Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Research Article

Early Detection of Diabetic Peripheral Neuropathy in Diabetic Patients: A Cross-Sectional Study

In Press, (this is not the final "Version of Record"). Available online 28 March, 2024
Author(s): Rina Amelia*, Arlinda Sari Wahyuni, Yuki Yunanda, Isti Ilmiati Fujiati, Juliandi Harahap, Hendri Wijaya, Zulham Zulham and Saktioto Saktioto
Published on: 28 March, 2024

Article ID: e280324228439

DOI: 10.2174/0115733998297210240325062747

Price: $95

Abstract

Background: Diabetic Peripheral Neuropathy (DPN) is a chronic complication in Type 2 Diabetes Mellitus (T2DM) patients and is characterized by paresthesia, pain, and hypoesthesia of the extremities. The Diabetic Neuropathy Symptom-Score (DNS) is a quick, inexpensive, and easy-to-perform tool to detect DPN in clinical practice. Biochemical markers like Nitric Oxide (NO) and Vascular Endothelial Growth Factor (VEGF) play a role in the early detection of DPN. This study aims to investigate the relationship between risk factors and these biomarkers. So, it is expected to improve the prevention and treatment of diabetic neuropathy more effectively.

Method: A cross-sectional method was used for this study. The sample size was 85 patients with T2DM who visited several primary healthcare in Medan, selected by consecutive sampling method based on eligibility criteria. Data collected included DNS, assessment of NO, VEGF,

Glycated Hemoglobin (HbA1C), plasma blood glucose (PBG), and lipid profile. The collected data were analyzed using an independent T-test.

Result: The results showed that most T2DM patients, namely 73 people (85.9%), experienced DPN. From the bivariate analysis results, the risk factors associated with the prevalence of DPN in T2DM patients were found to be increased levels of total cholesterol, HbA1c, NO, and VEGF (p < 0.05). Meanwhile, blood pressure, fasting BGL, HDL-C, LDL-C, and triglycerides were not related to the occurrence of DPN in this study (p> 0.05).

Conclusion: DNS can be used as a quick and easy initial screening tool implemented in clinical practice for screening DPN. Diabetic patients with DPN tend to have lower NO and increased VEGF; besides, NO levels are also associated with the progression of DPN. Furthermore, education, blood sugar control, and physical exercise, especially leg exercises, can prevent progressive DPN.

[1]
Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J. Epidemiology of Type 2 diabetes - Global burden of disease and forecasted trends. J Epidemiol Glob Health 2019; 10(1): 107-11.
[http://dx.doi.org/10.2991/jegh.k.191028.001] [PMID: 32175717]
[2]
Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5(1): 41.
[http://dx.doi.org/10.1038/s41572-019-0092-1] [PMID: 31197153]
[3]
Schreiber AK, Nones CF, Reis RC, Chichorro JG, Cunha JM. Diabetic neuropathic pain: Physiopathology and treatment. World J Diabetes 2015; 6(3): 432-44.
[http://dx.doi.org/10.4239/wjd.v6.i3.432] [PMID: 25897354]
[4]
Braffett BH, Gubitosi-Klug RA, Albers JW, et al. Risk Factors for Diabetic Peripheral Neuropathy and Cardiovascular Autonomic Neuropathy in the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Study. Diabetes 2020; 69(5): 1000-10.
[http://dx.doi.org/10.2337/db19-1046] [PMID: 32051148]
[5]
Śliwińska-Mossoń M, Milnerowicz H. The impact of smoking on the development of diabetes and its complications. Diab Vasc Dis Res 2017; 14(4): 265-76.
[http://dx.doi.org/10.1177/1479164117701876] [PMID: 28393534]
[6]
Carmichael J, Fadavi H, Ishibashi F, Shore AC, Tavakoli M. Advances in Screening, Early Diagnosis and Accurate Staging of Diabetic Neuropathy. Front Endocrinol (Lausanne) 2021; 12: 671257.
[http://dx.doi.org/10.3389/fendo.2021.671257] [PMID: 34122344]
[7]
Phulpoto JA, Gurbakhshani KM, Shaikh A. Role of bedside methods in evaluation of diabetic peripheral neuropathy. Rawal Med J 2012; 37: 137-41.
[8]
Meijer JW, van Sonderen E, Blaauwwiekel EE, et al. Diabetic neuropathy examination: a hierarchical scoring system to diagnose distal polyneuropathy in diabetes. Diabetes Care 2000; 23(6): 750-3.
[http://dx.doi.org/10.2337/diacare.23.6.750] [PMID: 10840990]
[9]
Cha DR, Kang YS, Han SY, et al. Vascular endothelial growth factor is increased during early stage of diabetic nephropathy in type II diabetic rats. J Endocrinol 2004; 183(1): 183-94.
[http://dx.doi.org/10.1677/joe.1.05647] [PMID: 15525586]
[10]
Walton DM, Minton SD, Cook AD. The potential of transdermal nitric oxide treatment for diabetic peripheral neuropathy and diabetic foot ulcers. Diabetes Metab Syndr 2019; 13(5): 3053-6.
[http://dx.doi.org/10.1016/j.dsx.2018.07.003] [PMID: 30030157]
[11]
Nordström A, Hadrévi J, Olsson T, Franks PW, Nordström P. Higher prevalence of type 2 diabetes in men than in women is associated with differences in visceral fat mass. J Clin Endocrinol Metab 2016; 101(10): 3740-6.
[http://dx.doi.org/10.1210/jc.2016-1915] [PMID: 27490920]
[12]
Kautzky-Willer A, Harreiter J, Pacini G. Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev 2016; 37(3): 278-316.
[http://dx.doi.org/10.1210/er.2015-1137] [PMID: 27159875]
[13]
Landecho MF, Tuero C, Valentí V, Bilbao I, de la Higuera M, Frühbeck G. Relevance of leptin and other adipokines in obesity-associated cardiovascular risk. Nutrients 2019; 11(11): 2664.
[http://dx.doi.org/10.3390/nu11112664] [PMID: 31694146]
[14]
Xu G, You D, Wong L, et al. Risk of all-cause and CHD mortality in women versus men with type 2 diabetes: A systematic review and meta-analysis. Eur J Endocrinol 2019; 180(4): 243-55.
[http://dx.doi.org/10.1530/EJE-18-0792] [PMID: 30668524]
[15]
El Khoudary SR, Aggarwal B, Beckie TM, et al. Menopause transition and cardiovascular disease risk: Implications for timing of early prevention: A scientific statement from the american heart association. Circulation 2020; 142(25): e506-32.
[http://dx.doi.org/10.1161/CIR.0000000000000912] [PMID: 33251828]
[16]
Xiang D, Liu Y, Zhou S, Zhou E, Wang Y. Protective effects of estrogen on cardiovascular disease mediated by oxidative stress. Oxid Med Cell Longev 2021; 2021: 1-15.
[http://dx.doi.org/10.1155/2021/5523516] [PMID: 34257804]
[17]
Reslan OM, Khalil RA. Vascular effects of estrogenic menopausal hormone therapy. Rev Recent Clin Trials 2012; 7(1): 47-70.
[http://dx.doi.org/10.2174/157488712799363253] [PMID: 21864249]
[18]
Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007; 115(10): 1285-95.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.652859] [PMID: 17353456]
[19]
Murphy E. Estrogen signaling and cardiovascular disease. Circ Res 2011; 109(6): 687-96.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.236687] [PMID: 21885836]
[20]
Altabas V. Diabetes, endothelial dysfunction, and vascular repair: What should a diabetologist keep his eye on? Int J Endocrinol 2015; 2015: 1-14.
[http://dx.doi.org/10.1155/2015/848272] [PMID: 26089898]
[21]
Huang ES, Laiteerapong N, Liu JY, John PM, Moffet HH, Karter AJ. Rates of complications and mortality in older patients with diabetes mellitus: The diabetes and aging study. JAMA Intern Med 2014; 174(2): 251-8.
[http://dx.doi.org/10.1001/jamainternmed.2013.12956] [PMID: 24322595]
[22]
Amelia R, Harahap J, Yunanda Y, Wijaya H, Fujiati II, Yamamoto Z. Early detection of macrovascular complications in type 2 diabetes mellitus in Medan, North Sumatera, Indonesia: A cross-sectional study. F1000 Res 2021; 10: 808.
[http://dx.doi.org/10.12688/f1000research.54649.1]
[23]
Kaur R, Kaur M, Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc Diabetol 2018; 17(1): 121.
[http://dx.doi.org/10.1186/s12933-018-0763-3] [PMID: 30170601]
[24]
Chentli F, Azzoug S, Mahgoun S. Diabetes mellitus in elderly. Indian J Endocrinol Metab 2015; 19(6): 744-52.
[http://dx.doi.org/10.4103/2230-8210.167553] [PMID: 26693423]
[25]
Nanayakkara N, Curtis AJ, Heritier S, et al. Impact of age at type 2 diabetes mellitus diagnosis on mortality and vascular complications: Systematic review and meta-analyses. Diabetologia 2021; 64(2): 275-87.
[http://dx.doi.org/10.1007/s00125-020-05319-w] [PMID: 33313987]
[26]
Thomas PB, Robertson DH, Chawla NV. Predicting onset of complications from diabetes: A graph based approach. Appl Netw Sci 2018; 3(1): 48.
[http://dx.doi.org/10.1007/s41109-018-0106-z] [PMID: 30581983]
[27]
Asif M. The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. J Educ Health Promot 2014; 3(1): 1.
[http://dx.doi.org/10.4103/2277-9531.127541] [PMID: 24741641]
[28]
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020; 21(17): 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[29]
Giri B, Dey S, Das T, Sarkar M, Banerjee J, Dash SK. Chronic hyperglycemia mediated physiological alteration and metabolic distortion leads to organ dysfunction, infection, cancer progression and other pathophysiological consequences: An update on glucose toxicity. Biomed Pharmacother 2018; 107: 306-28.
[http://dx.doi.org/10.1016/j.biopha.2018.07.157] [PMID: 30098549]
[30]
Hamdy O, Abou-Elenin K, LoGerfo FW, Horton ES, Veves A. Contribution of nerve-axon reflex-related vasodilation to the total skin vasodilation in diabetic patients with and without neuropathy. Diabetes Care 2001; 24(2): 344-9.
[http://dx.doi.org/10.2337/diacare.24.2.344] [PMID: 11213890]
[31]
Ang L, Jaiswal M, Martin C, Pop-Busui R. Glucose control and diabetic neuropathy: Lessons from recent large clinical trials. Curr Diab Rep 2014; 14(9): 528.
[http://dx.doi.org/10.1007/s11892-014-0528-7] [PMID: 25139473]
[32]
Lu Y, Xing P, Cai X, et al. Prevalence and risk factors for diabetic peripheral neuropathy in type 2 diabetic patients from 14 countries: Estimates of the INTERPRET-DD study. Front Public Health 2020; 8: 534372.
[http://dx.doi.org/10.3389/fpubh.2020.534372] [PMID: 33194943]
[33]
Darivemula S, Nagoor K, Patan SK, Reddy NB, Deepthi CS, Chittooru CS. Prevalence and its associated determinants of diabetic peripheral neuropathy (DPN) in individuals having type-2 diabetes mellitus in rural South India. Indian J Community Med 2019; 44(2): 88-91.
[http://dx.doi.org/10.4103/ijcm.IJCM_207_18] [PMID: 31333282]
[34]
Amour AA, Chamba N, Kayandabila J, et al. Prevalence, patterns, and factors associated with peripheral neuropathies among diabetic patients at tertiary hospital in the Kilimanjaro Region: Descriptive cross-sectional study from North-Eastern Tanzania. Int J Endocrinol 2019; 2019: 1-7.
[http://dx.doi.org/10.1155/2019/5404781] [PMID: 31275374]
[35]
Sendi R, Mahrus A, Saeed R, Mohammed M, Al-Dubai SR. Diabetic peripheral neuropathy among Saudi diabetic patients: A multicenter cross-sectional study at primary health care setting. J Family Med Prim Care 2020; 9(1): 197-201.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_927_19] [PMID: 32110590]
[36]
American Diabetes Association. Standards of Medical Care in Diabetes—2022 Abridged for Primary Care Providers. Clin Diabetes 2022; 40(1): 10-38.
[http://dx.doi.org/10.2337/cd22-as01] [PMID: 35221470]
[37]
Zorena K, Jachimowicz-Duda O, Ślęzak D, Robakowska M, Mrugacz M. Adipokines and Obesity. Potential Link to Metabolic Disorders and Chronic Complications. Int J Mol Sci 2020; 21(10): 3570.
[http://dx.doi.org/10.3390/ijms21103570] [PMID: 32443588]
[38]
Menendez A, Wanczyk H, Walker J, Zhou B, Santos M, Finck C. Obesity and adipose tissue dysfunction: From pediatrics to adults. Genes (Basel) 2022; 13(10): 1866.
[http://dx.doi.org/10.3390/genes13101866] [PMID: 36292751]
[39]
Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and obesity: Role and clinical implication. Front Endocrinol (Lausanne) 2021; 12: 585887.
[http://dx.doi.org/10.3389/fendo.2021.585887] [PMID: 34084149]
[40]
Kumar R, Mal K, Razaq MK, et al. Association of leptin with obesity and insulin resistance. Cureus 2020; 12(12): e12178.
[http://dx.doi.org/10.7759/cureus.12178] [PMID: 33489589]
[41]
Rehman K, Akash MSH. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? J Biomed Sci 2016; 23(1): 87.
[http://dx.doi.org/10.1186/s12929-016-0303-y] [PMID: 27912756]
[42]
Al-Mansoori L, Al-Jaber H, Prince MS, Elrayess MA. Role of inflammatory cytokines, growth factors and adipokines in adipogenesis and insulin resistance. Inflammation 2022; 45(1): 31-44.
[http://dx.doi.org/10.1007/s10753-021-01559-z] [PMID: 34536157]
[43]
Tsiotra PC, Boutati E, Dimitriadis G, Raptis SA. High insulin and leptin increase resistin and inflammatory cytokine production from human mononuclear cells. BioMed Res Int 2013; 2013: 1-10.
[http://dx.doi.org/10.1155/2013/487081] [PMID: 23484124]
[44]
Amelia R, Harahap J, Wijaya H. The role of physical activity on glucose transporter-4, fasting blood glucose level and glycate hemoglobin in type 2 diabetes mellitus patients in Medan, Indonesia. Family Medicine & Primary Care Review 2021; 23(3): 274-8.
[http://dx.doi.org/10.5114/fmpcr.2021.108188]
[45]
Jende JME, Groener JB, Rother C, et al. Association of serum cholesterol levels with peripheral nerve damage in patients with type 2 diabetes. JAMA Netw Open 2019; 2(5): e194798.
[http://dx.doi.org/10.1001/jamanetworkopen.2019.4798] [PMID: 31150078]
[46]
Kollmer J, Bendszus M. Magnetic resonance neurography: Improved diagnosis of peripheral neuropathies. Neurotherapeutics 2021; 18(4): 2368-83.
[http://dx.doi.org/10.1007/s13311-021-01166-8] [PMID: 34859380]
[47]
Morofuji Y, Nakagawa S, Ujifuku K, et al. Beyond lipid-lowering: Effects of statins on cardiovascular and cerebrovascular diseases and cancer. Pharmaceuticals (Basel) 2022; 15(2): 151.
[http://dx.doi.org/10.3390/ph15020151] [PMID: 35215263]
[48]
Giugliano RP, Pedersen TR, Saver JL, et al. Stroke prevention with the PCSK9 (proprotein convertase subtilisin-kexin type 9) inhibitor evolocumab added to statin in high-risk patients with stable atherosclerosis. Stroke 2020; 51(5): 1546-54.
[http://dx.doi.org/10.1161/STROKEAHA.119.027759] [PMID: 32312223]
[49]
Yang CP, Lin CC, Li CI, et al. Cardiovascular risk factors increase the risks of diabetic peripheral neuropathy in patients with type 2 diabetes mellitus. Medicine (Baltimore) 2015; 94(42): e1783.
[http://dx.doi.org/10.1097/MD.0000000000001783] [PMID: 26496307]
[50]
Su J, Zhao L, Zhang X, et al. HbA1c variability and diabetic peripheral neuropathy in type 2 diabetic patients. Cardiovasc Diabetol 2018; 17(1): 47.
[http://dx.doi.org/10.1186/s12933-018-0693-0] [PMID: 29598819]
[51]
Zhou Z, Sun B, Huang S, Zhu C, Bian M. Glycemic variability: adverse clinical outcomes and how to improve it? Cardiovasc Diabetol 2020; 19(1): 102.
[http://dx.doi.org/10.1186/s12933-020-01085-6] [PMID: 32622354]
[52]
Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights 2016; 11: BMI.S38440.
[http://dx.doi.org/10.4137/BMI.S38440] [PMID: 27398023]
[53]
Elbarsha A, Hamedh M, Elsaeiti M. Prevalence and risk factors of diabetic peripheral neuropathy in patients with Type 2 diabetes mellitus. Ibnosina J Med BiomedSci 2019; 11(1): 25-8.
[http://dx.doi.org/10.4103/ijmbs.ijmbs_3_19]
[54]
Casadei G, Filippini M, Brognara L. Glycated hemoglobin (HbA1c) as a biomarker for diabetic foot peripheral neuropathy. Diseases 2021; 9(1): 16.
[http://dx.doi.org/10.3390/diseases9010016] [PMID: 33671807]
[55]
Bahadoran Z, Mirmiran P, Ghasemi A. Role of nitric oxide in insulin secretion and glucose metabolism. Trends Endocrinol Metab 2020; 31(2): 118-30.
[http://dx.doi.org/10.1016/j.tem.2019.10.001] [PMID: 31690508]
[56]
Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J 2012; 33(7) 829-837, 837a-837d
[http://dx.doi.org/10.1093/eurheartj/ehr304] [PMID: 21890489]
[57]
Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and endothelial function. Biomedicines 2020; 8(8): 277.
[http://dx.doi.org/10.3390/biomedicines8080277] [PMID: 32781796]
[58]
Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2011; 2(12): 1097-105.
[http://dx.doi.org/10.1177/1947601911423031] [PMID: 22866201]
[59]
Quattrini C, Jeziorska M, Boulton AJM, Malik RA. Reduced vascular endothelial growth factor expression and intra-epidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care 2008; 31(1): 140-5.
[http://dx.doi.org/10.2337/dc07-1556] [PMID: 17934147]
[60]
Amelia R, Sari Wahyuni A, Yunanda Y, Wijaya H. Atherosclerotic cardiovascular disease in diabetes patients. Curr Diabetes Rev 2023; 19(8): e060223213457.
[http://dx.doi.org/10.2174/1573399819666230206124638] [PMID: 36748224]
[61]
Amelia R, Wijaya H, Rusdiana R, Widjaja S. Risk of cardiovascular complication among type 2 diabetes mellitus patients in medan, Indonesia. A Cross-sectional Study. Med Arh 2022; 76(5): 324-8.
[http://dx.doi.org/10.5455/medarh.2022.76.324-328] [PMID: 36545452]
[62]
Amelia R, Harahap J. Zulham, Fujiati II, Wijaya H. Educational model and prevention on prediabetes: A systematic review. Curr Diabetes Rev 2024; 20(6): e101023221945.
[http://dx.doi.org/10.2174/0115733998275518231006074504] [PMID: 37818560]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy