jop.2015.140612] [PMID: 25741580]
[132]
Nannan, M.; Xiaoping, L.; Ying, J. Periodontal disease in pregnancy and adverse pregnancy outcomes: Progress in related mechanisms and management strategies. Front. Med., 2022, 9(9), 963956.
[http://dx.doi.org/10.3389/fmed.2022.963956] [PMID: 36388896]
[133]
Matsubara, V.H.; Bandara, H.M.; Ishikawa, K.H.; Mayer, M.P.; Samaranayake, L.P. The role of probiotic bacteria in managing periodontal disease: A systematic review. Expert Rev. Anti Infect. Ther., 2016, 14(7), 643-655.
[http://dx.doi.org/10.1080/14787210.2016.1194198]

© 2024 Bentham Science Publishers | Privacy Policy