Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

Nutritional Health Connection of Algae and its Pharmaceutical Value as Anticancer and Antioxidant Constituents of Drugs

Author(s): Saima Shahzad Mirza*, Sidra Akbar, Muhammad Umar Ijaz, Mohammad Hossein Morowvat, Ayesha Ishaque and Kalsoom Fatima

Volume 19, Issue 1, 2025

Published on: 27 March, 2024

Page: [19 - 34] Pages: 16

DOI: 10.2174/0118722083287672240321081428

Price: $65

Abstract

The marine environment is one of the major biomass producers of algae and seaweed; it is rich in functional ingredients or active metabolites with valuable nutritional health effects. Algal metabolites derived from the cultivation of both microalgae and macroalgae may positively impact human health, offering physiological, pharmaceutical and nutritional benefits. Microalgae have been widely used as novel sources of bioactive substances. Bioactive polymers extracted from algae, such as algal fucans, Galatians, alginates phenolics, carotenoids, vitamin B12, and peptides possess antioxidant, anticoagulant, antimicrobial, antiviral, anti-inflammatory, anti-allergy, anticancer, and hypocholesterolemic properties. It emphasizes that using marine-derived compounds with bioactive properties as functional food ingredients may help promote human health and prevent chronic diseases. Utilizing bioactive compounds has demonstrated notable advantages in terms of effectiveness more than conventional treatments and therapies currently in use which is also proven from different patents about algal applications in different fields. Despite the availability of numerous microalgae-derived products catering to human health and nutrition in the market, there remains a lack of social acceptance and awareness regarding the health benefits of microalgae. Hence, this review aims to offer a comprehensive account of the current knowledge on anticancers, antioxidants, commercially available edible algal products and therapeutics isolated from algae.

[1]
Vidyasagar A. what are algae? live science contributor. 2016. Available from: http://www.livescience. com/54979 (Accessed on 2016 June 4).
[2]
Saeed MU, Hussain N, Shahbaz A, Hameed T, Iqbal HMN, Bilal M. Bioprospecting microalgae and cyanobacteria for biopharmaceutical applications. J Basic Microbiol 2022; 62(9): 1110-24.
[http://dx.doi.org/10.1002/jobm.202100445] [PMID: 34914840]
[3]
Herrero M, Cifuentes A, Ibañez E. Sub and supercritical fluid extraction of functional ingredients from different natural sources: Plants, food-by-products, algae and microalgae: A review. Food Chem 2006; 98(1): 136-48.
[http://dx.doi.org/10.1016/j.foodchem.2005.05.058]
[4]
Balaji M, Thamilvanan D, Vinayagam SC, Balakumar BS. Anticancer, antioxidant activity and GC-MS analysis of selected micro algal members of chlorophyceae. Int J Pharm Sci Rev Res 2017; 8(8): 3302-14.
[5]
Takaichi S. Carotenoids in algae: Distributions, biosyntheses and functions. Mar Drugs 2011; 9(6): 1101-18.
[http://dx.doi.org/10.3390/md9061101] [PMID: 21747749]
[6]
Bauman E, Friedlander J. Eating for Health: A new system, not another diet—I. J Integ Hea 2016; 24(1)
[7]
Riccio G, De Luca D, Lauritano C. Monogalactosyldiacylglycerol and sulfolipid synthesis in microalgae. Mar Drugs 2020; 18(5): 237.
[http://dx.doi.org/10.3390/md18050237] [PMID: 32370033]
[8]
Bhattacharjee M. Pharmaceutically valuable bioactive compounds of algae. Asian J Pharm Clin Res 2016; 9(6): 43-7.
[http://dx.doi.org/10.22159/ajpcr.2016.v9i6.14507]
[9]
Halliwell B. Dietary polyphenols: Good, bad, or indifferent for your health? Cardiovasc Res 2007; 73(2): 341-7.
[http://dx.doi.org/10.1016/j.cardiores.2006.10.004] [PMID: 17141749]
[10]
Koller M, Salerno A, Tuffner P, et al. Characteristics and potential of micro algal cultivation strategies: A review. J Clean Prod 2012; 37: 377-88.
[http://dx.doi.org/10.1016/j.jclepro.2012.07.044]
[11]
Aditi IGA. Legalization of land pawning at Balinese community customs in North Lombok. Int J Life Sci 2020; 4(2): 52-8.
[http://dx.doi.org/10.29332/ijls.v4n2.439]
[12]
Murthy KNC, Vanitha A, Rajesha J, Swamy MM, Sowmya PR, Ravishankar GA. In vivo antioxidant activity of carotenoids from Dunaliella salina: A green microalga. Life Sci 2005; 76(12): 1381-90.
[http://dx.doi.org/10.1016/j.lfs.2004.10.015] [PMID: 15670617]
[13]
Plaza M, Herrero M, Cifuentes A, Ibáñez E. Innovative natural functional ingredients from microalgae. J Agric Food Chem 2009; 57(16): 7159-70.
[http://dx.doi.org/10.1021/jf901070g] [PMID: 19650628]
[14]
a) Daniels B. Seaweed extract composition for retardation of cardiovascular disorders and preservation of healthy cardiovascular function United States patent application US 10/795,560 2004.;
b) Ibañez E, Herrero M, Mendiola JA, Castro-Puyana M. Extraction and characterization of bioactive compounds with health benefits from marine resources: Macro and micro algae, cyanobacteria, and invertebrates. Marine Bioactive Comp 2011; pp. 55-98.
[15]
Wang B, Biasutti M, Byrne MP, et al. Monsoons climate change assessment. Bull Am Meteorol Soc 2021; 102(1): E1-E19.
[http://dx.doi.org/10.1175/BAMS-D-19-0335.1]
[16]
Godic A, Poljšak B, Adamic M, Dahmane R. The role of antioxidants in skin cancer prevention and treatment. Oxid Med Cell Longev 2014; 2014: 1-6.
[http://dx.doi.org/10.1155/2014/860479] [PMID: 24790705]
[17]
Bohn T. Bioavailability of non-provitamin a carotenoids. Curr Nutr Food Sci 2008; 4(4): 240-58.
[http://dx.doi.org/10.2174/157340108786263685]
[18]
a) Fukuda K. inventor; Shimizu Chemical Corp, assignee. Dietary fibres of seaweed having ionexchange ability. United States patent US 4,804,536, 1989.;
b) Cycil LM, Hausrath EM, Ming DW, et al. Investigating algae growth under low atmospheric pressures for potential food and oxygen production on Mars. 52nd Lunar and Planetary Science Conference 2021. 1-1609.
[19]
Mao TK, Water JV, Gershwin ME. Effects of a Spirulina-based dietary supplement on cytokine production from allergic rhinitis patients. J Med Food 2005; 8(1): 27-30.
[http://dx.doi.org/10.1089/jmf.2005.8.27] [PMID: 15857205]
[20]
Shanab SMM, Mostafa SSM, Shalaby EA, Mahmoud GI. Aqueous extracts of microalgae exhibit antioxidant and anticancer activities. Asian Pac J Trop Biomed 2012; 2(8): 608-15.
[http://dx.doi.org/10.1016/S2221-1691(12)60106-3] [PMID: 23569980]
[21]
Butler T, Golan Y. Astaxanthin production from microalgae.In: Microalgae Biotechnology for Food. Health and High Value Products 2020; pp. 175-242.
[http://dx.doi.org/10.1007/978-981-15-0169-2_6]
[22]
Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 2004; 65(6): 635-48.
[http://dx.doi.org/10.1007/s00253-004-1647-x] [PMID: 15300417]
[23]
Kumar S, Pandey S, Pandey AK. In vitro antibacterial, antioxidant, and cytotoxic activities of Parthenium hysterophorus and characterization of extracts by LC-MS analysis. BioMed Res Int 2014; 2014: 1-10.
[http://dx.doi.org/10.1155/2014/495154] [PMID: 24895583]
[24]
Guzmán F, Wong G, Román T, et al. Identification of antimicrobial peptides from the microalgae Tetraselmis suecica (Kylin) Butcher and bactericidal activity improvement. Mar Drugs 2019; 17(8): 453.
[http://dx.doi.org/10.3390/md17080453] [PMID: 31374937]
[25]
Alsenani F, Tupally KR, Chua ET, et al. Evaluation of microalgae and cyanobacteria as potential sources of antimicrobial compounds. Saudi Pharm J 2020; 28(12): 1834-41.
[http://dx.doi.org/10.1016/j.jsps.2020.11.010] [PMID: 33424272]
[26]
Ghasemi Y, Moradian A, Mohagheghza A, Shokravi S, Morowvat H. Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran, characterization of antimicrobial activity of Chroococcus dispersus. J Biol Sci 2007; 7(6): 904-10.
[http://dx.doi.org/10.3923/jbs.2007.904.910]
[27]
El Shafay SM, Ali SS, El-Sheekh MM. Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egypt J Aquat Res 2016; 42(1): 65-74.
[http://dx.doi.org/10.1016/j.ejar.2015.11.006]
[28]
Tangman S, Govinden-Soulange J, Marie D. Bioactive profile of Plakortis nigra, a sea sponge from Mauritius Islands. J Coast Life Med 2015; 3(1): 44-51.
[29]
Choi SM, Jang EJ, Cha JD. Synergistic effect between fucoidan and antibiotics against clinic methicillin-resistant Staphylococcus aureus. Adv Biosci Biotechnol 2015; 6(4): 275-85.
[http://dx.doi.org/10.4236/abb.2015.64027]
[30]
EL-Sayed AIM, El-Sheekh MM, Makhlof MEM. Synergistic antibacterial effects of Ulva lactuca methanolic extract alone and in combination with different antibiotics on multidrug-resistant Klebsiella pneumoniae isolate. BMC Microbiol 2023; 23(1): 106.
[http://dx.doi.org/10.1186/s12866-023-02854-5] [PMID: 37072731]
[31]
a) Briand X. Utilization of algae extract for the preparation of pharmaceutical, cosmetic, food or agricultural compositions United States patent US 5,508,033, 1996.;
b) Hosseini TA, Shariati M. Dunaliella biotechnology: Methods and applications. J Appl Microbiol 2009; 107(1): 14-35.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04153.x] [PMID: 19245408]
[32]
Herrero M, Jaime L, Martín-Álvarez PJ, Cifuentes A, Ibáñez E. Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. J Agric Food Chem 2006; 54(15): 5597-603.
[http://dx.doi.org/10.1021/jf060546q] [PMID: 16848551]
[33]
Ortiz J, Romero N, Robert P, et al. Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chem 2006; 99(1): 98-104.
[http://dx.doi.org/10.1016/j.foodchem.2005.07.027]
[34]
MacArtain P, Gill CIR, Brooks M, Campbell R, Rowland IR. Nutritional value of edible seaweeds. Nutr Rev 2007; 65(12): 535-43.
[http://dx.doi.org/10.1111/j.1753-4887.2007.tb00278.x] [PMID: 18236692]
[35]
Becker EW. Microalgae for human and animal nutrition.In: Handbook of microalgal culture. Applied Phycology and Biotechnology 2013; pp. 461-503.
[http://dx.doi.org/10.1002/9781118567166.ch25]
[36]
Durmaz Y. Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture 2007; 272(1-4): 717-22.
[http://dx.doi.org/10.1016/j.aquaculture.2007.07.213]
[37]
Gupta S, Nayak A, Roy C, Yadav AK. An algal assisted constructed wetland-microbial fuel cell integrated with sand filter for efficient wastewater treatment and electricity production. Chemosphere 2021; 263: 128132.
[http://dx.doi.org/10.1016/j.chemosphere.2020.128132] [PMID: 33297120]
[38]
Taboada C, Millán R, Míguez I. Composition, nutritional aspects and effect on serum parameters of marine algae Ulva rigida. J Sci Food Agric 2010; 90(3): 445-9.
[http://dx.doi.org/10.1002/jsfa.3836] [PMID: 20355066]
[39]
Iji PA, Kadam MM. Prebiotic properties of algae and algae-supplemented products. In: Functional ingredients from algae for foods and nutraceuticals. Woodhead Publishing 2013; pp. 658-70.
[http://dx.doi.org/10.1533/9780857098689.4.658]
[40]
Nguyen MHT, Jung WK, Kim SK. Marine algae possess therapeutic potential for Ca-mineralization via osteoblastic differentiation. Adv Food Nutr Res 2011; 64: 429-41.
[http://dx.doi.org/10.1016/B978-0-12-387669-0.00033-8] [PMID: 22054966]
[41]
Lordan S, Ross RP, Stanton C. Marine bioactives as functional food ingredients: Potential to reduce the incidence of chronic diseases. Mar Drugs 2011; 9(6): 1056-100.
[http://dx.doi.org/10.3390/md9061056] [PMID: 21747748]
[42]
Karleskint G, Turner R, Small J. Multicellular primary producers.In: Introduction to marine biology. Belmont, MA: Cengage Learning 2012.
[43]
Galasso C, Gentile A, Orefice I, et al. Microalgal derivatives as potential nutraceutical and food supplements for human health: A focus on cancer prevention and interception. Nutrients 2019; 11(6): 1226.
[http://dx.doi.org/10.3390/nu11061226] [PMID: 31146462]
[44]
Kim SK, Taylor S. Eds Marine medicinal foods: Implications and applications. Macro and microalgae. Academic Press 2011; p. 64: pp. 358-63..
[45]
Koyande AK, Chew KW, Rambabu K, Tao Y, Chu DT, Show PL. Microalgae: A potential alternative to health supplementation for humans. Food Sci Hum Wellness 2019; 8(1): 16-24.
[http://dx.doi.org/10.1016/j.fshw.2019.03.001]
[46]
Costa JA, Radmann EM, Cerqueira VS, Santos GC, Calheiros MN. Fatty acids Profile of the microalgae Chlorella vulgaris and Chlorella minutissima cultivated under different conditions. Aliment Nutr 2006; 17(4): 429-36.
[47]
Herrero M, Thornton PK, Mason-D’Croz D, et al. Articulating the effect of food systems innovation on the Sustainable Development Goals. Lancet Planet Health 2021; 5(1): e50-62.
[http://dx.doi.org/10.1016/S2542-5196(20)30277-1] [PMID: 33306994]
[48]
Teas J. Dietary brown seaweeds and human health effects. In: Advances in applied phycology utilization World Seaweed Resources. ETI Bioinformatics 2006.
[49]
Brownlee IA, Allen A, Pearson JP, et al. Alginate as a source of dietary fiber. Crit Rev Food Sci Nutr 2005; 45(6): 497-510.
[http://dx.doi.org/10.1080/10408390500285673] [PMID: 16183570]
[50]
Wijesekara I, Pangestuti R, Kim SK. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 2011; 84(1): 14-21.
[http://dx.doi.org/10.1016/j.carbpol.2010.10.062]
[51]
Holdt SL, Kraan S. Bioactive compounds in seaweed: Functional food applications and legislation. J Appl Phycol 2011; 23(3): 543-97.
[http://dx.doi.org/10.1007/s10811-010-9632-5]
[52]
Dawczynski C, Schubert R, Jahreis G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem 2007; 103(3): 891-9.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.041] [PMID: 26065750]
[53]
Gupta S, Abu-Ghannam N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov Food Sci Emerg Technol 2011; 12(4): 600-9.
[http://dx.doi.org/10.1016/j.ifset.2011.07.004]
[54]
Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: A review. Renew Sustain Energy Rev 2010; 14(1): 217-32.
[http://dx.doi.org/10.1016/j.rser.2009.07.020]
[55]
Jiao G, Yu G, Zhang J, Ewart H. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 2011; 9(2): 196-223.
[http://dx.doi.org/10.3390/md9020196] [PMID: 21566795]
[56]
Amaro HM, Guedes AC, Malcata FX. Antimicrobial activities of microalgae: An invited review. In: Science against microbial pathogens: communicating current research and technological advances. 2011; 2: pp. 1272-84.
[57]
Smelcerovic A, Knezevic-Jugovic Z, Petronijevic Z. Microbial polysaccharides and their derivatives as current and prospective pharmaceuticals. Curr Pharm Des 2008; 14(29): 3168-95.
[http://dx.doi.org/10.2174/138161208786404254] [PMID: 19075698]
[58]
Rastogi RP, Sinha RP. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol Adv 2009; 27(4): 521-39.
[http://dx.doi.org/10.1016/j.biotechadv.2009.04.009] [PMID: 19393308]
[59]
Smee D, Bailey K, Wong M, et al. Treatment of influenza A (H1N1) virus infections in mice and ferrets with cyanovirin-N. Antiviral Res 2008; 80(3): 266-71.
[http://dx.doi.org/10.1016/j.antiviral.2008.06.003] [PMID: 18601954]
[60]
Taori K, Paul VJ, Luesch H. Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 2008; 130(6): 1806-7.
[http://dx.doi.org/10.1021/ja7110064] [PMID: 18205365]
[61]
Mohanty S, Pradhan B, Patra S, Behera C, Nayak R, Jena M. Screening for nutritive bioactive compounds in some algal strains isolated from coastal Odisha. J Advan Plant Sci 2020; 10(2): 1-8.
[62]
Gao X, Lu Y, Xing Y, et al. A novel anticancer and antifungus phenazine derivative from a marine actinomycete BM-17. Microbiol Res 2012; 167(10): 616-22.
[http://dx.doi.org/10.1016/j.micres.2012.02.008] [PMID: 22494896]
[63]
Costa LS, Fidelis GP, Telles CBS, et al. Antioxidant and antiproliferative activities of heterofucans from the seaweed Sargassum filipendula. Mar Drugs 2011; 9(6): 952-66.
[http://dx.doi.org/10.3390/md9060952] [PMID: 21747741]
[64]
Nguyen VT, Lee J, Qian ZJ, et al. Gliotoxin isolated from marine fungus Aspergillus sp. induces apoptosis of human cervical cancer and chondrosarcoma cells. Mar Drugs 2013; 12(1): 69-87.
[http://dx.doi.org/10.3390/md12010069] [PMID: 24368570]
[65]
Cirne-Santos C, Barros CD, Nogueira CC, et al. Inhibition of Zika virus by marine algae. Bio Life Sci 2017; 18: 34-7.
[http://dx.doi.org/10.20944/preprints201703.0087.v1]
[66]
Heo SJ, Yoon WJ, Kim KN, et al. Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food Chem Toxicol 2010; 48(8-9): 2045-51.
[http://dx.doi.org/10.1016/j.fct.2010.05.003] [PMID: 20457205]
[67]
Zhang JL, Tian HY, Li J, et al. Steroids with inhibitory activity against the prostate cancer cells and chemical diversity of marine alga Tydemania expeditionis. Fitoterapia 2012; 83(5): 973-8.
[http://dx.doi.org/10.1016/j.fitote.2012.04.019] [PMID: 22561913]
[68]
Macedo NRPV, Ribeiro MS, Villaça RC, et al. Caulerpin as a potential antiviral drug against herpes simplex virus type 1. Rev Bras Farmacogn 2012; 22(4): 861-7.
[http://dx.doi.org/10.1590/S0102-695X2012005000072]
[69]
Mao S-C, Liu D-Q, Yu XQ, Feng LH, Lai XP. Caulerchlorin, a novel chlorinated bisindole alkaloid with antifungal activity from the Chinese green alga Caulerpa racemosa. Heterocycles 2012; 85(3): 661-6.
[http://dx.doi.org/10.3987/COM-11-12408]
[70]
Vilches T, Norte M, Daranas A, Fernández J. Biosynthetic studies on water-soluble derivative 5c (DTX5c). Mar Drugs 2012; 10(12): 2234-45.
[http://dx.doi.org/10.3390/md10102234] [PMID: 23170080]
[71]
Kelman D, Posner EK, McDermid KJ, Tabandera NK, Wright PR, Wright AD. Antioxidant activity of Hawaiian marine algae. Mar Drugs 2012; 10(12): 403-16.
[http://dx.doi.org/10.3390/md10020403] [PMID: 22412808]
[72]
Göthel Q, Lichte E, Köck M. Further eleganolone-derived diterpenes from the brown alga Bifurcaria bifurcata. Tetrahedron Lett 2012; 53(15): 1873-7.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.128]
[73]
Kawamura-Konishi Y, Watanabe N, Saito M, et al. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens. J Agric Food Chem 2012; 60(22): 5565-70.
[http://dx.doi.org/10.1021/jf300165j] [PMID: 22594840]
[74]
Lee SH, Kang SM, Ko SC, Lee DH, Jeon YJ. Octaphlorethol A, a novel phenolic compound isolated from a brown alga, Ishige foliacea, increases glucose transporter 4-mediated glucose uptake in skeletal muscle cells. Biochem Biophys Res Commun 2012; 420(3): 576-81.
[http://dx.doi.org/10.1016/j.bbrc.2012.03.036] [PMID: 22445752]
[75]
Kang SM, Heo SJ, Kim KN, Lee SH, Jeon YJ. Isolation and identification of new compound, 2,7″-phloroglucinol-6,6′-bieckol from brown algae, Ecklonia cava and its antioxidant effect. J Funct Foods 2012; 4(1): 158-66.
[http://dx.doi.org/10.1016/j.jff.2011.10.001]
[76]
Ortalo-Magné A, Culioli G, Valls R, Pucci B, Piovetti L. Polar acyclic diterpenoids from Bifurcaria bifurcata (Fucales, Phaeophyta). Phytochemistry 2005; 66(19): 2316-23.
[http://dx.doi.org/10.1016/j.phytochem.2005.06.006] [PMID: 16038952]
[77]
Su TR, Tsai FJ, Lin JJ, et al. Induction of apoptosis by 11-dehydrosinulariolide via mitochondrial dysregulation and ER stress pathways in human melanoma cells. Mar Drugs 2012; 10(12): 1883-98.
[http://dx.doi.org/10.3390/md10081883] [PMID: 23015779]
[78]
Chen WF, Chakraborty C, Sung CS, et al. Neuroprotection by marine-derived compound, 11-dehydrosinulariolide, in an in vitro Parkinson’s model: A promising candidate for the treatment of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol 2012; 385(3): 265-75.
[http://dx.doi.org/10.1007/s00210-011-0710-2] [PMID: 22119889]
[79]
Li XD, Miao FP, Li K, Ji NY. Sesquiterpenes and acetogenins from the marine red alga Laurencia okamurai. Fitoterapia 2012; 83(3): 518-22.
[http://dx.doi.org/10.1016/j.fitote.2011.12.018] [PMID: 22233863]
[80]
Chung HM, Hong PH, Su JH, et al. Bioactive compounds from a gorgonian coral Echinomuricea sp. (Plexauridae). Mar Drugs 2012; 10(12): 1169-79.
[http://dx.doi.org/10.3390/md10051169] [PMID: 22822364]
[81]
Wang SK, Puu SY, Duh CY. New 19-oxygenated steroids from the soft coral Nephthea chabrolii. Mar Drugs 2012; 10(12): 1288-96.
[http://dx.doi.org/10.3390/md10061288] [PMID: 22822372]
[82]
Li C, La MP, Tang H, et al. Bioactive briarane diterpenoids from the South China Sea gorgonian Dichotella gemmacea. Bioorg Med Chem Lett 2012; 22(13): 4368-72.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.001] [PMID: 22647719]
[83]
Wang SK, Hsieh MK, Duh CY. Three new cembranoids from the Taiwanese soft coral Sarcophyton ehrenbergi. Mar Drugs 2012; 10(12): 1433-44.
[http://dx.doi.org/10.3390/md10071433] [PMID: 22851917]
[84]
Mayer AMS, Avilés E, Rodríguez AD. Marine sponge Hymeniacidon sp. amphilectane metabolites potently inhibit rat brain microglia thromboxane B2 generation. Bioorg Med Chem 2012; 20(1): 279-82.
[http://dx.doi.org/10.1016/j.bmc.2011.10.086] [PMID: 22153874]
[85]
Bishara A, Rudi A, Aknin M, Neumann D, Ben-Califa N, Kashman Y. Salarins A and B and tulearin A: new cytotoxic sponge-derived macrolides. Org Lett 2008; 10(2): 153-6.
[http://dx.doi.org/10.1021/ol702221v] [PMID: 18085784]
[86]
Ben-Califa N, Bishara A, Kashman Y, Neumann D. Salarin C, a member of the salarin superfamily of marine compounds, is a potent inducer of apoptosis. Invest New Drugs 2012; 30(1): 98-104.
[http://dx.doi.org/10.1007/s10637-010-9521-4] [PMID: 20734109]
[87]
Festa C, De Marino S, D’Auria MV, et al. Anti-inflammatory cyclopeptides from the marine sponge Theonella swinhoei. Tetrahedron 2012; 68(13): 2851-7.
[http://dx.doi.org/10.1016/j.tet.2012.01.097]
[88]
Festa C, D’Amore C, Renga B, et al. Oxygenated polyketides from Plakinastrella mamillaris as a new chemotype of PXR agonists. Mar Drugs 2013; 11(7): 2314-27.
[http://dx.doi.org/10.3390/md11072314] [PMID: 23820629]
[89]
Kimura M, Wakimoto T, Egami Y, Tan KC, Ise Y, Abe I. Calyxamides A and B, cytotoxic cyclic peptides from the marine sponge Discodermia calyx. J Nat Prod 2012; 75(2): 290-4.
[http://dx.doi.org/10.1021/np2009187] [PMID: 22276742]
[90]
Ganesan P, Matsubara K, Ohkubo T, et al. Anti-angiogenic effect of siphonaxanthin from green alga, Codium fragile. Phytomedicine 2010; 17(14): 1140-4.
[http://dx.doi.org/10.1016/j.phymed.2010.05.005] [PMID: 20637577]
[91]
Rath JP, Kinast S, Maier ME. Synthesis of the fully functionalized core structure of the antibiotic abyssomicin C. Org Lett 2005; 7(14): 3089-92.
[http://dx.doi.org/10.1021/ol0511068] [PMID: 15987212]
[92]
Dineshkumar K, Aparna V, Madhuri KZ, Hopper W. Biological activity of sporolides A and B from Salinispora tropica: In silico target prediction using ligand-based pharmacophore mapping and in vitro activity validation on HIV-1 reverse transcriptase. Chem Biol Drug Des 2014; 83(3): 350-61.
[http://dx.doi.org/10.1111/cbdd.12252] [PMID: 24165098]
[93]
Rasala BA, Muto M, Lee PA, et al. Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 2010; 8(6): 719-33.
[http://dx.doi.org/10.1111/j.1467-7652.2010.00503.x] [PMID: 20230484]
[94]
Camacho F, Macedo A, Malcata F. Potential industrial applications and commercialization of microalgae in the functional food and feed industries: A short review. Mar Drugs 2019; 17(6): 312.
[http://dx.doi.org/10.3390/md17060312] [PMID: 31141887]
[95]
Wells ML, Potin P, Craigie JS, et al. Algae as nutritional and functional food sources: Revisiting our understanding. J Appl Phycol 2017; 29(2): 949-82.
[http://dx.doi.org/10.1007/s10811-016-0974-5] [PMID: 28458464]
[96]
Halliwell B, Gutteridge JM. Free radicals in biology and medicine. USA: Oxford university press 2015.
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001]
[97]
Cornish ML, Garbary DJ. Antioxidants from macroalgae: Potential applications in human health and nutrition. Algae 2010; 25(4): 155-71.
[http://dx.doi.org/10.4490/algae.2010.25.4.155]
[98]
Vechtomova Y, Telegina T, Buglak A, Kritsky M. UV radiation in DNA damage and repair involving DNA-photolyases and cryptochromes. Biomedicines 2021; 9(11): 1564.
[http://dx.doi.org/10.3390/biomedicines9111564] [PMID: 34829793]
[99]
Holst B, Williamson G. Nutrients and phytochemicals: From bioavailability to bioefficacy beyond antioxidants. Curr Opin Biotechnol 2008; 19(2): 73-82.
[http://dx.doi.org/10.1016/j.copbio.2008.03.003] [PMID: 18406129]
[100]
Lovegrove A, Edwards CH, De Noni I, et al. Role of polysaccharides in food, digestion, and health. Crit Rev Food Sci Nutr 2017; 57(2): 237-53.
[http://dx.doi.org/10.1080/10408398.2014.939263] [PMID: 25921546]
[101]
Boehlke C, Zierau O, Hannig C. Salivary amylase: The enzyme of unspecialized euryphagous animals. Arch Oral Biol 2015; 60(8): 1162-76.
[http://dx.doi.org/10.1016/j.archoralbio.2015.05.008] [PMID: 26043446]
[102]
a) Kawamura-Konishi Y, Watanabe N, Saito M, et al. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga Sargassum patens.J Agricult Food Chem 2012; 60(22): 5565-70.;
b) Iwai K. Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-A(y) mice. Plant Foods Hum Nutr 2008; 63(4): 163-9.
[http://dx.doi.org/10.1007/s11130-008-0098-4] [PMID: 18958624]
[103]
Okada Y, Ishikura M, Maoka T. Bioavailability of astaxanthin in Haematococcus algal extract: the effects of timing of diet and smoking habits. Biosci Biotechnol Biochem 2009; 73(9): 1928-32.
[http://dx.doi.org/10.1271/bbb.90078] [PMID: 19734684]
[104]
Gobler CJ, Berry DL, Dyhrman ST, et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci 2011; 108(11): 4352-7.
[http://dx.doi.org/10.1073/pnas.1016106108] [PMID: 21368207]
[105]
Fournier E, Adam C, Massabuau JC, Garnier-Laplace J. Selenium bioaccumulation in Chlamydomonas reinhardtii and Subsequent transfer to Corbicula fluminea: Role of selenium speciation and bivalve ventilation. Environ Toxicol Chem 2006; 25(10): 2692-9.
[http://dx.doi.org/10.1897/05-386R1.1] [PMID: 17022410]
[106]
Tuzen M, Verep B, Ogretmen AO, Soylak M. Trace element content in marine algae species from the Black Sea, Turkey. Environ Monit Assess 2009; 151(1-4): 363-8.
[http://dx.doi.org/10.1007/s10661-008-0277-7] [PMID: 18369727]
[107]
Cases J, Napolitano A, Caporiccio B, et al. Selenium from selenium-rich Spirulina is less bioavailable than selenium from sodium selenite and selenomethionine in selenium-deficient rats. J Nutr 2001; 131(9): 2343-50.
[http://dx.doi.org/10.1093/jn/131.9.2343] [PMID: 11533277]
[108]
Nwosu F, Morris J, Lund VA, Stewart D, Ross HA, McDougall GJ. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 2011; 126(3): 1006-12.
[http://dx.doi.org/10.1016/j.foodchem.2010.11.111]
[109]
Oren A, Gunde-Cimerman N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol Lett 2007; 269(1): 1-10.
[http://dx.doi.org/10.1111/j.1574-6968.2007.00650.x] [PMID: 17286572]
[110]
McCarty MF. Clinical potential of Spirulina as a source of phycocyanobilin. J Med Food 2007; 10(4): 566-70.
[http://dx.doi.org/10.1089/jmf.2007.621] [PMID: 18158824]
[111]
Fitton HJ, Oddie T, Stringer D, Karpiniec S. Marine plant extracts offer superior dermal protection. Personal Care 2016; pp. 51-4.
[112]
Poli A, Anzelmo G, Nicolaus B. Bacterial exopolysaccharides from extreme marine habitats: Production, characterization and biological activities. Mar Drugs 2010; 8(6): 1779-802.
[http://dx.doi.org/10.3390/md8061779] [PMID: 20631870]
[113]
Sun SM, Chung GH, Shin TS. Volatile compounds of the green alga, Capsosiphon fulvescens. J Appl Phycol 2012; 24(5): 1003-13.
[http://dx.doi.org/10.1007/s10811-011-9724-x]
[114]
Ghibaudo M, Baltenneck C, Minondo AM, Couturier LT, Potter A. A natural sulfated polysaccharide from Porphyridium cruentum red microalgae–a potential mimetic of heparan sulfate and its modulation of the epidermal biological activity of human reconstructed skin 2014.
[115]
Fenoradosoa TA, Ali G, Delattre C, et al. Extraction and characterization of an alginate from the brown seaweed Sargassum turbinarioides Grunow. J Appl Phycol 2010; 22(2): 131-7.
[http://dx.doi.org/10.1007/s10811-009-9432-y]
[116]
Bixler HJ, Porse H. A decade of change in the seaweed hydrocolloids industry. J Appl Phycol 2011; 23(3): 321-35.
[http://dx.doi.org/10.1007/s10811-010-9529-3]
[117]
Custódio CA, Reis RL, Mano JF. Photo-cross-linked laminarin-based hydrogels for biomedical applications. Biomacromolecules 2016; 17(5): 1602-9.
[http://dx.doi.org/10.1021/acs.biomac.5b01736] [PMID: 27017983]
[118]
Kuda T, Yano T, Matsuda N, Nishizawa M. Inhibitory effects of laminaran and low molecular alginate against the putrefactive compounds produced by intestinal microflora in vitro and in rats. Food Chem 2005; 91(4): 745-9.
[http://dx.doi.org/10.1016/j.foodchem.2004.06.047]
[119]
Sun ML, Zhao F, Shi M, et al. Characterization and biotechnological potential analysis of a new exopolysaccharide from the Arctic marine bacterium Polaribacter sp. SM1127. Sci Rep 2015; 5(1): 18435.
[http://dx.doi.org/10.1038/srep18435] [PMID: 26688201]
[120]
Takahashi K, Hirano Y, Araki S, Hattori M. Emulsifying ability of porphyran prepared from dried nori, Porphyra yezoensis, a red alga. J Agric Food Chem 2000; 48(7): 2721-5.
[http://dx.doi.org/10.1021/jf990990b] [PMID: 10898612]
[121]
Kotrbáček V, Doubek J, Doucha J. The Chlorococcalean alga Chlorella in animal nutrition: A review. J Appl Phycol 2015; 27(6): 2173-80.
[http://dx.doi.org/10.1007/s10811-014-0516-y]
[122]
Mouritsen OG, Vinther Schmidt C. A role for macroalgae and cephalopods in sustainable eating. Front Psychol 2020; 11: 1402.
[http://dx.doi.org/10.3389/fpsyg.2020.01402] [PMID: 32733319]
[123]
Biondi N, Piccardi R, Margheri MC, Rodolfi L, Smith GD, Tredici MR. Evaluation of Nostoc strain ATCC 53789 as a potential source of natural pesticides. Appl Environ Microbiol 2004; 70(6): 3313-20.
[http://dx.doi.org/10.1128/AEM.70.6.3313-3320.2004] [PMID: 15184126]
[124]
Mundt S, Kreitlow S, Nowotny A, Effmert U. Biochemical and pharmacological investigations of selected cyanobacteria. Int J Hyg Environ Health 2001; 203(4): 327-34.
[http://dx.doi.org/10.1078/1438-4639-00045] [PMID: 11434213]
[125]
Bokesch HR, O’Keefe BR, McKee TC, et al. A potent novel anti-HIV protein from the cultured cyanobacterium Scytonema varium. Biochemistry 2003; 42(9): 2578-84.
[http://dx.doi.org/10.1021/bi0205698] [PMID: 12614152]
[126]
Clark BR, Engene N, Teasdale ME, et al. Natural products chemistry and taxonomy of the marine cyanobacterium Blennothrix cantharidosmum. J Nat Prod 2008; 71(9): 1530-7.
[http://dx.doi.org/10.1021/np800088a] [PMID: 18698821]
[127]
Pereira A, Cao Z, Murray TF, Gerwick WH. Hoiamide a, a sodium channel activator of unusual architecture from a consortium of two papua new Guinea cyanobacteria. Chem Biol 2009; 16(8): 893-906.
[http://dx.doi.org/10.1016/j.chembiol.2009.06.012] [PMID: 19716479]
[128]
Zainuddin EN, Mentel R, Wray V, et al. Cyclic depsipeptides, ichthyopeptins A and B, from Microcystis ichthyoblabe. J Nat Prod 2007; 70(7): 1084-8.
[http://dx.doi.org/10.1021/np060303s] [PMID: 17602586]
[129]
Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH. Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 2001; 64(7): 907-10.
[http://dx.doi.org/10.1021/np010049y] [PMID: 11473421]
[130]
Shen P, Zhao SW, Zheng WJ, Hua ZC, Shi Q, Liu ZT. Effects of cyanobacteria bloom extract on some parameters of immune function in mice. Toxicol Lett 2003; 143(1): 27-36.
[http://dx.doi.org/10.1016/S0378-4274(03)00110-3] [PMID: 12697377]
[131]
Kanekiyo K, Lee JB, Hayashi K, et al. Isolation of an antiviral polysaccharide, nostoflan, from a terrestrial cyanobacterium, Nostoc flagelliforme. J Nat Prod 2005; 68(7): 1037-41.
[http://dx.doi.org/10.1021/np050056c] [PMID: 16038544]
[132]
Devillers J, Doré JC, Guyot M, et al. Prediction of biological activity profiles of cyanobacterial secondary metabolites. SAR QSAR Environ Res 2007; 18(7-8): 629-43.
[http://dx.doi.org/10.1080/10629360701698704] [PMID: 18038364]
[133]
Field LM, Fagerberg WR, Gatto KK, Anne BS. A comparison of protein extraction methods optimizing high protein yields from marine algae and cyanobacteria. J Appl Phycol 2017; 29(3): 1271-8.
[http://dx.doi.org/10.1007/s10811-016-1027-9]
[134]
Singh RK, Tiwari SP, Rai AK, Mohapatra TM. Cyanobacteria: An emerging source for drug discovery. J Antibiot 2011; 64(6): 401-12.
[http://dx.doi.org/10.1038/ja.2011.21] [PMID: 21468079]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy