Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Herbal Nanoformulations for Diabetes: Mechanisms, Formulations, and Clinical Impact

In Press, (this is not the final "Version of Record"). Available online 18 March, 2024
Author(s): Sunita*, Rahul Kaushik, Krishan Kumar Verma and Rehana Parveen
Published on: 18 March, 2024

Article ID: e180324228072

DOI: 10.2174/0115733998288592240308073925

Price: $95

Abstract

Background: Diabetes mellitus remains a global health challenge, demanding innovative therapeutic strategies. Herbal remedies have garnered attention for their potential in diabetes management, and recent advancements in nanotechnology have enabled the development of herbal nanoformulations with enhanced efficacy and bioavailability.

Objective: This review aimed to comprehensively analyze the mechanisms, formulations, and clinical impact of herbal nanoformulations in managing diabetes mellitus.

Method: A systematic literature search was conducted to identify relevant studies exploring the mechanisms of action, various formulations, and clinical outcomes of herbal nanoformulations in diabetes management.

Result: Herbal nanoformulations exert their anti-diabetic effects through multiple mechanisms, including enhanced bioavailability, improved tissue targeting, and potentiation of insulin signaling pathways. Various herbal ingredients, such as bitter melon, fenugreek, and Gymnema sylvestre, have been encapsulated into nanocarriers, like liposomes, polymeric nanoparticles, and solid lipid nanoparticles, to enhance their therapeutic potential. Clinical studies have demonstrated promising results, showing improvements in glycemic control, lipid profile, and antioxidant status with minimal adverse effects.

Conclusion: Herbal nanoformulations represent a promising avenue for the management of diabetes mellitus, offering improved therapeutic outcomes compared to conventional herbal preparations. Further research is warranted to optimize formulation strategies, elucidate long-term safety profiles, and explore the potential synergistic effects of herbal nanoformulations in combination therapies for diabetes management.

[1]
DiSanto RM, Subramanian V, Gu Z. Recent advances in nanotechnology for diabetes treatment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2015; 7(4): 548-64.
[http://dx.doi.org/10.1002/wnan.1329] [PMID: 25641955]
[2]
Marella S, Tollamadugu NVKVP. Nanotechnological approaches for the development of herbal drugs in treatment of diabetes mellitus – A critical review. IET Nanobiotechnol 2018; 12(5): 549-56.
[http://dx.doi.org/10.1049/iet-nbt.2017.0242] [PMID: 30095411]
[3]
Ruan S, Guo X, Ren Y, Cao G, Xing H, Zhang X. Nanomedicines based on trace elements for intervention of diabetes mellitus. Biomed Pharmacother 2023; 168: 115684.
[http://dx.doi.org/10.1016/j.biopha.2023.115684] [PMID: 37820567]
[4]
Bonifácio BV, Silva PB, Ramos MA, Negri KM, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int J Nanomedicine 2014; 9: 1-15.
[PMID: 24363556]
[5]
Ansari SH, Sameem M, Islam F. Influence of nanotechnology on herbal drugs: A Review. J Adv Pharm Technol Res 2012; 3(3): 142-6.
[http://dx.doi.org/10.4103/2231-4040.101006] [PMID: 23057000]
[6]
Tenchov R, Bird R, Curtze AE, Zhou Q. Lipid nanoparticles—from liposomes to mRNA vaccine delivery, a landscape of research diversity and advancement. ACS Nano 2021; 15(11): 16982-7015.
[http://dx.doi.org/10.1021/acsnano.1c04996] [PMID: 34181394]
[7]
Babu Sharma R. Nanoemulgel: A novel approach for topical delivery system: Updated review. Int J Drug Dev Res 2023; 15(1): 988.
[8]
Davatgaran Taghipour Y, Hajialyani M, Naseri R, et al. Nanoformulations of natural products for management of metabolic syndrome. Int J Nanomedicine 2019; 14: 5303-21.
[http://dx.doi.org/10.2147/IJN.S213831] [PMID: 31406461]
[9]
Rahman MM, Dhar PS. Sumaia , et al. Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomed Pharmacother 2022; 152: 113217.
[http://dx.doi.org/10.1016/j.biopha.2022.113217] [PMID: 35679719]
[10]
Farihi A, Bouhrim M, Chigr F, et al. Exploring medicinal herbs’ therapeutic potential and molecular docking analysis for compounds as potential inhibitors of human acetylcholinesterase in alzheimer’s disease treatment. Medicina 2023; 59(10): 1812.
[http://dx.doi.org/10.3390/medicina59101812] [PMID: 37893530]
[11]
Krzyszczyk P, Acevedo A, Davidoff EJ, Timmins LM, Marrero-Berrios I, Patel M. The growing role of precision and personalized medicine for cancer treatment Technology (Singap World Sci) 2018; 6(3-4): 79-100.
[http://dx.doi.org/10.1142/S2339547818300020]
[12]
Zhao Q, Luan X, Zheng M, et al. Synergistic mechanisms of constituents in herbal extracts during intestinal absorption: Focus on natural occurring nanoparticles. Pharmaceutics 2020; 12(2): 128.
[http://dx.doi.org/10.3390/pharmaceutics12020128] [PMID: 32028739]
[13]
Singh Bhadoriya S, Mangal A, Madoriya N, Dixit P. Bioavailability and bioactivity enhancement of herbal drugs by “Nanotechnology”: A review. J Curr Pharm Res 2011; 88: 1-7.
[14]
Khogta S, Patel J, Barve K, Londhe V. Herbal nano-formulations for topical delivery. J Herb Med 2020; 14: 20.
[15]
Guo M, Qin S, Wang S, et al. Herbal medicine nanocrystals: A potential novel therapeutic strategy. Molecules 2023; 28(17): 6370.
[http://dx.doi.org/10.3390/molecules28176370] [PMID: 37687199]
[16]
Kesarwani K, Gupta R, Mukerjee A. Bioavailability enhancers of herbal origin: An overview. Asian Pac J Trop Biomed 2013; 3(4): 253-66.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X] [PMID: 23620848]
[17]
Baskar V. i SM, A S, Sruthi, Ali J, K ST. Historic review on modern herbal nanogel formulation and delivery methods. Int J Pharm Pharm Sci 2018; 10(10): 1.
[http://dx.doi.org/10.22159/ijpps.2018v10i10.23071]
[18]
Subramanian DA, Langer R, Traverso G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J Nanobiotechnology 2022; 20: 362.
[http://dx.doi.org/10.1186/s12951-022-01539-x]
[19]
Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: Design, evaluation and state-of-the-art. J Control Release 2016; 240: 504-26.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.016] [PMID: 27292178]
[20]
Veselov VV, Nosyrev AE, Jicsinszky L, Alyautdin RN, Cravotto G. Targeted delivery methods for anticancer drugs. Cancers 2022; 14(3): 622.
[http://dx.doi.org/10.3390/cancers14030622] [PMID: 35158888]
[21]
Ibrahim M, Garcia-Contreras L. Mechanisms of absorption and elimination of drugs administered by inhalation. Ther Deliv 2013; 4(8): 1027-45.
[http://dx.doi.org/10.4155/tde.13.67] [PMID: 23919477]
[22]
Ray P, Haideri N, Haque I, Mohammed O, Chakraborty S, Banerjee S. The impact of nanoparticles on the immune system: A gray zone of nanomedicine. J Immunological Sci 2021; 5(1): 19-31.
[http://dx.doi.org/10.29245/2578-3009/2021/1.1206]
[23]
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 2017; 12: 1227-49.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[24]
Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res 2018; 122(6): 877-902.
[25]
Moradi SZ, Momtaz S, Bayrami Z, Farzaei MH, Abdollahi M. Nanoformulations of herbal extracts in treatment of neurodegenerative disorders. Front Bioeng Biotechnol 2020; 8: 238.
[http://dx.doi.org/10.3389/fbioe.2020.00238]
[26]
Mallakpour S, Hussain CM. Handbook of Consumer Nanoproducts. SpringerLink 2022.
[http://dx.doi.org/10.1007/978-981-16-8698-6]
[27]
Majumder J, Taratula O, Minko T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv Drug Deliv Rev 2019; 144: 57-77.
[http://dx.doi.org/10.1016/j.addr.2019.07.010] [PMID: 31400350]
[28]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[29]
Yu B, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol 2010; 27(7): 286-98.
[http://dx.doi.org/10.3109/09687688.2010.521200] [PMID: 21028937]
[30]
Han HS, Koo SY, Choi KY. Emerging nanoformulation strategies for phytocompounds and applications from drug delivery to phototherapy to imaging. Bioact Mater 2022; 14: 182-205.
[http://dx.doi.org/10.1016/j.bioactmat.2021.11.027] [PMID: 35310344]
[31]
Nag OK, Delehanty JB. Active cellular and subcellular targeting of nanoparticles for drug delivery. Pharmaceutics 2019; 11(10): 543.
[http://dx.doi.org/10.3390/pharmaceutics11100543] [PMID: 31635367]
[32]
Wang X, Qiu Y, Wang M, et al. Endocytosis and organelle targeting of nanomedicines in cancer therapy. Int J Nanomedicine 2020; 15: 9447-67.
[http://dx.doi.org/10.2147/IJN.S274289] [PMID: 33268987]
[33]
Yameen B, Choi WI, Vilos C, Swami A, Shi J, Farokhzad OC. Insight into nanoparticle cellular uptake and intracellular targeting. J Control Release 2014; 190: 485-99.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.038] [PMID: 24984011]
[34]
Swanson JA, Yoshida S. Macropinocytosis. In: Encyclopedia of Cell Biology. Elsevier Inc. 2016; pp. 758-65.
[35]
Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019; 2019(12): 1-26.
[36]
Thakur L, Ghodasra U, Patel N, Dabhi M. Novel approaches for stability improvement in natural medicines. Pharmacogn Rev 2011; 5(9): 48-54.
[http://dx.doi.org/10.4103/0973-7847.79099] [PMID: 22096318]
[37]
Chau FT, Fung KP, Koon CM, Lau KM, Wei SY, Leung PC. Bioactive components in herbal medicine experimental approaches. In: Benzie IFF, Wachtel-Galor S, Eds. Herbal Medicine: Biomolecular and Clinical Aspects. (2nd ed.), Boca Raton, FL: CRC Press/Taylor & Francis 2011. Chapter 20.
[38]
Oluyemisi Folashade K, Henry Omoregie E, Peter Ochogu A. Standardization of herbal medicines - A review. Int J Biodivers Conserv 2012; 4(3): 101-12.
[39]
Hu X, Chen X, Zhang L, et al. A combined bottom–up/top–down approach to prepare a sterile injectable nanosuspension. Int J Pharm 2014; 472(1-2): 130-9.
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.018] [PMID: 24929013]
[40]
Chan HK, Kwok PCL. Production methods for nanodrug particles using the bottom-up approach. Adv Drug Deliv Rev 2011; 63(6): 406-16.
[http://dx.doi.org/10.1016/j.addr.2011.03.011] [PMID: 21457742]
[41]
Jadhav K, Dhamecha D, Bhattacharya D, Patil M. Green and ecofriendly synthesis of silver nanoparticles: Characterization, biocompatibility studies and gel formulation for treatment of infections in burns. J Photochem Photobiol B 2016; 155: 109-15.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.01.002] [PMID: 26774382]
[42]
Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 2019; 53: 101174.
[http://dx.doi.org/10.1016/j.jddst.2019.101174]
[43]
Fang Y, Wang H, Yu H, et al. Plasmonic imaging of electrochemical reactions of single nanoparticles. Acc Chem Res 2016; 49(11): 2614-24.
[http://dx.doi.org/10.1021/acs.accounts.6b00348] [PMID: 27662069]
[44]
Subramani K, Kolathupalayam Shanmugam B, Rangaraj S, Palanisamy M, Periasamy P, Venkatachalam R. Screening the UV‐blocking and antimicrobial properties of herbal nanoparticles prepared from Aloe vera leaves for textile applications. IET Nanobiotechnol 2018; 12(4): 459-65.
[http://dx.doi.org/10.1049/iet-nbt.2017.0097] [PMID: 29768230]
[45]
Islam R, Sun L, Zhang L. Biomedical applications of chinese herb-synthesized silver nanoparticles by phytonanotechnology. Nanomaterials 2021; 11(10): 2757.
[http://dx.doi.org/10.3390/nano11102757] [PMID: 34685197]
[46]
Ndolomingo MJ, Bingwa N, Meijboom R. Review of supported metal nanoparticles: Synthesis methodologies, advantages and application as catalysts. J Mater Sci 2020; 55(15): 6195-241.
[http://dx.doi.org/10.1007/s10853-020-04415-x]
[47]
Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med 2016; 1(1): 10-29.
[http://dx.doi.org/10.1002/btm2.10003] [PMID: 29313004]
[48]
Chen M, Wang S, Tan M, Wang Y. Applications of nanoparticles in herbal medicine: Zedoary turmeric oil and its active compound β-elemene. Am J Chin Med 2011; 39(6): 1093-102.
[http://dx.doi.org/10.1142/S0192415X11009421] [PMID: 22083983]
[49]
Chauhan RP, Gupta C, Prakash D, Chauhan RP. Methodological advancements in green nanotechnology and their applications in biological synthesis of herbal nanoparticles. Int J Bioassays 2012; 1: 6-10.
[50]
Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release 2014; 190: 607-23.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.055] [PMID: 24794896]
[51]
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70(1–2): 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4]
[52]
Nikezić AVV, Bondžić AM, Vasić VM. Drug delivery systems based on nanoparticles and related nanostructures. Eur J Pharm Sci 2020; 151: 105412.
[http://dx.doi.org/10.1016/j.ejps.2020.105412] [PMID: 32505796]
[53]
Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 2013; 166(2): 182-94.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.013] [PMID: 23262199]
[54]
Pateiro M, Gómez B, Munekata PES, et al. Nanoencapsulation of promising bioactive compounds to improve their absorption, stability, functionality and the appearance of the final food products. Molecules 2021; 26(6): 1547.
[http://dx.doi.org/10.3390/molecules26061547] [PMID: 33799855]
[55]
Zabot GL, Schaefer Rodrigues F, Polano Ody L, et al. Encapsulation of bioactive compounds for food and agricultural applications. Polymers 2022; 14(19): 4194.
[http://dx.doi.org/10.3390/polym14194194] [PMID: 36236142]
[56]
García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, et al. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials 2019; 9(4): 638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[57]
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative delivery systems loaded with plant bioactive ingredients: Formulation approaches and applications. Plants 2021; 10(6): 1238.
[http://dx.doi.org/10.3390/plants10061238] [PMID: 34207139]
[58]
Pandey R, Bhairam M. Colloidal and vesicular delivery system for herbal bioactive constituents. Daru 2021; 29(2): 415-38.
[59]
Ajazuddin SS, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010; 81(7): 680-9.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[60]
Banasaz S, Morozova K, Ferrentino G, Scampicchio M. Encapsulation of lipid-soluble bioactives by nanoemulsions. Molecules 2020; 25(17): 3966.
[http://dx.doi.org/10.3390/molecules25173966] [PMID: 32878137]
[61]
de Alcantara Lemos J, Oliveira AEMFM, Araujo RS, Townsend DM, Ferreira LAM, de Barros ALB. Recent progress in micro and nano-encapsulation of bioactive derivatives of the Brazilian genus Pterodon. Biomed Pharmacother 2021; 143: 112137.
[http://dx.doi.org/10.1016/j.biopha.2021.112137] [PMID: 34507118]
[62]
Huang BR, Kathiravan D, Saravanan A, Mai PH. Crystalline nanodiamond-induced formation of carbon nanotubes for stable hydrogen sensing. ACS Appl Nano Mater 2021; 4(3): 2840-8.
[http://dx.doi.org/10.1021/acsanm.0c03454]
[63]
Rastogi A, Zivcak M, Sytar O, et al. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front Chem 2017; 5: 78.
[http://dx.doi.org/10.3389/fchem.2017.00078] [PMID: 29075626]
[64]
Urbaniak T, Musiał W. Influence of solvent evaporation technique parameters on diameter of submicron lamivudine-poly-ε-caprolactone conjugate particles. Nanomaterials 2019; 9(9): 1240.
[http://dx.doi.org/10.3390/nano9091240] [PMID: 31480469]
[65]
Yadavand VB, Yadav AV. Recrystallized agglomerates of indomethacin by emulsion solvent diffusion (esd) technique. Int J Pharma Bio Sci 2010; 1.
[66]
Kumar M, Bishnoi RS, Shukla AK, Jain CP. Techniques for formulation of nanoemulsion drug delivery system: A review. Prev Nutr Food Sci 2019; 24(3): 225-34.
[http://dx.doi.org/10.3746/pnf.2019.24.3.225] [PMID: 31608247]
[67]
Gadziński P, Froelich A, Jadach B, et al. Ionotropic gelation and chemical crosslinking as methods for fabrication of modified-release gellan gum-based drug delivery systems. Pharmaceutics 2022; 15(1): 108.
[http://dx.doi.org/10.3390/pharmaceutics15010108] [PMID: 36678736]
[68]
Girotra P, Singh SK, Nagpal K. Supercritical fluid technology: A promising approach in pharmaceutical research. Pharm Dev Technol 2013; 18(1): 22-38.
[http://dx.doi.org/10.3109/10837450.2012.726998] [PMID: 23036159]
[69]
Patel V, Pandya R. Spray drying : A review. Pharm Rev 2009; 7(5)
[70]
Anu Bhushani J, Anandharamakrishnan C. Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci Technol 2014; 38(1): 21-33.
[http://dx.doi.org/10.1016/j.tifs.2014.03.004]
[71]
Lipton J, Weng GM, Rӧhr JA, Wang H, Taylor AD. Layer-by-layer assembly of two-dimensional materials: Meticulous control on the nanoscale. Matter 2020; 2(5): 1148-65.
[http://dx.doi.org/10.1016/j.matt.2020.03.012]
[72]
Enose AA, Dasan PK, Sivaramakrishnan H, Shah SM. Formulation and characterization of solid dispersion prepared by hot melt mixing: A fast screening approach for polymer selection. J Pharm 2014; 2014: 1-13.
[http://dx.doi.org/10.1155/2014/105382] [PMID: 26556187]
[73]
Jalgaonkar K, Kumar Mahawar M, Bibwe B, Nath P, Girjal S. Nutraceuticals and functional foods 2019.
[74]
Oliveira C, Coelho C, Teixeira JA, Ferreira-Santos P, Botelho CM. Nanocarriers as active ingredients enhancers in the cosmetic industry—the European and north America regulation challenges. Molecules 2022; 27(5): 1669.
[http://dx.doi.org/10.3390/molecules27051669] [PMID: 35268769]
[75]
Mahdi Jafari S. An overview of nanoencapsulation techniques and their classification. In: Nanoencapsulation Technologies for the Food and Nutraceutical Industries. Academic Press 2017; pp. 1-34.
[76]
Agrawal YK, Patel VR. Nanosuspension: An approach to enhance solubility of drugs. J Adv Pharm Technol Res 2011; 2(2): 81-7.
[http://dx.doi.org/10.4103/2231-4040.82950] [PMID: 22171298]
[77]
Pınar SG, Oktay AN, Karaküçük AE, Çelebi N. Formulation strategies of nanosuspensions for various administration routes. Pharmaceutics 2023; 15(5): 1520.
[http://dx.doi.org/10.3390/pharmaceutics15051520] [PMID: 37242763]
[78]
Ma Y, Cong Z, Gao P, Wang Y. Nanosuspensions technology as a master key for nature products drug delivery and In vivo fate. Eur J Pharm Sci 2023; 185: 106425.
[http://dx.doi.org/10.1016/j.ejps.2023.106425] [PMID: 36934992]
[79]
Ghasemian E, Rezaeian B, Alaei S, Vatanara A, Ramezani V. Optimization of cefixime nanosuspension to improve drug dissolution. Pharm Sci 2015; 21(3): 136-44.
[http://dx.doi.org/10.15171/PS.2015.28]
[80]
Patel HM, Patel BB, Shah CN. Nanosuspension: A novel approch to enhance solubility of poorly water soluble drugs-A review. Int J Adv Pharm 2016; 5(2): 1-9.
[81]
Kwansiri Uraiwan CS. The entrapment of vitamin E in nanostructured lipid carriers of rambutan seed fat for cosmeceutical uses. Key Eng Mater 2016; 675–676: 77-80.
[82]
Di Marzio L, Ventura CA, Cosco D, et al. Nanotherapeutics for anti-inflammatory delivery. J Drug Deliv Sci Technol 2016; 32: 174-91.
[http://dx.doi.org/10.1016/j.jddst.2015.10.011]
[83]
Dilip Ghosh PK. Natural Medicines_ Clinical Efficacy. Safety and Quality - Google Books 2020.
[84]
Zhang J, Hu K, Di L, et al. Traditional herbal medicine and nanomedicine: Converging disciplines to improve therapeutic efficacy and human health. Adv Drug Deliv Rev 2021; 178: 113964.
[http://dx.doi.org/10.1016/j.addr.2021.113964] [PMID: 34499982]
[85]
Wickramasinghe ASD, Kalansuriya P, Attanayake AP. Nanoformulation of plant-based natural products for type 2 diabetes mellitus: From formulation design to therapeutic applications. Curr Ther Res Clin Exp 2022; 96: 100672.
[http://dx.doi.org/10.1016/j.curtheres.2022.100672] [PMID: 35586563]
[86]
Das A, Saikia R, Pathak K, Gogoi U, Pathak MP. Anti-diabetic nano-formulation from herbal source. In: Nano Medicine and Nano Safety. Recent Trends and Clinical Evidences 2020; pp. 61-84.
[http://dx.doi.org/10.1007/978-981-15-6255-6_4]
[87]
Javed MN, Dahiya ES, Ibrahim AM, Alam MdS, Khan FA, Pottoo FH. Recent advancement in clinical application of nanotechnological approached targeted delivery of herbal drugs. Nanophytomedicine. 2020; pp. 151-72.
[http://dx.doi.org/10.1007/978-981-15-4909-0_9]
[88]
Badgujar SY, Dixit JV, Giri P. Reduction in HbA1c through lifestyle modification in newly diagnosed type 2 diabetes mellitus patient: A great feat. J Family Med Prim Care 2022; 11(6): 3312-7.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_1677_21] [PMID: 36119208]
[89]
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-based antidiabetic nanoformulations: The emerging paradigm for effective therapy. Int J Mol Sci 2020; 21(6): 2217.
[http://dx.doi.org/10.3390/ijms21062217] [PMID: 32210082]
[90]
Hu F, Sun DS, Wang KL, Shang DY. Nanomedicine of plant origin for the treatment of metabolic disorders. Front Bioeng Biotechnol 2022; 9: 811917.
[http://dx.doi.org/10.3389/fbioe.2021.811917] [PMID: 35223819]
[91]
Vlass AMHT. Can herbal medicines improve cellular immunity patterns in endometriosis? Med Aromat Plants 2014; 4(2)
[http://dx.doi.org/10.4172/2167-0412.1000184]
[92]
Potdar PD, Chaudhari MB. Cellular, molecular and therapeutic advances in type 2 diabetes mellitus. In: Diabetes management. 2016; 6: pp. 030-44.
[93]
Rai VK, Mishra N, Agrawal AK, Jain S, Yadav NP. Novel drug delivery system: An immense hope for diabetics. Drug Deliv 2016; 23(7): 2371-90.
[http://dx.doi.org/10.3109/10717544.2014.991001] [PMID: 25544604]
[94]
Verma S, Gupta M, Popli H, Aggarwal G. Diabetes mellitus treatment using herbal drugs. Int J Phytomed 2018; 10(1): 1.
[http://dx.doi.org/10.5138/09750185.2181]
[95]
Islam F, Khadija JF, Islam MR, et al. Investigating polyphenol nanoformulations for therapeutic targets against diabetes mellitus. Evid Based Complement Alternat Med 2022; 2022: 1-16.
[http://dx.doi.org/10.1155/2022/5649156] [PMID: 35832521]
[96]
Kasole R, Martin HD, Kimiywe J. Traditional medicine and its role in the management of diabetes mellitus: “Patients” and herbalists’ perspectives. Evid Based Complement Alternat Med 2019; 2019: 2835691.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy