Generic placeholder image

Recent Patents on Biotechnology

Editor-in-Chief

ISSN (Print): 1872-2083
ISSN (Online): 2212-4012

Review Article

Role of Artificial Intelligence in Drug Discovery to Revolutionize the Pharmaceutical Industry: Resources, Methods and Applications

Author(s): Pranjal Kumar Singh, Kapil Sachan, Vishal Khandelwal, Sumita Singh and Smita Singh*

Volume 19, Issue 1, 2025

Published on: 21 March, 2024

Page: [35 - 52] Pages: 18

DOI: 10.2174/0118722083297406240313090140

Price: $65

Abstract

Traditional drug discovery methods such as wet-lab testing, validations, and synthetic techniques are time-consuming and expensive. Artificial Intelligence (AI) approaches have progressed to the point where they can have a significant impact on the drug discovery process. Using massive volumes of open data, artificial intelligence methods are revolutionizing the pharmaceutical industry. In the last few decades, many AI-based models have been developed and implemented in many areas of the drug development process. These models have been used as a supplement to conventional research to uncover superior pharmaceuticals expeditiously. AI's involvement in the pharmaceutical industry was used mostly for reverse engineering of existing patents and the invention of new synthesis pathways. Drug research and development to repurposing and productivity benefits in the pharmaceutical business through clinical trials. AI is studied in this article for its numerous potential uses. We have discussed how AI can be put to use in the pharmaceutical sector, specifically for predicting a drug's toxicity, bioactivity, and physicochemical characteristics, among other things. In this review article, we have discussed its application to a variety of problems, including de novo drug discovery, target structure prediction, interaction prediction, and binding affinity prediction. AI for predicting drug interactions and nanomedicines were also considered.

[1]
Mohs RC, Greig NH. Drug discovery and development: Role of basic biological research. Alzheimers Dement 2017; 3(4): 651-7.
[http://dx.doi.org/10.1016/j.trci.2017.10.005] [PMID: 29255791]
[2]
Dara S, Dhamercherla S, Jadav SS, Babu CHM, Ahsan MJ. Machine learning in drug discovery: A review. Artif Intell Rev 2022; 55(3): 1947-99.
[http://dx.doi.org/10.1007/s10462-021-10058-4] [PMID: 34393317]
[3]
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today 2021; 26(1): 80-93.
[http://dx.doi.org/10.1016/j.drudis.2020.10.010] [PMID: 33099022]
[4]
Gliozzo E, Ionescu C. Pigments—Lead-based whites, reds, yellows and oranges and their alteration phases. Archaeol Anthropol Sci 2022; 14(1): 17.
[http://dx.doi.org/10.1007/s12520-021-01407-z]
[5]
Ramesh AN, Kambhampati C, Monson JRT, Drew PJ. Artificial intelligence in medicine. Ann R Coll Surg Engl 2004; 86(5): 334-8.
[http://dx.doi.org/10.1308/147870804290] [PMID: 15333167]
[6]
Miles J, Walker A. The potential application of artificial intelligence in transport. IEE Proc-Intell Transport Syst 2006 153: 183-98.
[http://dx.doi.org/10.1049/ip-its:20060014]
[8]
Wirtz BW, Weyerer JC, Geyer C. Artificial intelligence and the public sector—applications and challenges. Int J Public Adm 2019; 42(7): 596-615.
[http://dx.doi.org/10.1080/01900692.2018.1498103]
[9]
Chan HCS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trends Pharmacol Sci 2019; 40(8): 592-604.
[http://dx.doi.org/10.1016/j.tips.2019.06.004] [PMID: 31320117]
[10]
Rantanen J, Khinast J. The future of pharmaceutical manufacturing sciences. J Pharm Sci 2015; 104(11): 3612-38.
[http://dx.doi.org/10.1002/jps.24594] [PMID: 26280993]
[11]
Jämsä-Jounela SL. Future trends in process automation. Annu Rev Contr 2007; 31(2): 211-20.
[http://dx.doi.org/10.1016/j.arcontrol.2007.08.003]
[12]
Selvaraj C, Chandra I, Singh SK. Artificial intelligence and machine learning approaches for drug design: Challenges and opportunities for the pharmaceutical industries. Mol Divers 2022; 26(3): 1893-913.
[http://dx.doi.org/10.1007/s11030-021-10326-z] [PMID: 34686947]
[13]
Tripathi MK, Nath A, Singh TP, Ethayathulla AS, Kaur P. Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery. Mol Divers 2021; 25(3): 1439-60.
[http://dx.doi.org/10.1007/s11030-021-10256-w] [PMID: 34159484]
[14]
Qureshi R, Irfan M, Gondal TM, et al. AI in drug discovery and its clinical relevance. Heliyon 2023; 9(7): e17575.
[http://dx.doi.org/10.1016/j.heliyon.2023.e17575] [PMID: 37396052]
[15]
Beneke F, Mackenrodt MO. Artificial intelligence and collusion. IIC Int. Rev. IIC Int Rev Ind Prop Copyr Law 2019; 50(1): 109-34.
[http://dx.doi.org/10.1007/s40319-018-00773-x]
[16]
Steels L, Brooks R. The artificial life route to artificial intelligence: Building embodied, situated agents. (1st ed.). London: Routledge 2018; pp. 1-300.
[http://dx.doi.org/10.4324/9781351001885]
[17]
Bielecki A, Bielecki A. Foundations of artificial neural networks. . In: Kacprzyk J, Ed.Models of Neurons and Perceptrons: Selected Problems and Challenges. Springer International Publishing 2019; pp. 15-28.
[http://dx.doi.org/10.1007/978-3-319-90140-4_3]
[18]
Kalyane D. Artificial intelligence in the pharmaceutical sector: Current scene and future prospect. . In: Tekade RK, Ed.The Future of Pharmaceutical Product Development and Research. Elsevier 2020; pp. 73-107.
[http://dx.doi.org/10.1016/B978-0-12-814455-8.00003-7]
[19]
Da Silva In. Artificial neural networks. Springer 2017.
[http://dx.doi.org/10.1007/978-3-319-43162-8]
[20]
Medsker L, Jain LC. Recurrent neural networks: Design and applications. CRC Press 1999.
[http://dx.doi.org/10.1201/9781420049176]
[21]
Ha¨nggi M, Moschytz GS. Cellular neural networks: Analysis, design and optimization. Springer Science & Business Media 2000.
[http://dx.doi.org/10.1007/978-1-4757-3220-7]
[22]
Rouse M. IBM Watson Supercomputer 2017. IBM-Watson-supercomputer 2017.
[23]
Vyas M. Artificial intelligence: The beginning of a new era in pharmacy profession. Asian J Pharm 2018; 12: 72-6.
[24]
Talevi A, Morales JF, Hather G, et al. Machine learning in drug discovery and development Part 1: A primer. CPT Pharmacometrics Syst Pharmacol 2020; 9(3): 129-42.
[http://dx.doi.org/10.1002/psp4.12491] [PMID: 31905263]
[25]
Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res 2011; 12: 2825-30.
[26]
Paszke A, Gross S, Massa F, et al. PyTorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, 32. Curran Associates, Inc. 2019; 8024-35.
[27]
Hammann F, Gutmann H, Vogt N, Helma C, Drewe J. Prediction of adverse drug reactions using decision tree modeling. Clin Pharmacol Ther 2010; 88(1): 52-9.
[http://dx.doi.org/10.1038/clpt.2009.248] [PMID: 20220749]
[28]
Schober P, Vetter TR. Logistic regression in medical research. Anesth Analg 2021; 132(2): 365-6.
[http://dx.doi.org/10.1213/ANE.0000000000005247] [PMID: 33449558]
[29]
Maltarollo VG, Kronenberger T, Espinoza GZ, Oliveira PR, Honorio KM. Advances with support vector machines for novel drug discovery. Expert Opin Drug Discov 2019; 14(1): 23-33.
[http://dx.doi.org/10.1080/17460441.2019.1549033] [PMID: 30488731]
[30]
El-Attar NE, Hassan MK, Alghamdi OA, Awad WA. Deep learning model for classification and bioactivity prediction of essential oil-producing plants from Egypt. Sci Rep 2020; 10(1): 21349.
[http://dx.doi.org/10.1038/s41598-020-78449-1] [PMID: 33288845]
[31]
Gupta A, Müller AT, Huisman BJH, Fuchs JA, Schneider P, Schneider G. Generative recurrent networks for de novo drug design. Mol Inform 2018; 37(1-2): 1880141.
[http://dx.doi.org/10.1002/minf.201880141] [PMID: 29442444]
[32]
Blanchard AE, Stanley C, Bhowmik D. Using GANs with adaptive training data to search for new molecules. J Cheminform 2021; 13(1): 14.
[http://dx.doi.org/10.1186/s13321-021-00494-3] [PMID: 33622401]
[33]
Shen M, Xiao Y, Golbraikh A, Gombar VK, Tropsha A. Development and validation of k-nearest-neighbor QSPR models of metabolic stability of drug candidates. J Med Chem 2003; 46(14): 3013-20.
[http://dx.doi.org/10.1021/jm020491t] [PMID: 12825940]
[34]
Manelfi C, Gemei M, Talarico C, et al. “Molecular Anatomy”: A new multi-dimensional hierarchical scaffold analysis tool. J Cheminform 2021; 13(1): 54.
[http://dx.doi.org/10.1186/s13321-021-00526-y] [PMID: 34301327]
[35]
Yoo C, Shahlaei M. The applications of PCA in QSAR studies: A case study on CCR5 antagonists. Chem Biol Drug Des 2018; 91(1): 137-52.
[http://dx.doi.org/10.1111/cbdd.13064] [PMID: 28656625]
[36]
Karlov DS, Sosnin S, Tetko IV, Fedorov MV. Chemical space exploration guided by deep neural networks. RSC Advances 2019; 9(9): 5151-7.
[http://dx.doi.org/10.1039/C8RA10182E] [PMID: 35514634]
[37]
Yasonik J. Multiobjective de novo drug design with recurrent neural networks and nondominated sorting. J Cheminform 2020; 12(1): 14.
[http://dx.doi.org/10.1186/s13321-020-00419-6] [PMID: 33430996]
[38]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-44.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[39]
Simm J, Klambauer G, Arany A, et al. Repurposing high- throughput image assays enables biological activity prediction for drug discovery. Cell Chem Biol 2018; 25(5): 611-618.e3.
[http://dx.doi.org/10.1016/j.chembiol.2018.01.015] [PMID: 29503208]
[40]
Hofmarcher M, Rumetshofer E, Clevert DA, Hochreiter S, Klambauer G. Accurate prediction of biological assays with high-throughput microscopy images and convolutional networks. J Chem Inf Model 2019; 59(3): 1163-71.
[http://dx.doi.org/10.1021/acs.jcim.8b00670] [PMID: 30840449]
[41]
Ramsundar B, Kearnes S, Riley P, Webster D, Konerding D, Pande V. Massively multitask networks for drug discovery. arXiv:150202072 2015.
[42]
Duvenaud D, Maclaurin D, Aguilera-Iparraguirre J, et al. Convolutional networks on graphs for learning molecular fingerprints. arXiv:150909292 2015.
[43]
Glem RC, Bender A, Arnby CH, Carlsson L, Boyer S, Smith J. Circular fingerprints: Flexible molecular descriptors with applications from physical chemistry to ADME. IDrugs 2006; 9(3): 199-204.
[PMID: 16523386]
[44]
Goh GB, Siegel C, Vishnu A, Hodas NO, Baker N. Chemception: A deep neural network with minimal chemistry knowledge matches the performance of expert- developed QSAR/QSPR models. arXiv:170606689 2017.
[45]
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Juan, PR, USA 17-19 June. . 1997; pp. 1-1.
[46]
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2016; 770-8.
[47]
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv:14091556 2014.
[48]
Rifaioglu AS, Nalbat E, Atalay V, Martin MJ, Cetin-Atalay R, Doğan T. DEEPScreen: High performance drug–target interaction prediction with convolutional neural networks using 2-D structural compound representations. Chem Sci 2020; 11(9): 2531-57.
[http://dx.doi.org/10.1039/C9SC03414E] [PMID: 33209251]
[49]
Rajan K, Brinkhaus HO, Sorokina M, Zielesny A, Steinbeck C. DECIMER-Segmentation: Automated extraction of chemical structure depictions from scientific literature. J Cheminform 2021; 13(1): 20.
[http://dx.doi.org/10.1186/s13321-021-00496-1] [PMID: 33685498]
[50]
Staker J, Marshall K, Abel R, McQuaw CM. Molecular structure extraction from documents using deep learning. J Chem Inf Model 2019; 59(3): 1017-29.
[http://dx.doi.org/10.1021/acs.jcim.8b00669] [PMID: 30758950]
[51]
Rajan K, Zielesny A, Steinbeck C. DECIMER: Towards deep learning for chemical image recognition. J Cheminform 2020; 12(1): 65.
[http://dx.doi.org/10.1186/s13321-020-00469-w] [PMID: 33372621]
[52]
Hossain MDZ, Sohel F, Shiratuddin MF, Laga H. A comprehensive survey of deep learning for image captioning. ACM Comput Surv 2019; 51(6): 1-36. [CsUR]
[http://dx.doi.org/10.1145/3295748]
[53]
Duch W, Swaminathan K, Meller J. Artificial intelligence approaches for rational drug design and discovery. Curr Pharm Des 2007; 13(14): 1497-508.
[http://dx.doi.org/10.2174/138161207780765954] [PMID: 17504169]
[54]
Blasiak A, Khong J, Kee T. CURATE. AI: Optimizing personalized medicine with artificial intelligence. SLAS Technol 2020; 25(2): 95-105.
[http://dx.doi.org/10.1177/2472630319890316] [PMID: 31771394]
[55]
Baronzio G, Parmar G, Baronzio M. Overview of methods for overcoming hindrance to drug delivery to tumors, with special attention to tumor interstitial fluid. Front Oncol 2015; 5: 165.
[http://dx.doi.org/10.3389/fonc.2015.00165] [PMID: 26258072]
[56]
lvarez-Machancoses A, lvarez-Machancoses JL. Using artificial intelligence methods to speed up drug discovery. Expert Opin Drug Discov 2019; 14: 769-77.
[57]
Fleming N. How artificial intelligence is changing drug discovery. Nature 2018; 557(7707): S55-7.
[http://dx.doi.org/10.1038/d41586-018-05267-x] [PMID: 29849160]
[58]
Dana D, Gadhiya SV, St Surin LG, et al. Deep learning in drug discovery and medicine; scratching the surface. Molecules 2018; 23(9): 2384.
[http://dx.doi.org/10.3390/molecules23092384] [PMID: 30231499]
[59]
Mak KK, Pichika MR. Artificial intelligence in drug development: Present status and future prospects. Drug Discov Today 2019; 24(3): 773-80.
[http://dx.doi.org/10.1016/j.drudis.2018.11.014] [PMID: 30472429]
[60]
Zang Q, Mansouri K, Williams AJ, et al. In silico prediction of physicochemical properties of environmental chemicals using molecular fingerprints and machine learning. J Chem Inf Model 2017; 57(1): 36-49.
[http://dx.doi.org/10.1021/acs.jcim.6b00625] [PMID: 28006899]
[61]
Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev 2019; 119(18): 10520-94.
[http://dx.doi.org/10.1021/acs.chemrev.8b00728] [PMID: 31294972]
[62]
Hessler G, Baringhaus KH. Artificial intelligence in drug design. Molecules 2018; 23(10): 2520.
[http://dx.doi.org/10.3390/molecules23102520] [PMID: 30279331]
[63]
Lusci A, Pollastri G, Baldi P. Deep architectures and deep learning in chemoinformatics: The prediction of aqueous solubility for drug-like molecules. J Chem Inf Model 2013; 53(7): 1563-75.
[http://dx.doi.org/10.1021/ci400187y] [PMID: 23795551]
[64]
Kumar R, Sharma A, Siddiqui MH, Tiwari RK. Prediction of human intestinal absorption of compounds using artificial intelligence techniques. Curr Drug Discov Technol 2017; 14(4): 244-54.
[http://dx.doi.org/10.2174/1570163814666170404160911] [PMID: 28382857]
[65]
Rupp M, Körner R, Tetko IV. Estimation of acid dissociation constants using graph kernels. Mol Inform 2010; 29(10): 731-40.
[http://dx.doi.org/10.1002/minf.201000072] [PMID: 27464016]
[66]
Chai S, Liu Q, Liang X, et al. A grand product design model for crystallization solvent design. Comput Chem Eng 2020; 135: 106764.
[http://dx.doi.org/10.1016/j.compchemeng.2020.106764]
[67]
Thafar M, Raies AB, Albaradei S, Essack M, Bajic VB. Comparison study of computational prediction tools for drug–target binding affinities. Front Chem 2019; 7: 782.
[http://dx.doi.org/10.3389/fchem.2019.00782] [PMID: 31824921]
[68]
ztu¨rk O. DeepDTA: Deep drug–target binding affinity prediction. Bioinformatics 2018; 34(17): 821-9.
[69]
Lounkine E, Keiser MJ, Whitebread S, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012; 486(7403): 361-7.
[http://dx.doi.org/10.1038/nature11159] [PMID: 22722194]
[70]
Mahmud SMH, Chen W, Jahan H, Liu Y, Sujan NI, Ahmed S. . iDTi-CSsmoteB: Identification of drug– target interaction based on drug chemical structure and protein sequence using XGBoost with oversampling technique SMOTE. IEEE Access 2019; 7: 48699-714.
[http://dx.doi.org/10.1109/ACCESS.2019.2910277]
[71]
Gao KY, Fokve A, Luo H, Lyengar A, Dey S, Zhang P. Interpretable drug target prediction using deep neural representation. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence 2018. 3371-7.
[http://dx.doi.org/10.24963/ijcai.2018/468]
[72]
Feng Q. Padme: A deep learning-based framework for drug–target interaction prediction. arXiv:180709741 2018.
[73]
Karimi M, Wu D, Wang Z, Shen Y. DeepAffinity: Interpretable deep learning of compound–protein affinity through unified recurrent and convolutional neural networks. Bioinformatics 2019; 35(18): 3329-38.
[http://dx.doi.org/10.1093/bioinformatics/btz111] [PMID: 30768156]
[74]
Pu L, Naderi M, Liu T, Wu HC, Mukhopadhyay S, Brylinski M. eToxPred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol Toxicol 2019; 20(1): 2.
[http://dx.doi.org/10.1186/s40360-018-0282-6] [PMID: 30621790]
[75]
Basile AO, Yahi A, Tatonetti NP. Artificial intelligence for drug toxicity and safety. Trends Pharmacol Sci 2019; 40(9): 624-35.
[http://dx.doi.org/10.1016/j.tips.2019.07.005] [PMID: 31383376]
[76]
Lysenko A, Sharma A, Boroevich KA, Tsunoda T. An integrative machine learning approach for prediction of toxicity-related drug safety. Life Sci Alliance 2018; 1(6): e201800098.
[http://dx.doi.org/10.26508/lsa.201800098] [PMID: 30515477]
[77]
Gayvert KM, Madhukar NS, Elemento O. A data-driven approach to predicting successes and failures of clinical trials. Cell Chem Biol 2016; 23(10): 1294-301.
[http://dx.doi.org/10.1016/j.chembiol.2016.07.023] [PMID: 27642066]
[78]
Jimenez-Carretero D, Abrishami V, Fernández-de-Manuel L, et al. Tox_(R)CNN: Deep learning-based nuclei profiling tool for drug toxicity screening. PLOS Comput Biol 2018; 14(11): e1006238.
[http://dx.doi.org/10.1371/journal.pcbi.1006238] [PMID: 30500821]
[79]
Zhu H. Big data and artificial intelligence modeling for drug discovery. Annu Rev Pharmacol Toxicol 2020; 60(1): 573-89.
[http://dx.doi.org/10.1146/annurev-pharmtox-010919-023324] [PMID: 31518513]
[80]
Ciallella HL, Zhu H. Advancing computational toxicology in the big data era by artificial intelligence: data-driven and mechanism-driven modeling for chemical toxicity. Chem Res Toxicol 2019; 32(4): 536-47.
[http://dx.doi.org/10.1021/acs.chemrestox.8b00393] [PMID: 30907586]
[81]
Brown N. Silico medicinal chemistry: Computational methods to support drug design. Royal Society of Chemistry 2015; pp. 1-232.
[82]
Pereira JC, Caffarena ER, dos Santos CN. Boosting docking-based virtual screening with deep learning. J Chem Inf Model 2016; 56(12): 2495-506.
[http://dx.doi.org/10.1021/acs.jcim.6b00355] [PMID: 28024405]
[83]
DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: New estimates of R&D costs. J Health Econ 2016; 47: 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[84]
Mouchlis VD, Afantitis A, Serra A, et al. Advances in de Novo drug design: From conventional to machine learning methods. Int J Mol Sci 2021; 22(4): 1676.
[http://dx.doi.org/10.3390/ijms22041676] [PMID: 33562347]
[85]
Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv 2018; 4(7): eaap7885.
[http://dx.doi.org/10.1126/sciadv.aap7885] [PMID: 30050984]
[86]
Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 2018; 4(2): 268-76.
[http://dx.doi.org/10.1021/acscentsci.7b00572] [PMID: 29532027]
[87]
Mercado R, Rastemo T, Lindelöf E, et al. Graph networks for molecular design. Mach Learn Sci Technol 2021; 2: 025023.
[88]
Li Y, Zhang L, Liu Z. Multi-objective de novo drug design with conditional graph generative model. J Cheminform 2018; 10(1): 33.
[http://dx.doi.org/10.1186/s13321-018-0287-6] [PMID: 30043127]
[89]
Wang M, Wang Z, Sun H, et al. Deep learning approaches for de novo drug design: An overview. Curr Opin Struct Biol 2022; 72: 135-44.
[http://dx.doi.org/10.1016/j.sbi.2021.10.001] [PMID: 34823138]
[90]
Callaway E. It will change everything: DeepMind’s AI makes gigantic leap in solving protein structures. Nature 2020; 588(7837): 203-4.
[http://dx.doi.org/10.1038/d41586-020-03348-4] [PMID: 33257889]
[91]
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596(7873): 583-9.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[92]
Pakhrin SC, Shrestha B, Adhikari B, Kc DB. Deep learning-based advances in protein structure prediction. Int J Mol Sci 2021; 22(11): 5553.
[http://dx.doi.org/10.3390/ijms22115553] [PMID: 34074028]
[93]
Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning. Nature 2020; 577(7792): 706-10.
[http://dx.doi.org/10.1038/s41586-019-1923-7] [PMID: 31942072]
[94]
Nag S, Baidya ATK, Mandal A, et al. Deep learning tools for advancing drug discovery and development. 3 Biotech 2022; 12: 1-110.
[95]
Husain A, Begum N, Kobayashi M, Honjo T. Native Co-immunoprecipitation assay to identify interacting partners of chromatin-associated proteins in mammalian cells. Bio Protoc 2020; 10(23): e3837.
[http://dx.doi.org/10.21769/BioProtoc.3837] [PMID: 33659486]
[96]
Nixon AE, Sexton DJ, Ladner RC. Drugs derived from phage display. MAbs 2014; 6(1): 73-85.
[http://dx.doi.org/10.4161/mabs.27240] [PMID: 24262785]
[97]
Hamdi A, Colas P. Yeast two-hybrid methods and their applications in drug discovery. Trends Pharmacol Sci 2012; 33(2): 109-18.
[http://dx.doi.org/10.1016/j.tips.2011.10.008] [PMID: 22130009]
[98]
Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K. Machine learning approaches and databases for prediction of drug–target interaction: A survey paper. Brief Bioinform 2021; 22(1): 247-69.
[http://dx.doi.org/10.1093/bib/bbz157] [PMID: 31950972]
[99]
Wen M, Zhang Z, Niu S, et al. Deeplearning-based drug-target interaction prediction. J Proteome Res 2017; 16(4): 1401-9.
[http://dx.doi.org/10.1021/acs.jproteome.6b00618] [PMID: 28264154]
[100]
Lee I, Keum J, Nam H. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences. PLOS Comput Biol 2019; 15(6): e1007129.
[http://dx.doi.org/10.1371/journal.pcbi.1007129] [PMID: 31199797]
[101]
Zhu J, Wang J, Wang X, et al. Prediction of drug efficacy from transcriptional profiles with deep learning. Nat Biotechnol 2021; 39(11): 1444-52.
[http://dx.doi.org/10.1038/s41587-021-00946-z] [PMID: 34140681]
[102]
Ma X, Shu Q, Xing X, Wang C, Kong F. Method for testing potential FASN inhibitor in drug compound library based on molecular docking and molecular dynamic simulation screening. CN114155918A 2022.
[103]
Pahikkala T, Airola A, Pietilä S, et al. Toward more realistic drug-target interaction predictions. Brief Bioinform 2015; 16(2): 325-37.
[http://dx.doi.org/10.1093/bib/bbu010] [PMID: 24723570]
[104]
He T, Heidemeyer M, Ban F, Cherkasov A, Ester M. SimBoost: A read-across approach for predicting drug–target binding affinities using gradient boosting machines. J Cheminform 2017; 9(1): 24.
[http://dx.doi.org/10.1186/s13321-017-0209-z] [PMID: 29086119]
[105]
Al-Lazikani B, Banerji U, Workman P. Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 2012; 30(7): 679-92.
[http://dx.doi.org/10.1038/nbt.2284] [PMID: 22781697]
[106]
Murphy EM, Jimenez HR, Smith SM. Current clinical treatments of AIDS. Adv Pharmacol 2008; 56: 27-73.
[http://dx.doi.org/10.1016/S1054-3589(07)56002-3] [PMID: 18086408]
[107]
Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev 2012; 25(3): 450-70.
[http://dx.doi.org/10.1128/CMR.05041-11] [PMID: 22763634]
[108]
Li P, Huang C, Fu Y, et al. Large-scale exploration and analysis of drug combinations. Bioinformatics 2015; 31(12): 2007-16.
[http://dx.doi.org/10.1093/bioinformatics/btv080] [PMID: 25667546]
[109]
Wildenhain J, Spitzer M, Dolma S, et al. Prediction of synergism from chemical-genetic interactions by machine learning. Cell Syst 2015; 1(6): 383-95.
[http://dx.doi.org/10.1016/j.cels.2015.12.003] [PMID: 27136353]
[110]
Preuer K, Lewis RPI, Hochreiter S, Bender A, Bulusu KC, Klambauer G. DeepSynergy: Predicting anti-cancer drug synergy with deep learning. Bioinformatics 2018; 34(9): 1538-46.
[http://dx.doi.org/10.1093/bioinformatics/btx806] [PMID: 29253077]
[111]
Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol 2006; 24(10): 1211-7.
[http://dx.doi.org/10.1038/nbt1006-1211] [PMID: 17033654]
[112]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: Progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[113]
Roy U, Rodríguez J, Barber P. das Neves J, Sarmento B, Nair M. The potential of HIV-1 nanotherapeutics: From in vitro studies to clinical trials. Nanomedicine 2015; 10(24): 3597-609.
[http://dx.doi.org/10.2217/nnm.15.160] [PMID: 26400459]
[114]
Li Y, Abbaspour MR, Grootendorst PV, Rauth AM, Wu XY. Optimization of controlled release nanoparticle formulation of verapamil hydrochloride using artificial neural networks with genetic algorithm and response surface methodology. Eur J Pharm Biopharm 2015; 94: 170-9.
[http://dx.doi.org/10.1016/j.ejpb.2015.04.028] [PMID: 25986587]
[115]
Muñiz Castro B, Elbadawi M, Ong JJ, et al. Machine learning predicts 3D printing performance ofover 900 drug delivery systems. J Contr Release 2021; 337: 530-45.
[116]
Alafeef M, Srivastava I, Pan D. Machine learning for precision breast cancer diagnosis and prediction of the nanoparticle cellular internalization. ACS Sens 2020; 5(6): 1689-98.
[http://dx.doi.org/10.1021/acssensors.0c00329] [PMID: 32466640]
[117]
Moumné L, Marie AC, Crouvezier N. Oligonucleotide therapeutics: From discovery and development to patentability. Pharmaceutics 2022; 14(2): 260.
[http://dx.doi.org/10.3390/pharmaceutics14020260] [PMID: 35213992]
[118]
Chiba S, Lim KRQ, Sheri N, et al. eSkip-Finder: A machine learning-based web application and database to identify the optimal sequences of antisense oligonucleotides for exon skipping. Nucleic Acids Res 2021; 49(W1): W193-8.
[http://dx.doi.org/10.1093/nar/gkab442] [PMID: 34104972]
[119]
Dar SA, Gupta AK, Thakur A, Kumar M. SMEpred workbench: A web server for predicting efficacy of chemicallymodified siRNAs. RNA Biol 2016; 13(11): 1144-51.
[http://dx.doi.org/10.1080/15476286.2016.1229733] [PMID: 27603513]
[120]
Meziane F, Vadera S, Kobbacy K, Proudlove N. Intelligent systems in manufacturing: Current developments and future prospects. Integrated Manuf Syst 2000; 11(4): 218-38.
[http://dx.doi.org/10.1108/09576060010326221]
[121]
Steiner S, Wolf J, Glatzel S, et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science 2019; 363(6423): eaav2211.
[http://dx.doi.org/10.1126/science.aav2211] [PMID: 30498165]
[122]
Faure A, York P, Rowe RC. Process control and scale-up of pharmaceutical wet granulation processes: A review. Eur J Pharm Biopharm 2001; 52(3): 269-77.
[http://dx.doi.org/10.1016/S0939-6411(01)00184-9] [PMID: 11677069]
[123]
Landin M. Artificial intelligence tools for scaling up of high shear wet granulation process. J Pharm Sci 2017; 106(1): 273-7.
[http://dx.doi.org/10.1016/j.xphs.2016.09.022] [PMID: 27816264]
[124]
Das MK, Chakraborty T. ANN in pharmaceutical product and process development. In: In Artificial Neural Network for Drug Design, Delivery and Disposition. Elsevier 2016; pp. 277-93.
[http://dx.doi.org/10.1016/B978-0-12-801559-9.00014-4]
[125]
Gams M, Horvat M, Ožek M, Luštrek M, Gradišek A. Integrating artificial and human intelligence into tablet production process. AAPS PharmSciTech 2014; 15(6): 1447-53.
[http://dx.doi.org/10.1208/s12249-014-0174-z] [PMID: 24970587]
[126]
Kraft DL. System and methods for the production of personalized drug products. US20120041778A1, 2016.
[127]
Aksu B, Paradkar A, de Matas M, Özer Ö, Güneri T, York P. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation. Pharm Dev Technol 2013; 18(1): 236-45.
[http://dx.doi.org/10.3109/10837450.2012.705294] [PMID: 22881350]
[128]
Goh WY, Lim CP, Peh KK, Subari K. Application of a recurrent neural network to prediction of drug dissolution profiles. Neural Comput Appl 2002; 10(4): 311-7.
[http://dx.doi.org/10.1007/s005210200003]
[129]
Drăgoi EN, Curteanu S, Fissore D. On the use of artificial neural networks to monitor a pharmaceutical freeze-drying process. Dry Technol 2013; 31(1): 72-81.
[http://dx.doi.org/10.1080/07373937.2012.718308]
[130]
Reklaitis R. Towards intelligent decision support for pharmaceutical product development. PharmaHub 2008.
[131]
Wang X. Intelligent quality management using knowledge discovery in databases. International Conference on Computational Intelligence and Software Engineering. Wuhan, China 11-13 December. 2009; pp. 1-4.
[http://dx.doi.org/ 10.1109/CISE.2009.5364999]
[132]
Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol 2014; 32(1): 40-51.
[http://dx.doi.org/10.1038/nbt.2786] [PMID: 24406927]
[133]
Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trends Pharmacol Sci 2019; 40(8): 577-91.
[http://dx.doi.org/10.1016/j.tips.2019.05.005] [PMID: 31326235]
[134]
Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp Clin Trials Commun 2018; 11: 156-64.
[http://dx.doi.org/10.1016/j.conctc.2018.08.001] [PMID: 30112460]
[135]
Pellat G, Anghelache C. Towards intelligent decision support for pharmaceutical product development. J Pharma Innov 2006; 1: 23-35.
[136]
Growth insight role of AI in the pharmaceutical industry, global 2019. Available from: https://www.researchandmarkets.com/reports/4846380/growth-insight-role-of-ai-in-the

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy