Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Interferon Upregulation Associates with Insulin Resistance in Humans

In Press, (this is not the final "Version of Record"). Available online 18 March, 2024
Author(s): Maria M. Adeva-Andany*, Natalia Carneiro-Freire, Elvira Castro-Quintela, Eva Ameneiros-Rodriguez, Lucia Adeva-Contreras and Carlos Fernandez-Fernandez
Published on: 18 March, 2024

Article ID: e180324228061

DOI: 10.2174/0115733998294022240309105112

Price: $95

Abstract

In humans, insulin resistance is a physiological response to infections developed to supply sufficient energy to the activated immune system. This metabolic adaptation facilitates the immune response but usually persists after the recovery period of the infection and predisposes the hosts to type 2 diabetes and vascular injury. In patients with diabetes, superimposed insulin resistance worsens metabolic control and promotes diabetic ketoacidosis. Pathogenic mechanisms underlying insulin resistance during microbial invasions remain to be fully defined. However, interferons cause insulin resistance in healthy subjects and other population groups, and their production is increased during infections, suggesting that this group of molecules may contribute to reduced insulin sensitivity. In agreement with this notion, gene expression profiles [transcriptomes] from patients with insulin resistance show a robust overexpression of interferon-stimulated genes [interferon signature]. In addition, serum levels of interferon and surrogates for interferon activity are elevated in patients with insulin resistance. Circulating levels of interferon-γ-inducible protein-10, neopterin, and apolipoprotein L1 correlate with insulin resistance manifestations, such as hypertriglyceridemia, reduced HDL-c, visceral fat, and homeostasis model assessment-insulin resistance. Furthermore, interferon downregulation improves insulin resistance. Antimalarials such as hydroxychloroquine reduce interferon production and improve insulin resistance, reducing the risk for type 2 diabetes and cardiovascular disease. In addition, diverse clinical conditions that feature interferon upregulation are associated with insulin resistance, suggesting that interferon may be a common factor promoting this adaptive response. Among these conditions are systemic lupus erythematosus, sarcoidosis, and infections with severe acute respiratory syndrome-coronavirus-2, human immunodeficiency virus, hepatitis C virus, and Mycobacterium tuberculosis.

[1]
Shambaugh GE III, Beisel WR. Insulin response during tularemia in man. Diabetes 1967; 16(6): 369-76.
[http://dx.doi.org/10.2337/diab.16.6.369] [PMID: 6025263]
[2]
Drobny EC, Abramson EC, Baumann G. Insulin receptors in acute infection: A study of factors conferring insulin resistance. J Clin Endocrinol Metab 1984; 58(4): 710-6.
[http://dx.doi.org/10.1210/jcem-58-4-710] [PMID: 6365946]
[3]
Yki-Järvinen H, Sammalkorpi K, Koivisto VA, Nikkilä EA. Severity, duration, and mechanisms of insulin resistance during acute infections. J Clin Endocrinol Metab 1989; 69(2): 317-23.
[http://dx.doi.org/10.1210/jcem-69-2-317] [PMID: 2666428]
[4]
Virkamäki A, Puhakainen I, Koivisto VA, Markkola VH, Järvinen YH. Mechanisms of hepatic and peripheral insulin resistance during acute infections in humans. J Clin Endocrinol Metab 1992; 74(3): 673-9.
[PMID: 1740504]
[5]
Vozarova B, Weyer C, Lindsay RS, Pratley RE, Bogardus C, Tataranni PA. High white blood cell count is associated with a worsening of insulin sensitivity and predicts the development of type 2 diabetes. Diabetes 2002; 51(2): 455-61.
[http://dx.doi.org/10.2337/diabetes.51.2.455] [PMID: 11812755]
[6]
Rhee JJ, Zheng Y, Liu S, et al. Glycemic control and infections among us hemodialysis patients with diabetes mellitus. Kidney Int Rep 2020; 5(7): 1014-25.
[http://dx.doi.org/10.1016/j.ekir.2020.04.020] [PMID: 32647759]
[7]
Bergh C, Fall K, Udumyan R, Sjöqvist H, Fröbert O, Montgomery S. Severe infections and subsequent delayed cardiovascular disease. Eur J Prev Cardiol 2017; 24(18): 1958-66.
[http://dx.doi.org/10.1177/2047487317724009] [PMID: 28764553]
[8]
Elkind MSV, Ramakrishnan P, Moon YP, et al. Infectious burden and risk of stroke: The northern Manhattan study. Arch Neurol 2010; 67(1): 33-8.
[http://dx.doi.org/10.1001/archneurol.2009.271] [PMID: 19901154]
[9]
Kiechl S, Egger G, Mayr M, et al. Chronic infections and the risk of carotid atherosclerosis: Prospective results from a large population study. Circulation 2001; 103(8): 1064-70.
[http://dx.doi.org/10.1161/01.CIR.103.8.1064] [PMID: 11222467]
[10]
Hagiwara N, Toyoda K, Inoue T, et al. Lack of association between infectious burden and carotid atherosclerosis in Japanese patients. J Stroke Cerebrovasc Dis 2007; 16(4): 145-52.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2007.02.001] [PMID: 17689410]
[11]
Saberi A, Akhondzadeh S, Kazemi S, Kazemi S. Infectious agents and stroke: A systematic review. Basic Clin Neurosci 2021; 12(4): 427-40.
[http://dx.doi.org/10.32598/bcn.2021.1324.2] [PMID: 35154584]
[12]
Keikha M, Karbalaei M. Potential association between bacterial infections and ischemic stroke based on fifty case-control studies: A systematic review and meta-analysis. New Microbes New Infect 2022; 47: 100980.
[http://dx.doi.org/10.1016/j.nmni.2022.100980] [PMID: 35592534]
[13]
Alshammari S, AlMasoudi AS, AlBuhayri AH, et al. Effect of COVID-19 on glycemic control, insulin resistance, and pH in elderly patients with type 2 diabetes. Cureus 2023; 15(2): e35390.
[http://dx.doi.org/10.7759/cureus.35390] [PMID: 36846644]
[14]
Banerjee M, Pal R, Dutta S. Risk of incident diabetes post-COVID-19: A systematic review and meta-analysis. Prim Care Diabetes 2022; 16(4): 591-3.
[http://dx.doi.org/10.1016/j.pcd.2022.05.009] [PMID: 35654679]
[15]
Harding JL, Oviedo SA, Ali MK, et al. The bidirectional association between diabetes and long-COVID-19 – A systematic review. Diabetes Res Clin Pract 2023; 195: 110202.
[http://dx.doi.org/10.1016/j.diabres.2022.110202] [PMID: 36496030]
[16]
Khunti K, Del Prato S, Mathieu C, Kahn SE, Gabbay RA, Buse JB. COVID-19, hyperglycemia, and new-onset diabetes. Diabetes Care 2021; 44(12): 2645-55.
[http://dx.doi.org/10.2337/dc21-1318] [PMID: 34625431]
[17]
Koivisto VA, Pelkonen R, Cantell K. Effect of interferon on glucose tolerance and insulin sensitivity. Diabetes 1989; 38(5): 641-7.
[http://dx.doi.org/10.2337/diab.38.5.641] [PMID: 2653935]
[18]
Shiba T, Higashi N, Nishimura Y. Hyperglycaemia due to insulin resistance caused by interferon-γ. Diabet Med 1998; 15(5): 435-6.
[http://dx.doi.org/10.1002/(SICI)1096-9136(199805)15:5<435::AID-DIA566>3.0.CO;2-N] [PMID: 9609368]
[19]
An J, Woodward JJ, Sasaki T, Minie M, Elkon KB. Cutting edge: Antimalarial drugs inhibit IFN-β production through blockade of cyclic GMP-AMP synthase-DNA interaction. J Immunol 2015; 194(9): 4089-93.
[http://dx.doi.org/10.4049/jimmunol.1402793] [PMID: 25821216]
[20]
Zhang K, Wang S, Gou H, Zhang J, Li C. Crosstalk between autophagy and the cgas–sting signaling pathway in type i interferon production. Front Cell Dev Biol 2021; 9: 748485.
[http://dx.doi.org/10.3389/fcell.2021.748485] [PMID: 34926445]
[21]
Ji X, Cheung R, Cooper S, Li Q, Greenberg HB, He XS. Interferon alfa regulated gene expression in patients initiating interferon treatment for chronic hepatitis C. Hepatology 2003; 37(3): 610-21.
[http://dx.doi.org/10.1053/jhep.2003.50105] [PMID: 12601359]
[22]
O’Brien TR, Pfeiffer RM, Paquin A, et al. Comparison of functional variants in IFNL4 and IFNL3 for association with HCV clearance. J Hepatol 2015; 63(5): 1103-10.
[http://dx.doi.org/10.1016/j.jhep.2015.06.035] [PMID: 26186989]
[23]
Okabayashi T, Kojima T, Masaki T, et al. Type-III interferon, not type-I, is the predominant interferon induced by respiratory viruses in nasal epithelial cells. Virus Res 2011; 160(1-2): 360-6.
[http://dx.doi.org/10.1016/j.virusres.2011.07.011] [PMID: 21816185]
[24]
Lin TY, Chiu CJ, Kuan CH, et al. IL-29 promoted obesity-induced inflammation and insulin resistance. Cell Mol Immunol 2020; 17(4): 369-79.
[http://dx.doi.org/10.1038/s41423-019-0262-9] [PMID: 31363171]
[25]
Corssmit EP, Heijligenberg R, Endert E, Ackermans MT, Sauerwein HP, Romijn JA. Endocrine and metabolic effects of interferon-alpha in humans. J Clin Endocrinol Metab 1996; 81(9): 3265-9.
[PMID: 8784081]
[26]
Chen M, Zhu B, Chen D, et al. COVID-19 may increase the risk of insulin resistance in adult patients without diabetes: A 6-month prospective study. Endocr Pract 2021; 27(8): 834-41.
[http://dx.doi.org/10.1016/j.eprac.2021.04.004] [PMID: 33887468]
[27]
Campbell S, Mclaren EH, Danesh BJ. Drug points: Rapidly reversible increase in insulin requirement with interferon. BMJ 1996; 313(7049): 92.
[http://dx.doi.org/10.1136/bmj.313.7049.92a] [PMID: 8688762]
[28]
Imano E, Kanda T, Ishigami Y, et al. Interferon induces insulin resistance in patients with chronic active hepatitis C. J Hepatol 1998; 28(2): 189-93.
[http://dx.doi.org/10.1016/0168-8278(88)80004-7] [PMID: 9514530]
[29]
Chatterjee S. Massive increase of insulin resistance in a patient with chronic hepatitis C after treatment with interferon. J Assoc Physicians India 2004; 52: 514.
[PMID: 15645973]
[30]
Daniel AL, Houlihan JL, Blum JS, Walsh JP. Type B insulin resistance developing during interferon-alpha therapy. Endocr Pract 2009; 15(2): 153-7.
[http://dx.doi.org/10.4158/EP.15.2.153] [PMID: 19289328]
[31]
Popescu C, Popescu GA, Arama V. Type 1 diabetes mellitus with dual autoimmune mechanism related to pegylated interferon and ribavirin treatment for chronic HCV hepatitis. J Gastrointestin Liver Dis 2013; 22(1): 101-4.
[PMID: 23539399]
[32]
Kalafati M, Kutmon M, Evelo CT, et al. An interferon-related signature characterizes the whole blood transcriptome profile of insulin-resistant individuals—the CODAM study. Genes Nutr 2021; 16(1): 22.
[http://dx.doi.org/10.1186/s12263-021-00702-7] [PMID: 34886800]
[33]
Ghosh AR, Bhattacharya R, Bhattacharya S, et al. Adipose recruitment and activation of plasmacytoid dendritic cells fuel metaflammation. Diabetes 2016; 65(11): 3440-52.
[http://dx.doi.org/10.2337/db16-0331] [PMID: 27561727]
[34]
Bradley D, Smith AJ, Blaszczak A, et al. Interferon gamma mediates the reduction of adipose tissue regulatory T cells in human obesity. Nat Commun 2022; 13(1): 5606.
[http://dx.doi.org/10.1038/s41467-022-33067-5] [PMID: 36153324]
[35]
Stentz FB, Kitabchi AE. Transcriptome and proteome expressions involved in insulin resistance in muscle and activated T-lymphocytes of patients with type 2 diabetes. Genomics Proteomics Bioinformatics 2007; 5(3-4): 216-35.
[http://dx.doi.org/10.1016/S1672-0229(08)60009-1] [PMID: 18267303]
[36]
Wu C, Xu G, Tsai SYA, Freed WJ, Lee CT. Transcriptional profiles of type 2 diabetes in human skeletal muscle reveal insulin resistance, metabolic defects, apoptosis, and molecular signatures of immune activation in response to infections. Biochem Biophys Res Commun 2017; 482(2): 282-8.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.055] [PMID: 27847319]
[37]
Wu C, Chen X, Shu J, Lee CT. Whole-genome expression analyses of type 2 diabetes in human skin reveal altered immune function and burden of infection. Oncotarget 2017; 8(21): 34601-9.
[http://dx.doi.org/10.18632/oncotarget.16118] [PMID: 28427244]
[38]
Lee YH, Nair S, Rousseau E, et al. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: Increased expression of inflammation-related genes. Diabetologia 2005; 48(9): 1776-83.
[http://dx.doi.org/10.1007/s00125-005-1867-3] [PMID: 16059715]
[39]
Elliott RM, de Roos B, Duthie SJ, et al. Transcriptome analysis of peripheral blood mononuclear cells in human subjects following a 36 hrs fast provides evidence of effects on genes regulating inflammation, apoptosis and energy metabolism. Genes Nutr 2014; 9(6): 432.
[http://dx.doi.org/10.1007/s12263-014-0432-4] [PMID: 25260660]
[40]
Abdel-Moneim A, Semmler M, Abdel-Reheim ES, Zanaty MI, Addaleel W. Association of glycemic status and interferon-γ production with leukocytes and platelet indices alterations in type2 diabetes. Diabetes Metab Syndr 2019; 13(3): 1963-9.
[http://dx.doi.org/10.1016/j.dsx.2019.04.046] [PMID: 31235122]
[41]
Surendar J, Mohan V, Rao MM, Babu S, Aravindhan V. Increased levels of both Th1 and Th2 cytokines in subjects with metabolic syndrome (CURES-103). Diabetes Technol Ther 2011; 13(4): 477-82.
[http://dx.doi.org/10.1089/dia.2010.0178] [PMID: 21355722]
[42]
Schmidt FM, Weschenfelder J, Sander C, et al. Inflammatory cytokines in general and central obesity and modulating effects of physical activity. PLoS One 2015; 10(3): e0121971.
[http://dx.doi.org/10.1371/journal.pone.0121971] [PMID: 25781614]
[43]
Quatraro A, Consoli G, Magno M, et al. Hydroxychloroquine in decompensated, treatment-refractory noninsulin-dependent diabetes mellitus. A new job for an old drug? Ann Intern Med 1990; 112(9): 678-81.
[http://dx.doi.org/10.7326/0003-4819-112-9-678] [PMID: 2110430]
[44]
Gerstein HC, Thorpe KE, Wayne Taylor D, Brian Haynes R. The effectiveness of hydroxychloroquine in patients with type 2 diabetes mellitus who are refractory to sulfonylureas—a randomized trial. Diabetes Res Clin Pract 2002; 55(3): 209-19.
[http://dx.doi.org/10.1016/S0168-8227(01)00325-4] [PMID: 11850097]
[45]
Pareek A, Chandurkar N, Thomas N, et al. Efficacy and safety of hydroxychloroquine in the treatment of type 2 diabetes mellitus: A double blind, randomized comparison with pioglitazone. Curr Med Res Opin 2014; 30(7): 1257-66.
[http://dx.doi.org/10.1185/03007995.2014.909393] [PMID: 24669876]
[46]
Gupta A. Real-world clinical effectiveness and tolerability of hydroxychloroquine 400 Mg in uncontrolled type 2 diabetes subjects who are not willing to initiate insulin therapy (HYQ-real-world study). Curr Diabetes Rev 2019; 15(6): 510-9.
[http://dx.doi.org/10.2174/1573399815666190425182008] [PMID: 31713476]
[47]
Chakravarti HN, Nag A. Efficacy and safety of hydroxychloroquine as add-on therapy in uncontrolled type 2 diabetes patients who were using two oral antidiabetic drugs. J Endocrinol Invest 2021; 44(3): 481-92.
[http://dx.doi.org/10.1007/s40618-020-01330-5] [PMID: 32594451]
[48]
Rajput R, Upadhyay P, Rajput S, Saini S, Kharab S. Effect of hydroxychloroquine on beta cell function, insulin resistance, and inflammatory markers in type 2 diabetes patients uncontrolled on glimepiride and metformin therapy. Int J Diabetes Dev Ctries 2023; 43(6): 955-60.
[http://dx.doi.org/10.1007/s13410-023-01173-9] [PMID: 36777472]
[49]
McGillicuddy FC, Chiquoine EH, Hinkle CC, et al. Interferon gamma attenuates insulin signaling, lipid storage, and differentiation in human adipocytes via activation of the JAK/STAT pathway. J Biol Chem 2009; 284(46): 31936-44.
[http://dx.doi.org/10.1074/jbc.M109.061655] [PMID: 19776010]
[50]
Chun J, Zhang JY, Wilkins MS, et al. Recruitment of APOL1 kidney disease risk variants to lipid droplets attenuates cell toxicity. Proc Natl Acad Sci 2019; 116(9): 3712-21.
[http://dx.doi.org/10.1073/pnas.1820414116] [PMID: 30733285]
[51]
Chun J, Riella CV, Chung H, et al. DGAT2 inhibition potentiates lipid droplet formation to reduce cytotoxicity in apol1 kidney risk variants. J Am Soc Nephrol 2022; 33(5): 889-907.
[http://dx.doi.org/10.1681/ASN.2021050723] [PMID: 35232775]
[52]
Tang X, Uhl S, Zhang T, et al. SARS-CoV-2 infection induces beta cell transdifferentiation. Cell Metab 2021; 33(8): 1577-1591.e7.
[http://dx.doi.org/10.1016/j.cmet.2021.05.015] [PMID: 34081913]
[53]
Faltynek CR, McCandless S, Baglioni C. Treatment of lymphoblastoid cells with interferon decreases insulin binding. J Cell Physiol 1984; 121(2): 437-41.
[http://dx.doi.org/10.1002/jcp.1041210224] [PMID: 6092395]
[54]
Pfeffer LM, Donner DB, Tamm I. Interferon-alpha down-regulates insulin receptors in lymphoblastoid (Daudi) cells. Relationship to inhibition of cell proliferation. J Biol Chem 1987; 262(8): 3665-70.
[http://dx.doi.org/10.1016/S0021-9258(18)61405-X] [PMID: 3546315]
[55]
Franceschini L, Realdon S, Marcolongo M, Mirandola S, Bortoletto G, Alberti A. Reciprocal interference between insulin and interferon-alpha signaling in hepatic cells: A vicious circle of clinical significance? Hepatology 2011; 54(2): 484-94.
[http://dx.doi.org/10.1002/hep.24394] [PMID: 21538438]
[56]
Wentworth JM, Zhang J-G, Bandala-Sanchez E, et al. Interferon-gamma released from omental adipose tissue of insulin-resistant humans alters adipocyte phenotype and impairs response to insulin and adiponectin release. Int J Obes 2017; 41(12): 1782-9.
[http://dx.doi.org/10.1038/ijo.2017.180] [PMID: 28769120]
[57]
Pacifico L, Renzo DL, Anania C, et al. Increased T-helper interferon-γ-secreting cells in obese children. Eur J Endocrinol 2006; 154(5): 691-7.
[http://dx.doi.org/10.1530/eje.1.02138] [PMID: 16645016]
[58]
Kintscher U, Hartge M, Hess K, et al. T-lymphocyte infiltration in visceral adipose tissue: A primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 2008; 28(7): 1304-10.
[http://dx.doi.org/10.1161/ATVBAHA.108.165100] [PMID: 18420999]
[59]
Montefusco L, Ben Nasr M, D’Addio F, et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat Metab 2021; 3(6): 774-85.
[http://dx.doi.org/10.1038/s42255-021-00407-6] [PMID: 34035524]
[60]
Grunfeld C, Kotler DP, Shigenaga JK, et al. Circulating interferon-α levels and hypertriglyceridemia in the acquired immunodeficiency syndrome. Am J Med 1991; 90(2): 154-62.
[http://dx.doi.org/10.1016/0002-9343(91)80154-E] [PMID: 1996584]
[61]
Christeff N, Melchior JC, De Truchis P, Perronne C, Gougeon ML. Increased serum interferon alpha in HIV–1 associated lipodystrophy syndrome. Eur J Clin Invest 2002; 32(1): 43-50.
[http://dx.doi.org/10.1046/j.0014-2972.2001.00940.x] [PMID: 11851726]
[62]
Faber DR, van der Graaf Y, Westerink J, Kanhai DA, Monajemi H, Visseren FLJ. Hepatocyte growth factor and interferon‐γ inducible protein‐10 are related to visceral adiposity. Eur J Clin Invest 2013; 43(4): 369-78.
[http://dx.doi.org/10.1111/eci.12054] [PMID: 23398210]
[63]
Chang CC, Wu CL, Su WW, et al. Interferon gamma-induced protein 10 is associated with insulin resistance and incident diabetes in patients with nonalcoholic fatty liver disease. Sci Rep 2015; 5(1): 10096.
[http://dx.doi.org/10.1038/srep10096] [PMID: 25961500]
[64]
Sajadi SM, Khoramdelazad H, Hassanshahi G, et al. Plasma levels of CXCL1 (GRO-alpha) and CXCL10 (IP-10) are elevated in type 2 diabetic patients: Evidence for the involvement of inflammation and angiogenesis/angiostasis in this disease state. Clin Lab 2013; 59(1-2): 133-7.
[PMID: 23505918]
[65]
Herder C, Baumert J, Thorand B, et al. Chemokines as risk factors for type 2 diabetes: Results from the MONICA/KORA Augsburg study, 1984–2002. Diabetologia 2006; 49(5): 921-9.
[http://dx.doi.org/10.1007/s00125-006-0190-y] [PMID: 16532324]
[66]
Crisan D, Grigorescu MD, Radu C, Suciu A, Grigorescu M. Interferon-γ-inducible protein-10 in chronic hepatitis C: Correlations with insulin resistance, histological features & sustained virological response. Indian J Med Res 2017; 145(4): 543-50.
[PMID: 28862188]
[67]
Huber C, Batchelor JR, Fuchs D, et al. Immune response-associated production of neopterin. Release from macrophages primarily under control of interferon-gamma. J Exp Med 1984; 160(1): 310-6.
[http://dx.doi.org/10.1084/jem.160.1.310] [PMID: 6429267]
[68]
Oxenkrug G, Tucker KL, Requintina P, Summergrad P. Neopterin, a marker of interferon-gamma-inducible inflammation, correlates with pyridoxal-5′-phosphate, waist circumference, HDL-cholesterol, insulin resistance and mortality risk in adult boston community dwellers of puerto rican origin. Am J Neuroprot Neuroregen 2011; 3(1): 48-52.
[http://dx.doi.org/10.1166/ajnn.2011.1024] [PMID: 22308202]
[69]
Ray KK, Morrow DA, Sabatine MS, et al. Long-term prognostic value of neopterin: A novel marker of monocyte activation in patients with acute coronary syndrome. Circulation 2007; 115(24): 3071-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.666511] [PMID: 17548728]
[70]
Pedersen ER, Midttun Ø, Ueland PM, et al. Systemic markers of interferon-γ-mediated immune activation and long-term prognosis in patients with stable coronary artery disease. Arterioscler Thromb Vasc Biol 2011; 31(3): 698-704.
[http://dx.doi.org/10.1161/ATVBAHA.110.219329] [PMID: 21183733]
[71]
An P, Sezgin E, Kirk GD, et al. APOL1 variant alleles associate with reduced risk for opportunistic infections in HIV infection. Commun Biol 2021; 4(1): 284.
[http://dx.doi.org/10.1038/s42003-021-01812-z] [PMID: 33674766]
[72]
Vandorpe DH, Heneghan JF, Waitzman JS, et al. Apolipoprotein L1 (APOL1) cation current in HEK-293 cells and in human podocytes. Pflugers Arch 2023; 475(3): 323-41.
[http://dx.doi.org/10.1007/s00424-022-02767-8] [PMID: 36449077]
[73]
Davis SE, Khatua AK, Popik W. Nucleosomal dsDNA stimulates APOL1 expression in human cultured podocytes by activating the cGAS/IFI16-STING signaling pathway. Sci Rep 2019; 9(1): 15485.
[http://dx.doi.org/10.1038/s41598-019-51998-w] [PMID: 31664093]
[74]
Scales SJ, Gupta N, De Mazière AM, et al. Apolipoprotein L1-specific antibodies detect endogenous apol1 inside the endoplasmic reticulum and on the plasma membrane of podocytes. J Am Soc Nephrol 2020; 31(9): 2044-64.
[http://dx.doi.org/10.1681/ASN.2019080829] [PMID: 32764142]
[75]
Liu E, Radmanesh B, Chung BH, Donnan MD, Yi D, Dadi A. Profiling APOL1 nephropathy risk variants in genome-edited kidney organoids with single-cell transcriptomics. Kidney360 2020; 1(3): 203-15.
[http://dx.doi.org/10.34067/KID.0000422019]
[76]
Nichols B, Jog P, Lee JH, et al. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int 2015; 87(2): 332-42.
[http://dx.doi.org/10.1038/ki.2014.270] [PMID: 25100047]
[77]
Duchateau PN, Movsesyan I, Yamashita S, et al. Plasma apolipoprotein L concentrations correlate with plasma triglycerides and cholesterol levels in normolipidemic, hyperlipidemic, and diabetic subjects. J Lipid Res 2000; 41(8): 1231-6.
[http://dx.doi.org/10.1016/S0022-2275(20)33430-1] [PMID: 10946010]
[78]
Albert TSE, Duchateau PN, Deeb SS, et al. Apolipoprotein L-I is positively associated with hyperglycemia and plasma triglycerides in CAD patients with low HDL. J Lipid Res 2005; 46(3): 469-74.
[http://dx.doi.org/10.1194/jlr.M400304-JLR200] [PMID: 15604524]
[79]
Nishimura K, Murakami T, Sakurai T, et al. Circulating apolipoprotein L1 is associated with insulin resistance-induced abnormal lipid metabolism. Sci Rep 2019; 9(1): 14869.
[http://dx.doi.org/10.1038/s41598-019-51367-7] [PMID: 31619724]
[80]
Croyal M, Wargny M, Chemello K, et al. Plasma apolipoprotein concentrations and incident diabetes in subjects with prediabetes. Cardiovasc Diabetol 2022; 21(1): 21.
[http://dx.doi.org/10.1186/s12933-022-01452-5] [PMID: 35130909]
[81]
Okamoto K, Rausch JW, Wakashin H, et al. APOL1 risk allele RNA contributes to renal toxicity by activating protein kinase R. Commun Biol 2018; 1(1): 188.
[http://dx.doi.org/10.1038/s42003-018-0188-2] [PMID: 30417125]
[82]
Datta S, Kataria R, Zhang JY, et al. Kidney disease-associated APOL1 variants have dose-dependent, dominant toxic gain-of-function. J Am Soc Nephrol 2020; 31(9): 2083-96.
[http://dx.doi.org/10.1681/ASN.2020010079] [PMID: 32675303]
[83]
Tallóczy Z, Jiang W, Virgin HW IV, et al. Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway. Proc Natl Acad Sci 2002; 99(1): 190-5.
[http://dx.doi.org/10.1073/pnas.012485299] [PMID: 11756670]
[84]
Dai Y, Lin G, Shi D. Hypoglycemia induced by hydroxychloroquine sulfate in a patient treated for connective tissue disease without diabetes mellitus. Clin Ther 2020; 42(5): 940-5.
[http://dx.doi.org/10.1016/j.clinthera.2020.03.011] [PMID: 32336573]
[85]
Imanova Yaghji N, Kan EK, Akcan S, Colak R, Atmaca A. Hydroxychloroquine sulfate related hypoglycemia in a non-diabetic COVİD-19 patient: A case report and literature review. Postgrad Med 2021; 133(5): 548-51.
[http://dx.doi.org/10.1080/00325481.2021.1889820] [PMID: 33583332]
[86]
Wondafrash DZ, Desalegn TZ, Yimer EM, Tsige AG, Adamu BA, Zewdie KA. Potential effect of hydroxychloroquine in diabetes mellitus: A systematic review on preclinical and clinical trial studies. J Diabetes Res 2020; 2020: 1-10.
[http://dx.doi.org/10.1155/2020/5214751] [PMID: 32190699]
[87]
Mendía SLE, Mendía SM, García SA, Torres LE. Effect of hydroxychloroquine on glucose control in patients with and without diabetes: A systematic review and meta-analysis of randomized controlled clinical trials. Eur J Clin Pharmacol 2021; 77(11): 1705-12.
[http://dx.doi.org/10.1007/s00228-021-03144-7] [PMID: 34013407]
[88]
Dutta D, Jindal R, Mehta D, Kumar M, Sharma M. Efficacy and safety of hydroxychloroquine for managing glycemia in type-2 diabetes: A systematic review and meta-analysis. J Postgrad Med 2022; 68(2): 85-92.
[http://dx.doi.org/10.4103/jpgm.JPGM_301_21] [PMID: 35466661]
[89]
Mendía SLE, Mendía SM, García SA, Torres LE. Effect of hydroxychloroquine on lipid levels: A systematic review and metaanalysis. Curr Pharm Des 2021; 27(40): 4133-9.
[http://dx.doi.org/10.2174/1381612827666210625162612] [PMID: 34176459]
[90]
Haugaard JH, Dreyer L, Ottosen MB, Gislason G, Kofoed K, Egeberg A. Use of hydroxychloroquine and risk of major adverse cardiovascular events in patients with lupus erythematosus: A Danish nationwide cohort study. J Am Acad Dermatol 2021; 84(4): 930-7.
[http://dx.doi.org/10.1016/j.jaad.2020.12.013] [PMID: 33321159]
[91]
Cordova Sanchez A, Khokhar F, Olonoff DA, Carhart RL. Hydroxychloroquine and cardiovascular events in patients with rheumatoid arthritis. Cardiovasc Drugs Ther 2022; 2022: 1-8.
[http://dx.doi.org/10.1007/s10557-022-07387-z] [PMID: 36197529]
[92]
Liu D, Li X, Zhang Y, et al. Chloroquine and hydroxychloroquine are associated with reduced cardiovascular risk: A systematic review and meta-analysis. Drug Des Devel Ther 2018; 12: 1685-95.
[http://dx.doi.org/10.2147/DDDT.S166893] [PMID: 29928112]
[93]
Hanai S, Kobayashi Y, Ichijo M, Ito R, Kobayashi K, Nakagomi D. Antidiabetic effects of hydroxychloroquine in two Japanese patients with systemic lupus erythematosus. Diabetol Int 2022; 13(2): 447-51.
[http://dx.doi.org/10.1007/s13340-021-00544-z] [PMID: 35463861]
[94]
Chen YM, Lin CH, Lan TH, et al. Hydroxychloroquine reduces risk of incident diabetes mellitus in lupus patients in a dose-dependent manner: A population-based cohort study. Rheumatology 2015; 54(7): 1244-9.
[http://dx.doi.org/10.1093/rheumatology/keu451] [PMID: 25587177]
[95]
Salmasi S, Sayre EC, Zubieta AAJ, Esdaile JM, De Vera MA. Adherence to antimalarial therapy and risk of type 2 diabetes mellitus among patients with systemic lupus erythematosus: A population‐based study. Arthritis Care Res 2021; 73(5): 702-6.
[http://dx.doi.org/10.1002/acr.24147] [PMID: 31961497]
[96]
Yazdanpanah MH, Mardani M, Osati S, Ehrampoush E, Davoodi SH, Homayounfar R. COVID-19 induces body composition and metabolic alterations. Cureus 2023; 15(1): e34196.
[http://dx.doi.org/10.7759/cureus.34196] [PMID: 36843827]
[97]
Montes-Ibarra M, Orsso CE, Limon-Miro AT, et al. Prevalence and clinical implications of abnormal body composition phenotypes in patients with COVID-19: A systematic review. Am J Clin Nutr 2023; 117(6): 1288-305.
[http://dx.doi.org/10.1016/j.ajcnut.2023.04.003] [PMID: 37037395]
[98]
Ratchford SM, Stickford JL, Province VM, et al. Vascular alterations among young adults with SARS-CoV-2. Am J Physiol Heart Circ Physiol 2021; 320(1): H404-10.
[http://dx.doi.org/10.1152/ajpheart.00897.2020] [PMID: 33306450]
[99]
Keiner ES, Slaughter JC, Datye KA, Cherrington AD, Moore DJ, Gregory JM. COVID-19 exacerbates insulin resistance during diabetic ketoacidosis in pediatric patients with type 1 diabetes. Diabetes Care 2022; 45(10): 2406-11.
[http://dx.doi.org/10.2337/dc22-0396] [PMID: 35944264]
[100]
Rezel-Potts E, Douiri A, Sun X, Chowienczyk PJ, Shah AM, Gulliford MC. Cardiometabolic outcomes up to 12 months after COVID-19 infection. A matched cohort study in the UK. PLoS Med 2022; 19(7): e1004052.
[http://dx.doi.org/10.1371/journal.pmed.1004052] [PMID: 35853019]
[101]
Yang JK, Zhao MM, Jin JM, et al. New-onset COVID-19–related diabetes: An early indicator of multi-organ injury and mortally of SARS-CoV-2 infection. Curr Med 2022; 1(1): 6.
[http://dx.doi.org/10.1007/s44194-022-00006-x] [PMID: 35673632]
[102]
Shrestha DB, Budhathoki P, Raut S, et al. New-onset diabetes in COVID-19 and clinical outcomes: A systematic review and meta-analysis. World J Virol 2021; 10(5): 275-87.
[http://dx.doi.org/10.5501/wjv.v10.i5.275] [PMID: 34631477]
[103]
Müller JA, Groß R, Conzelmann C, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab 2021; 3(2): 149-65.
[http://dx.doi.org/10.1038/s42255-021-00347-1] [PMID: 33536639]
[104]
Kuchay MS, Reddy PK, Gagneja S, Mathew A, Mishra SK. Short term follow-up of patients presenting with acute onset diabetes and diabetic ketoacidosis during an episode of COVID-19. Diabetes Metab Syndr 2020; 14(6): 2039-41.
[http://dx.doi.org/10.1016/j.dsx.2020.10.015] [PMID: 33113470]
[105]
Severa M, Diotti RA, Etna MP, et al. Differential plasmacytoid dendritic cell phenotype and type I Interferon response in asymptomatic and severe COVID-19 infection. PLoS Pathog 2021; 17(9): e1009878.
[http://dx.doi.org/10.1371/journal.ppat.1009878] [PMID: 34473805]
[106]
Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science 2020; 370(6515): eabd4570.
[http://dx.doi.org/10.1126/science.abd4570] [PMID: 32972995]
[107]
Bastard P, Rosen LB, Zhang Q, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science 2020; 370(6515): eabd4585.
[http://dx.doi.org/10.1126/science.abd4585] [PMID: 32972996]
[108]
Scordio M, Frasca F, Santinelli L, et al. High frequency of neutralizing antibodies to type I interferon in HIV-1 patients hospitalized for COVID-19. Clin Immunol 2022; 241: 109068.
[http://dx.doi.org/10.1016/j.clim.2022.109068] [PMID: 35764258]
[109]
Ryoo S, Koh DH, Yu SY, et al. Clinical efficacy and safety of interferon (Type I and Type III) therapy in patients with COVID-19: A systematic review and meta-analysis of randomized controlled trials. PLoS One 2023; 18(3): e0272826.
[http://dx.doi.org/10.1371/journal.pone.0272826] [PMID: 36989209]
[110]
Woerle HJ, Mariuz PR, Meyer C, et al. Mechanisms for the deterioration in glucose tolerance associated with HIV protease inhibitor regimens. Diabetes 2003; 52(4): 918-25.
[http://dx.doi.org/10.2337/diabetes.52.4.918] [PMID: 12663461]
[111]
Geffner ME, Patel K, Miller TL, et al. Factors associated with insulin resistance among children and adolescents perinatally infected with HIV-1 in the pediatric HIV/AIDS cohort study. Horm Res Paediatr 2011; 76(6): 386-91.
[http://dx.doi.org/10.1159/000332957] [PMID: 22042056]
[112]
Bratt G, Brännström J, Missalidis C, Nyström T. Development of type 2 diabetes and insulin resistance in people with HIV infection: Prevalence, incidence and associated factors. PLoS One 2021; 16(6): e0254079.
[http://dx.doi.org/10.1371/journal.pone.0254079] [PMID: 34191847]
[113]
Nduka CU, Uthman OA, Kimani PK, Stranges S. Body Fat Changes in People Living with HIV on Antiretroviral Therapy. AIDS Rev 2016; 18(4): 198-211.
[PMID: 27438580]
[114]
Muccini C, Galli L, Poli A, et al. Changes in homeostatic model assessment for insulin resistance (HOMA-IR) index in treated HIV-1 Infected people on virological suppression who switched to a different antiretroviral regimen. J Acquir Immune Defic Syndr 2021; 87(1): e169-73.
[http://dx.doi.org/10.1097/QAI.0000000000002632] [PMID: 33492020]
[115]
Nkinda L, Buberwa E, Memiah P, et al. Impaired fasting glucose levels among perinatally HIV-infected adolescents and youths in Dar es Salaam, Tanzania. Front Endocrinol 2022; 13: 1045628.
[http://dx.doi.org/10.3389/fendo.2022.1045628] [PMID: 36561566]
[116]
Byonanebye DM, Polizzotto MN, Parkes-Ratanshi R, Musaazi J, Petoumenos K, Castelnuovo B. Prevalence and incidence of hypertension in a heavily treatment-experienced cohort of people living with HIV in Uganda. PLoS One 2023; 18(2): e0282001.
[http://dx.doi.org/10.1371/journal.pone.0282001] [PMID: 36800379]
[117]
Phuphuakrat A, Nimitphong H, Reutrakul S, Sungkanuparph S. Prediabetes among HIV-infected individuals receiving antiretroviral therapy: Prevalence, diagnostic tests, and associated factors. AIDS Res Ther 2020; 17(1): 25.
[http://dx.doi.org/10.1186/s12981-020-00284-1] [PMID: 32448349]
[118]
Hertz JT, Prattipati S, Kweka GL, et al. Prevalence and predictors of uncontrolled hypertension, diabetes, and obesity among adults with HIV in northern Tanzania. Glob Public Health 2022; 17(12): 3747-59.
[http://dx.doi.org/10.1080/17441692.2022.2049344] [PMID: 35282776]
[119]
Girma D, Dejene H, Geleta LA, et al. Metabolic syndrome among people living with HIV in Ethiopia: A systematic review and meta-analysis. Diabetol Metab Syndr 2023; 15(1): 61.
[http://dx.doi.org/10.1186/s13098-023-01034-9] [PMID: 36978109]
[120]
Peer N, Nguyen KA, Hill J, et al. Prevalence and influences of diabetes and prediabetes among adults living with HIV in Africa: A systematic review and meta‐analysis. J Int AIDS Soc 2023; 26(3): e26059.
[http://dx.doi.org/10.1002/jia2.26059] [PMID: 36924213]
[121]
Nimitphong H, Jiriyasin S, Kasemasawachanon P, Sungkanuparph S. Metformin for preventing progression from prediabetes to diabetes mellitus in people living with human immunodeficiency virus. Cureus 2022; 14(4): e24540.
[http://dx.doi.org/10.7759/cureus.24540] [PMID: 35651475]
[122]
Sarfo FS, Norman B, Nichols M, et al. Prevalence and incidence of pre‐diabetes and diabetes mellitus among people living with HIV in Ghana: Evidence from the EVERLAST Study. HIV Med 2021; 22(4): 231-43.
[http://dx.doi.org/10.1111/hiv.13007] [PMID: 33174302]
[123]
Shah ASV, Stelzle D, Lee KK, et al. Global burden of atherosclerotic cardiovascular disease in people living with HIV. Circulation 2018; 138(11): 1100-12.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.033369] [PMID: 29967196]
[124]
Mellin J, Le Prevost M, Kenny J, et al. Arterial stiffness in a cohort of young people living with perinatal HIV and HIV negative young people in England. Front Cardiovasc Med 2022; 9: 821568.
[http://dx.doi.org/10.3389/fcvm.2022.821568] [PMID: 35299977]
[125]
Imoh LC, Ani CC, Iyua KO, et al. Subclinical atherosclerosis and associated risk factors among hiv-infected adults in Jos, North Central Nigeria: A cross-sectional study. Pan Afr Med J 2020; 37: 388.
[http://dx.doi.org/10.11604/pamj.2020.37.388.21073] [PMID: 33796201]
[126]
Lee S, Chung YS, Yoon CH, et al. Interferon-inducible protein 10 (IP-10) is associated with viremia of early HIV-1 infection in Korean patients. J Med Virol 2015; 87(5): 782-9.
[http://dx.doi.org/10.1002/jmv.24026] [PMID: 25678246]
[127]
Valdivia A, Ly J, Gonzalez L, et al. Restoring cytokine balance in HIV-positive individuals with low CD4 T cell counts. AIDS Res Hum Retroviruses 2017; 33(9): 905-18.
[http://dx.doi.org/10.1089/aid.2016.0303] [PMID: 28398068]
[128]
Park SK, Cho YK, Park JH, et al. Change of insulin sensitivity in hepatitis C patients with normal insulin sensitivity; A 5‐year prospective follow‐up study variation of insulin sensitivity in HCV patients. Intern Med J 2010; 40(7): 503-11.
[http://dx.doi.org/10.1111/j.1445-5994.2009.02042.x] [PMID: 19712201]
[129]
Tsai MC, Kao KL, Huang HC, et al. Incidence of type 2 diabetes in patients with chronic hepatitis c receiving interferon-based therapy. Diabetes Care 2020; 43(6): e63-4.
[http://dx.doi.org/10.2337/dc19-1704] [PMID: 32209648]
[130]
White DL, Ratziu V, El-Serag HB. Hepatitis C infection and risk of diabetes: A systematic review and meta-analysis. J Hepatol 2008; 49(5): 831-44.
[http://dx.doi.org/10.1016/j.jhep.2008.08.006] [PMID: 18814931]
[131]
Rajewski P, Zarębska-Michaluk D, Janczewska E, et al. Hepatitis C infection as a risk factor for hypertension and cardiovascular diseases: An EpiTer multicenter study. J Clin Med 2022; 11(17): 5193.
[http://dx.doi.org/10.3390/jcm11175193] [PMID: 36079122]
[132]
Mada PK, Malus ME, Parvathaneni A, et al. Impact of treatment with direct acting antiviral drugs on glycemic control in patients with hepatitis C and diabetes mellitus. Int J Hepatol 2020; 2020: 1-6.
[http://dx.doi.org/10.1155/2020/6438753] [PMID: 32395351]
[133]
Hu JH, Chang ML, Liu NJ, Yeh CT, Huang TJ. Effect of HCV treatment response on insulin resistance: A systematic review and meta analysis. Exp Ther Med 2019; 18(5): 3568-78.
[http://dx.doi.org/10.3892/etm.2019.7995] [PMID: 31602234]
[134]
Bacinschi X, Mercan-Stanciu A, Toma L, et al. Glycemic control in patients undergoing treatment with paritaprevir/ombitasvir/ritonavir and dasabuvir for chronic hepatitis C infection. In Vivo 2022; 36(3): 1438-43.
[http://dx.doi.org/10.21873/invivo.12849] [PMID: 35478152]
[135]
Cacoub P, Nahon P, Layese R, et al. Prognostic value of viral eradication for major adverse cardiovascular events in hepatitis C cirrhotic patients. Am Heart J 2018; 198: 4-17.
[http://dx.doi.org/10.1016/j.ahj.2017.10.024] [PMID: 29653647]
[136]
Aghemo A, Prati GM, Rumi MG, et al. Sustained virological response prevents the development of insulin resistance in patients with chronic hepatitis C. Hepatology 2012; 56(5): 1681-7.
[http://dx.doi.org/10.1002/hep.25867] [PMID: 22619107]
[137]
Valenti L, Pelusi S, Aghemo A, et al. Dysmetabolism, diabetes and clinical outcomes in patients cured of chronic hepatitis C: A real‐life cohort study. Hepatol Commun 2022; 6(4): 867-77.
[http://dx.doi.org/10.1002/hep4.1851] [PMID: 34811949]
[138]
Eslam M, Aparcero R, Kawaguchi T, et al. Meta‐analysis: Insulin resistance and sustained virological response in hepatitis C. Aliment Pharmacol Ther 2011; 34(3): 297-305.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04716.x] [PMID: 21623851]
[139]
Deltenre P, Louvet A, Lemoine M, et al. Impact of insulin resistance on sustained response in HCV patients treated with pegylated interferon and ribavirin: A meta-analysis. J Hepatol 2011; 55(6): 1187-94.
[http://dx.doi.org/10.1016/j.jhep.2011.03.010] [PMID: 21703195]
[140]
Brownell J, Wagoner J, Lovelace ES, et al. Independent, parallel pathways to CXCL10 induction in HCV-infected hepatocytes. J Hepatol 2013; 59(4): 701-8.
[http://dx.doi.org/10.1016/j.jhep.2013.06.001] [PMID: 23770038]
[141]
Chen Y, Xu HX, Wang LJ, Liu XX, Mahato RI, Zhao YR. Meta‐analysis: IL 28 B polymorphisms predict sustained viral response in HCV patients treated with pegylated interferon‐α and ribavirin. Aliment Pharmacol Ther 2012; 36(2): 91-103.
[http://dx.doi.org/10.1111/j.1365-2036.2012.05131.x] [PMID: 22591106]
[142]
Yang WB, Wang HL, Mao JT, et al. The correlation between CT features and insulin resistance levels in patients with T2DM complicated with primary pulmonary tuberculosis. J Cell Physiol 2020; 235(12): 9370-7.
[http://dx.doi.org/10.1002/jcp.29741] [PMID: 32346889]
[143]
Shvets OM, Shevchenko OS, Todoriko LD, et al. Carbohydrate and lipid metabolic profiles of tuberculosis patients with bilateral pulmonary lesions and mycobacteria excretion. Wiad Lek 2020; 73(7): 1373-6.
[http://dx.doi.org/10.36740/WLek202007113] [PMID: 32759423]
[144]
Chen Y, Peng A, Chen Y, et al. Association of TyG index with CT features in patients with tuberculosis and diabetes mellitus. Infect Drug Resist 2022; 15: 111-25.
[http://dx.doi.org/10.2147/IDR.S347089] [PMID: 35068934]
[145]
Menon S, Rossi R, Dusabimana A, Zdraveska N, Bhattacharyya S, Francis J. The epidemiology of tuberculosis-associated hyperglycemia in individuals newly screened for type 2 diabetes mellitus: Systematic review and meta-analysis. BMC Infect Dis 2020; 20(1): 937.
[http://dx.doi.org/10.1186/s12879-020-05512-7] [PMID: 33297969]
[146]
Lee SW, Park Y, Kim S, Chung EK, Kang YA. Comorbidities of nontuberculous mycobacteria infection in Korean adults: results from the National Health Insurance Service–National Sample Cohort (NHIS–NSC) database. BMC Pulm Med 2022; 22(1): 283.
[http://dx.doi.org/10.1186/s12890-022-02075-y] [PMID: 35870927]
[147]
Baluku JB, Ronald O, Bagasha P, Okello E, Bongomin F. Prevalence of cardiovascular risk factors in active tuberculosis in Africa: A systematic review and meta-analysis. Sci Rep 2022; 12(1): 16354.
[http://dx.doi.org/10.1038/s41598-022-20833-0] [PMID: 36175540]
[148]
Sheuly AH, Arefin SMZH, Barua L, Zaman MS, Chowdhury HA. Prevalence of type 2 diabetes and pre‐diabetes among pulmonary and extrapulmonary tuberculosis patients of Bangladesh: A cross‐sectional study. Endocrinol Diabetes Metab 2022; 5(3): e00334.
[http://dx.doi.org/10.1002/edm2.334] [PMID: 35261187]
[149]
Jørgensen A, Lorentsson HJN, Grundtvig Huber F, Graff Jensen S, Bjorn-Mortensen K, Ravn P. Dysglycaemia among tuberculosis patients without known diabetes in a low-endemic setting. ERJ Open Res 2022; 8(2): 00629-2021.
[http://dx.doi.org/10.1183/23120541.00629-2021] [PMID: 35415185]
[150]
Gülbaş Z, Erdoğan Y, Balci S. Impaired glucose tolerance in pulmonary tuberculosis. Eur J Respir Dis 1987; 71(5): 345-7.
[PMID: 3443157]
[151]
Philips L, Visser J, Nel D, Blaauw R. The association between tuberculosis and the development of insulin resistance in adults with pulmonary tuberculosis in the Western sub-district of the Cape Metropole region, South Africa: A combined cross-sectional, cohort study. BMC Infect Dis 2017; 17(1): 570.
[http://dx.doi.org/10.1186/s12879-017-2657-5] [PMID: 28810840]
[152]
Magee MJ, Trost SL, Salindri AD, Amere G, Day CL, Gandhi NR. Adults with mycobacterium tuberculosis infection and pre-diabetes have increased levels of quantiFERON interferon-gamma responses. Tuberculosis 2020; 122: 101935.
[http://dx.doi.org/10.1016/j.tube.2020.101935] [PMID: 32501260]
[153]
Djaharuddin I, Amir M, Qanitha A. Exploring the link between cardiovascular risk factors and manifestations in latent tuberculosis infection: A comprehensive literature review. Egypt Heart J 2023; 75(1): 43.
[http://dx.doi.org/10.1186/s43044-023-00370-5] [PMID: 37249745]
[154]
Pearson F, Huangfu P, McNally R, Pearce M, Unwin N, Critchley JA. Tuberculosis and diabetes: Bidirectional association in a UK primary care data set. J Epidemiol Community Health 2019; 73(2): 142-7.
[http://dx.doi.org/10.1136/jech-2018-211231] [PMID: 30377249]
[155]
Magee MJ, Khakharia A, Gandhi NR, et al. Increased risk of incident diabetes among individuals with latent tuberculosis infection. Diabetes Care 2022; 45(4): 880-7.
[http://dx.doi.org/10.2337/dc21-1687] [PMID: 35168250]
[156]
Omar N, Wong J, Thu K, Alikhan MF, Chaw L. Prevalence and associated factors of diabetes mellitus among tuberculosis patients in Brunei Darussalam: A 6-year retrospective cohort study. Int J Infect Dis 2021; 105: 267-73.
[http://dx.doi.org/10.1016/j.ijid.2021.02.064] [PMID: 33610780]
[157]
Rajaa S, Krishnamoorthy Y, Knudsen S, et al. Prevalence and factors associated with diabetes mellitus among tuberculosis patients in South India—a cross-sectional analytical study. BMJ Open 2021; 11(10): e050542.
[http://dx.doi.org/10.1136/bmjopen-2021-050542] [PMID: 34686553]
[158]
Buasroung P, Petnak T, Liwtanakitpipat P, Kiertiburanakul S. Prevalence of diabetes mellitus in patients with tuberculosis: A prospective cohort study. Int J Infect Dis 2022; 116: 374-9.
[http://dx.doi.org/10.1016/j.ijid.2022.01.047] [PMID: 35093530]
[159]
Jerene D, Muleta C, Ahmed A, et al. High rates of undiagnosed diabetes mellitus among patients with active tuberculosis in Addis Ababa, Ethiopia. J Clin Tuberc Other Mycobact Dis 2022; 27: 100306.
[http://dx.doi.org/10.1016/j.jctube.2022.100306] [PMID: 35284658]
[160]
Hullalli R. Gudadinni , Motappa R. Prevalence of diabetes mellitus among newly detected sputum positive pulmonary tuberculosis patients and associated risk factors: A cross-sectional study. Curr Diabetes Rev 2023; 2023
[PMID: 37138479]
[161]
Jeong D, Mok J, Jeon D, et al. Prevalence and associated factors of diabetes mellitus among patients with tuberculosis in South Korea from 2011 to 2018: a nationwide cohort study. BMJ Open 2023; 13(3): e069642.
[http://dx.doi.org/10.1136/bmjopen-2022-069642] [PMID: 36889835]
[162]
Chung W-S, Lin C-L, Hung C-T, et al. Tuberculosis increases the subsequent risk of acute coronary syndrome: A nationwide population-based cohort study. Int J Tuberc Lung Dis 2014; 18(1): 79-83.
[http://dx.doi.org/10.5588/ijtld.13.0288] [PMID: 24365557]
[163]
Huaman MA, De Cecco CN, Bittencourt MS, et al. Latent tuberculosis infection and subclinical coronary atherosclerosis in peru and uganda. Clin Infect Dis 2021; 73(9): e3384-90.
[http://dx.doi.org/10.1093/cid/ciaa1934] [PMID: 33388766]
[164]
Sumbal A, Sheikh SM, Ikram A, Amir A, Sumbal R, Saeed AR. Latent Tuberculosis Infection (LTBI) as a predictor of coronary artery disease: A systematic review and meta-analysis. Heliyon 2023; 9(4): e15365.
[http://dx.doi.org/10.1016/j.heliyon.2023.e15365] [PMID: 37089330]
[165]
Khoufi EAA. Association between latent tuberculosis and ischemic heart disease: A hospital-based cross-sectional study from Saudi Arabia. Pan Afr Med J 2021; 38: 362.
[PMID: 34367441]
[166]
Taneja V, Kalra P, Goel M, et al. Impact and prognosis of the expression of IFN-α among tuberculosis patients. PLoS One 2020; 15(7): e0235488.
[http://dx.doi.org/10.1371/journal.pone.0235488] [PMID: 32667932]
[167]
Berry MPR, Graham CM, McNab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010; 466(7309): 973-7.
[http://dx.doi.org/10.1038/nature09247] [PMID: 20725040]
[168]
Sabbatani S, Manfredi R, Marinacci G, Pavoni M, Cristoni L, Chiodo F. Reactivation of severe, acute pulmonary tuberculosis during treatment with pegylated interferon-alpha and ribavirin for chronic HCV hepatitis. Scand J Infect Dis 2006; 38(3): 205-8.
[http://dx.doi.org/10.1080/00365540500263268] [PMID: 16500782]
[169]
Matsuoka S, Fujikawa H, Hasegawa H, Ochiai T, Watanabe Y, Moriyama M. Onset of tuberculosis from a pulmonary latent tuberculosis infection during antiviral triple therapy for chronic hepatitis C. Intern Med 2016; 55(15): 2011-7.
[http://dx.doi.org/10.2169/internalmedicine.55.6448] [PMID: 27477407]
[170]
de Oliveira Uehara SN, Emori CT, Perez RM, et al. High incidence of tuberculosis in patients treated for hepatitis C chronic infection. Braz J Infect Dis 2016; 20(2): 205-9.
[http://dx.doi.org/10.1016/j.bjid.2015.12.003] [PMID: 26867472]
[171]
Baliashvili D, Blumberg HM, Benkeser D, et al. Association of treated and untreated chronic hepatitis C with the incidence of active tuberculosis disease: A population-based cohort study. Clin Infect Dis 2023; 76(2): 245-51.
[http://dx.doi.org/10.1093/cid/ciac786] [PMID: 36134743]
[172]
Jouanguy E, Altare F, Lamhamedi S, et al. Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guérin infection. N Engl J Med 1996; 335(26): 1956-62.
[http://dx.doi.org/10.1056/NEJM199612263352604] [PMID: 8960475]
[173]
Newport MJ, Huxley CM, Huston S, et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 1996; 335(26): 1941-9.
[http://dx.doi.org/10.1056/NEJM199612263352602] [PMID: 8960473]
[174]
Ono R, Tsumura M, Shima S, et al. Novel STAT1 variants in japanese patients with isolated mendelian susceptibility to mycobacterial diseases. J Clin Immunol 2023; 43(2): 466-78.
[http://dx.doi.org/10.1007/s10875-022-01396-1] [PMID: 36336768]
[175]
Kampmann B, Hemingway C, Stephens A, et al. Acquired predisposition to mycobacterial disease due to autoantibodies to IFN-γ. J Clin Invest 2005; 115(9): 2480-8.
[http://dx.doi.org/10.1172/JCI19316] [PMID: 16127458]
[176]
Höflich C, Sabat R, Rosseau S, et al. Naturally occurring anti–IFN-γ autoantibody and severe infections with Mycobacterium cheloneae and Burkholderia cocovenenans. Blood 2004; 103(2): 673-5.
[http://dx.doi.org/10.1182/blood-2003-04-1065] [PMID: 12947000]
[177]
Mochizuka Y, Kono M, Hirama R, et al. Endobronchial lesions from disseminated Mycobacterium avium infection in a patient with anti-interferon-gamma autoantibodies. Intern Med 2021; 60(20): 3267-72.
[http://dx.doi.org/10.2169/internalmedicine.6693-20] [PMID: 33896863]
[178]
Hirayama K, Kanda N, Suzuki T, et al. Disseminated mycolicibacter arupensis and mycobacterium avium co-infection in a patient with anti-interferon-γ neutralizing autoantibody-associated immunodeficiency syndrome. J Infect Chemother 2022; 28(9): 1336-9.
[http://dx.doi.org/10.1016/j.jiac.2022.05.018] [PMID: 35691862]
[179]
Qiu Y, Fang G, Ye F, et al. Pathogen spectrum and immunotherapy in patients with anti-IFN-γ autoantibodies: A multicenter retrospective study and systematic review. Front Immunol 2022; 13: 1051673.
[http://dx.doi.org/10.3389/fimmu.2022.1051673] [PMID: 36569827]
[180]
Koizumi Y, Sakagami T, Nishiyama N, et al. Rituximab restores IFN-γ-STAT1 function and ameliorates disseminated mycobacterium avium infection in a patient with anti-interferon-γ autoantibody. J Clin Immunol 2017; 37(7): 644-9.
[http://dx.doi.org/10.1007/s10875-017-0425-3] [PMID: 28779413]
[181]
Roerden M, Döffinger R, Barcenas-Morales G, Forchhammer S, Döbele S, Berg CP. Simultaneous disseminated infections with intracellular pathogens: An intriguing case report of adult-onset immunodeficiency with anti-interferon-gamma autoantibodies. BMC Infect Dis 2020; 20(1): 828.
[http://dx.doi.org/10.1186/s12879-020-05553-y] [PMID: 33176707]
[182]
Yıldız Gülhan P, Güleç Balbay E, Erçelik M, Yıldız Ş, Yılmaz MA. Is sarcoidosis related to metabolic syndrome and insulin resistance? Aging Male 2020; 23(1): 53-8.
[http://dx.doi.org/10.1080/13685538.2019.1631272] [PMID: 31250684]
[183]
Işık AC, Kavas M, Boǧa S, Karagöz A, Kocabay G, Sen N. Are inflammatory and malnutrition markers associated with metabolic syndrome in patients with sarcoidosis? Rev Assoc Med Bras 2021; 67(12): 1779.
[184]
Kindman LA, Gilbert HS, Almenoff JS, Ginsberg H, Fagerstrom R, Teirstein AS. High density lipoprotein cholesterol is reduced in patients with sarcoidosis. Am J Med 1989; 86(4): 376-8.
[http://dx.doi.org/10.1016/0002-9343(89)90332-X] [PMID: 2929624]
[185]
Salazar A, Maña J, Pinto X, et al. Low levels of high density lipoprotein cholesterol in patients with active sarcoidosis. Atherosclerosis 1998; 136(1): 133-7.
[http://dx.doi.org/10.1016/S0021-9150(97)00198-6] [PMID: 9580477]
[186]
Mahmoud AR, Dahy A, Dibas M, Abbas AS, Ghozy S, El-Qushayri AE. Association between sarcoidosis and cardiovascular comorbidity: A systematic review and meta-analysis. Heart Lung 2020; 49(5): 512-7.
[http://dx.doi.org/10.1016/j.hrtlng.2020.03.013] [PMID: 32234258]
[187]
Selendili O, Günay E, Kaçar E, et al. Atherogenic indices can predict atherosclerosis in patients with sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 2022; 38(4): e2021041.
[PMID: 35115748]
[188]
Benmelouka AY, Abdelaal A, Mohamed ASE, et al. Association between sarcoidosis and diabetes mellitus: A systematic review and meta-analysis. Expert Rev Respir Med 2021; 15(12): 1589-95.
[http://dx.doi.org/10.1080/17476348.2021.1932471] [PMID: 34018900]
[189]
Entrop JP, Kullberg S, Grunewald J, Eklund A, Brismar K, Arkema EV. Type 2 diabetes risk in sarcoidosis patients untreated and treated with corticosteroids. ERJ Open Res 2021; 7(2): 00028-2021.
[http://dx.doi.org/10.1183/23120541.00028-2021] [PMID: 34046487]
[190]
Choi JY, Lee JH, Seo JM, et al. Incidence and death rate of sarcoidosis in Korea in association with metabolic diseases. J Dermatol 2022; 49(5): 488-95.
[http://dx.doi.org/10.1111/1346-8138.16303] [PMID: 35040161]
[191]
Gonen T, Katz-Talmor D, Amital H, Comaneshter D, Cohen AD, Tiosano S. The association between sarcoidosis and ischemic heart disease—A healthcare analysis of a large israeli population. J Clin Med 2021; 10(21): 5067.
[http://dx.doi.org/10.3390/jcm10215067] [PMID: 34768590]
[192]
Yong WC, Sanguankeo A, Upala S. Association between sarcoidosis, pulse wave velocity, and other measures of subclinical atherosclerosis: A systematic review and meta-analysis. Clin Rheumatol 2018; 37(10): 2825-32.
[http://dx.doi.org/10.1007/s10067-017-3926-9] [PMID: 29177575]
[193]
Yilmaz Y, Kul S, Kavas M, et al. Is there an association between sarcoidosis and atherosclerosis? Int J Cardiovasc Imaging 2021; 37(2): 559-67.
[http://dx.doi.org/10.1007/s10554-020-02041-x] [PMID: 32989613]
[194]
Rizzi L, Coppola C, Cocco V, Sabbà C, Suppressa P. Cardiovascular risk in rare diseases: A prognostic stratification model in a cohort of sarcoidosis patients. Intern Emerg Med 2023; 18(5): 1437-44.
[http://dx.doi.org/10.1007/s11739-023-03314-8] [PMID: 37219757]
[195]
Bloom CI, Graham CM, Berry MPR, et al. Transcriptional blood signatures distinguish pulmonary tuberculosis, pulmonary sarcoidosis, pneumonias and lung cancers. PLoS One 2013; 8(8): e70630.
[http://dx.doi.org/10.1371/journal.pone.0070630] [PMID: 23940611]
[196]
Kato A, Ishihara M, Mizuki N. Interferon-induced sarcoidosis with uveitis as the initial symptom: A case report and review of the literature. J Med Case Rep 2021; 15(1): 568.
[http://dx.doi.org/10.1186/s13256-021-03181-x] [PMID: 34836557]
[197]
Sawahata M, Fujiki Y, Nakano N, et al. Propionibacterium acnes-Associated sarcoidosis possibly initially triggered by interferon-alpha therapy. Intern Med 2021; 60(5): 777-81.
[http://dx.doi.org/10.2169/internalmedicine.5281-20] [PMID: 32999227]
[198]
Su R, Nguyen MLT, Agarwal MR, et al. Interferon-inducible chemokines reflect severity and progression in sarcoidosis. Respir Res 2013; 14(1): 121.
[http://dx.doi.org/10.1186/1465-9921-14-121] [PMID: 24199653]
[199]
Çakan M, Keskindemirci G, Aydoğmuş Ç, et al. Coexistence of early onset sarcoidosis and partial interferon-γ receptor 1 deficiency. Turk J Pediatr 2016; 58(5): 545-9.
[http://dx.doi.org/10.24953/turkjped.2016.05.015] [PMID: 28621099]
[200]
Rossides M, Kullberg S, Eklund A, et al. Risk of first and recurrent serious infection in sarcoidosis: A Swedish register-based cohort study. Eur Respir J 2020; 56(3): 2000767.
[http://dx.doi.org/10.1183/13993003.00767-2020] [PMID: 32366492]
[201]
Okazaki F, Wakiguchi H, Korenaga Y, et al. A novel mutation in early‐onset sarcoidosis/Blau syndrome: An association with Propionibacterium acnes. Pediatr Rheumatol Online J 2021; 19(1): 18.
[http://dx.doi.org/10.1186/s12969-021-00505-5] [PMID: 33602264]
[202]
Yamamoto T, Miura K, Eishi Y. Detection of Propionibacterium acnes in cutaneous lichenoid sarcoidosis in a patient with Blau syndrome. Int J Dermatol 2023; 62(6): e353-5.
[http://dx.doi.org/10.1111/ijd.16583] [PMID: 36633165]
[203]
Zhang S, Wang G, Wang J. Type B insulin resistance syndrome induced by systemic lupus erythematosus and successfully treated with intravenous immunoglobulin: case report and systematic review. Clin Rheumatol 2013; 32(2): 181-8.
[http://dx.doi.org/10.1007/s10067-012-2098-x] [PMID: 23053690]
[204]
Payares PJC, Ribero D, Rodríguez L, et al. Late systemic lupus erythematosus-associated insulin resistance syndrome: A rare cause of de novo diabetes mellitus. Case Rep Med 2022; 2022: 1-12.
[http://dx.doi.org/10.1155/2022/4655804] [PMID: 36275943]
[205]
Miyake CNH, Gualano B, Dantas WS, et al. Increased insulin resistance and glucagon levels in mild/inactive systemic lupus erythematosus patients despite normal glucose tolerance. Arthritis Care Res 2018; 70(1): 114-24.
[http://dx.doi.org/10.1002/acr.23237] [PMID: 28320046]
[206]
Hasni S, Temesgen-Oyelakin Y, Davis M, et al. Peroxisome proliferator activated receptor-γ agonist pioglitazone improves vascular and metabolic dysfunction in systemic lupus erythematosus. Ann Rheum Dis 2022; 81(11): 1576-84.
[http://dx.doi.org/10.1136/ard-2022-222658] [PMID: 35914929]
[207]
Kuo CY, Tsai TY, Huang YC. Insulin resistance and serum levels of adipokines in patients with systemic lupus erythematosus: A systematic review and meta-analysis. Lupus 2020; 29(9): 1078-84.
[http://dx.doi.org/10.1177/0961203320935185] [PMID: 32605528]
[208]
Tarçın G, Karakaş H, Şahin S, et al. Insulin resistance in children with juvenile systemic lupus erythematosus and ınvestigation of the possibly responsible factors. Clin Rheumatol 2022; 41(3): 795-801.
[http://dx.doi.org/10.1007/s10067-021-05952-9] [PMID: 34617197]
[209]
Sun C, Qin W, Zhang YH, et al. Prevalence and risk of metabolic syndrome in patients with systemic lupus erythematosus: A meta‐analysis. Int J Rheum Dis 2017; 20(8): 917-28.
[http://dx.doi.org/10.1111/1756-185X.13153] [PMID: 28851080]
[210]
Diószegi Á, Lőrincz H, Kaáli E, et al. Role of altered metabolism of triglyceride-rich lipoprotein particles in the development of vascular dysfunction in systemic lupus erythematosus. Biomolecules 2023; 13(3): 401.
[http://dx.doi.org/10.3390/biom13030401] [PMID: 36979336]
[211]
Mendoza-Pinto C, García-Carrasco M, Martínez MS, et al. Insulin resistance metabolomic profile in non-diabetic women with systemic lupus erythematosus. Gac Med Mex 2021; 157(6): 594-8.
[PMID: 35108250]
[212]
Lu X, Wang Y, Zhang J, et al. Patients with systemic lupus erythematosus face a high risk of cardiovascular disease: A systematic review and Meta-analysis. Int Immunopharmacol 2021; 94: 107466.
[http://dx.doi.org/10.1016/j.intimp.2021.107466] [PMID: 33636561]
[213]
Bello N, Meyers KJ, Workman J, Hartley L, McMahon M. Cardiovascular events and risk in patients with systemic lupus erythematosus: Systematic literature review and meta-analysis. Lupus 2023; 32(3): 325-41.
[http://dx.doi.org/10.1177/09612033221147471] [PMID: 36547368]
[214]
Lin YJ, Chien CC, Ho CH, Chen HA, Chen CY. Increased risk of type 2 diabetes in patients with systemic lupus erythematosus: A nationwide cohort study in Taiwan. Medicine 2022; 101(51): e32520.
[http://dx.doi.org/10.1097/MD.0000000000032520] [PMID: 36595866]
[215]
Gernaat SAM, Simard JF, Wikström AK, Svenungsson E, Arkema EV. Gestational diabetes mellitus risk in pregnant women with systemic lupus erythematosus. J Rheumatol 2022; 49(5): 465-9.
[http://dx.doi.org/10.3899/jrheum.210087] [PMID: 34853085]
[216]
Gustafsson JT, Lindberg HM, Gunnarsson I, et al. Excess atherosclerosis in systemic lupus erythematosus,—A matter of renal involvement: Case control study of 281 SLE patients and 281 individually matched population controls. PLoS One 2017; 12(4): e0174572.
[http://dx.doi.org/10.1371/journal.pone.0174572] [PMID: 28414714]
[217]
Barbhaiya M, Feldman CH, Chen SK, et al. Comparative risks of cardiovascular disease in patients with systemic lupus erythematosus, diabetes mellitus, and in general medicaid recipients. Arthritis Care Res 2020; 72(10): 1431-9.
[http://dx.doi.org/10.1002/acr.24328] [PMID: 32475049]
[218]
Yazdany J, Pooley N, Langham J, et al. Systemic lupus erythematosus; stroke and myocardial infarction risk: A systematic review and meta-analysis. RMD Open 2020; 6(2): e001247.
[http://dx.doi.org/10.1136/rmdopen-2020-001247] [PMID: 32900883]
[219]
Mok CC, Poon WL, Lai JPS, et al. Metabolic syndrome, endothelial injury, and subclinical atherosclerosis in patients with systemic lupus erythematosus. Scand J Rheumatol 2010; 39(1): 42-9.
[http://dx.doi.org/10.3109/03009740903046668] [PMID: 20132070]
[220]
Gegenava T, Gegenava M, Steup-Beekman GM, et al. Left ventricular systolic function in patients with systemic lupus erythematosus and its association with cardiovascular events. J Am Soc Echocardiogr 2020; 33(9): 1116-22.
[http://dx.doi.org/10.1016/j.echo.2020.04.018] [PMID: 32622589]
[221]
Zhang H, Yang C, Gao F, Hu S, Ma H. Evaluation of left ventricular systolic function in patients with systemic lupus erythematosus using ultrasonic layer-specific strain technology and its association with cardiovascular events: A long-term follow-up study. Cardiovasc Ultrasound 2022; 20(1): 25.
[http://dx.doi.org/10.1186/s12947-022-00295-0] [PMID: 36207759]
[222]
Oke V, Gunnarsson I, Dorschner J, et al. High levels of circulating interferons type I, type II and type III associate with distinct clinical features of active systemic lupus erythematosus. Arthritis Res Ther 2019; 21(1): 107.
[http://dx.doi.org/10.1186/s13075-019-1878-y] [PMID: 31036046]
[223]
Miyachi K, Iwamoto T, Kojima S, et al. Relationship of systemic type I interferon activity with clinical phenotypes, disease activity, and damage accrual in systemic lupus erythematosus in treatment-naive patients: a retrospective longitudinal analysis. Arthritis Res Ther 2023; 25(1): 26.
[http://dx.doi.org/10.1186/s13075-023-03010-0] [PMID: 36803843]
[224]
Shirahama Y, Hashimoto A, Ono N, et al. Relationships between Type 1 interferon signatures and clinical features of the new-onset lupus patients in Japan. Mod Rheumatol 2023; road015.
[http://dx.doi.org/10.1093/mr/road015] [PMID: 36695430]
[225]
Zahn S, Rehkämper C, Kümmerer BM, et al. Evidence for a pathophysiological role of keratinocyte-derived type III interferon (IFNλ) in cutaneous lupus erythematosus. J Invest Dermatol 2011; 131(1): 133-40.
[http://dx.doi.org/10.1038/jid.2010.244] [PMID: 20720564]
[226]
Shen M, Duan C, Xie C, et al. Identification of key interferon-stimulated genes for indicating the condition of patients with systemic lupus erythematosus. Front Immunol 2022; 13: 962393.
[http://dx.doi.org/10.3389/fimmu.2022.962393] [PMID: 35967341]
[227]
Tanaka Y, Tummala R. Anifrolumab, a monoclonal antibody to the type I interferon receptor subunit 1, for the treatment of systemic lupus erythematosus: An overview from clinical trials. Mod Rheumatol 2021; 31(1): 1-12.
[http://dx.doi.org/10.1080/14397595.2020.1812201] [PMID: 32814461]
[228]
Siddiqi KZ, Zinglersen AH, Iversen KK, Rasmussen NS, Nielsen CT, Jacobsen S. A cluster of type II interferon-regulated genes associates with disease activity in patients with systemic lupus erythematosus. J Autoimmun 2022; 132: 102869.
[http://dx.doi.org/10.1016/j.jaut.2022.102869] [PMID: 35933792]
[229]
Wang YF, Wei W, Tangtanatakul P, et al. Identification of shared and Asian‐Specific loci for systemic lupus erythematosus and evidence for roles of type III interferon signaling and lysosomal function in the disease: A multi‐ancestral genome‐wide association study. Arthritis Rheumatol 2022; 74(5): 840-8.
[http://dx.doi.org/10.1002/art.42021] [PMID: 34783190]
[230]
Andany AMM, Montero DA, Contreras AL, Fernández FC, Freire CN, Lucán GM. Body fat distribution contributes to defining the relationship between insulin resistance and obesity in human diseases. Curr Diabetes Rev 2023.
[PMID: 37587805]
[231]
Martínez-Colón GJ, Ratnasiri K, Chen H, et al. SARS-CoV-2 infection drives an inflammatory response in human adipose tissue through infection of adipocytes and macrophages. Sci Transl Med 2022; 14(674): eabm9151.
[http://dx.doi.org/10.1126/scitranslmed.abm9151] [PMID: 36137009]
[232]
Basolo A, Poma AM, Bonuccelli D, et al. Adipose tissue in COVID-19: Detection of SARS-CoV-2 in adipocytes and activation of the interferon-alpha response. J Endocrinol Invest 2022; 45(5): 1021-9.
[http://dx.doi.org/10.1007/s40618-022-01742-5] [PMID: 35169984]
[233]
Barna BP, Culver DA, Abraham S, et al. Depressed peroxisome proliferator-activated receptor gamma (PPargamma) is indicative of severe pulmonary sarcoidosis: possible involvement of interferon gamma (IFN-gamma). Sarcoidosis Vasc Diffuse Lung Dis 2006; 23(2): 93-100.
[PMID: 17937104]
[234]
Nadkarni GN, Galarneau G, Ellis SB, et al. Apolipoprotein L1 variants and blood pressure traits in African Americans. J Am Coll Cardiol 2017; 69(12): 1564-74.
[http://dx.doi.org/10.1016/j.jacc.2017.01.040] [PMID: 28335839]
[235]
Hoy WE, Hughson MD, Kopp JB, Mott SA, Bertram JF, Winkler CA. APOL1 risk alleles are associated with exaggerated age-related changes in glomerular number and volume in african-american adults. J Am Soc Nephrol 2015; 26(12): 3179-89.
[http://dx.doi.org/10.1681/ASN.2014080768] [PMID: 26038529]
[236]
Yang L, Han Y, Nilsson-Payant BE, et al. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids. Cell Stem Cell 2020; 27(1): 125-136.e7.
[http://dx.doi.org/10.1016/j.stem.2020.06.015] [PMID: 32579880]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy