Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Role of Multi-parameter-based Cardiac Magnetic Resonance in the Evaluation of Patients with Coronary Heart Disease Combined with Heart Failure

Author(s): Ying Yu, Bihong Liao, Jingjing Zhang, Jin Zou, Jia Deng, Jiaqi Liu, Gang Wang, Yueyan Li, Fengcui Qian, Hong Huang, Qiuyu Wang*, Jinwei Tian* and Huifang Tang*

Volume 20, 2024

Published on: 15 March, 2024

Article ID: e15734056283569 Pages: 14

DOI: 10.2174/0115734056283569240227062332

Price: $65

Abstract

Background: Coronary Heart Disease (CHD) is one of the most common types of cardiovascular disease, and Heart Failure (HF) is an important factor in its progression. We aimed to evaluate the diagnostic value and predictors of multiparametric Cardiac Magnetic Resonance (CMR) in CHD patients with HF.

Methods: The study retrospectively included 145 CHD patients who were classified into CHD (HF+) (n = 91) and CHD (HF–) (n = 54) groups according to whether HF occurred. CMR assessed LV function, myocardial strain and T1 mapping. Multivariate linear regression analyses were performed to identify predictors of LV dysfunction, myocardial fibrosis, and LV remodeling.

Results: CHD (HF+) group had impaired strain, with increased native T1, ECV, and LVM index. The impaired strain was associated with LVM index (p < 0.05), where native T1 and ECV were affected by log-transformed amino-terminal pro-B-type natriuretic peptide (NT-proBNP) levels. ROC analysis showed the combination of global circumferential strain (GCS), native T1, and LVM had a higher diagnostic value for the occurrence of HF in CHD patients. Meanwhile, log-transformed NT-proBNP was an independent determinant of impaired strain, increased LVM index, native T1 and ECV.

Conclusion: HF has harmful effects on LV systolic function in patients with CHD. In CHD (HF+) group, LV dysfunction is strongly correlated with the degree of LV remodeling and myocardial fibrosis. The combination of the three is more valuable in diagnosing HF than conventional indicators.

[1]
Knuuti J, Wijns W, Saraste A, et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020; 41(3): 407-77.
[http://dx.doi.org/10.1093/eurheartj/ehz425] [PMID: 31504439]
[2]
Lala A, Desai AS. The role of coronary artery disease in heart failure. Heart Fail Clin 2014; 10(2): 353-65.
[http://dx.doi.org/10.1016/j.hfc.2013.10.002] [PMID: 24656111]
[3]
Gheorghiade M, Sopko G, De Luca L, et al. Navigating the crossroads of coronary artery disease and heart failure. Circulation 2006; 114(11): 1202-13.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.623199] [PMID: 16966596]
[4]
Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail 2020; 22(8): 1342-56.
[http://dx.doi.org/10.1002/ejhf.1858] [PMID: 32483830]
[5]
Demirkiran A, Everaars H, Amier RP, et al. Cardiovascular magnetic resonance techniques for tissue characterization after acute myocardial injury. Eur Heart J Cardiovasc Imaging 2019; 20(7): 723-34.
[http://dx.doi.org/10.1093/ehjci/jez094] [PMID: 31131401]
[6]
Ibanez B, Aletras AH, Arai AE, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials. J Am Coll Cardiol 2019; 74(2): 238-56.
[http://dx.doi.org/10.1016/j.jacc.2019.05.024] [PMID: 31296297]
[7]
Korosoglou G, Giusca S, Montenbruck M, et al. Fast strain-encoded cardiac magnetic resonance for diagnostic classification and risk stratification of heart failure patients. JACC Cardiovasc Imaging 2021; 14(6): 1177-88.
[http://dx.doi.org/10.1016/j.jcmg.2020.10.024] [PMID: 33454266]
[8]
Seno A, Antiochos P, Lichtenfeld H, et al. Prognostic value of T1 mapping and feature tracking by cardiac magnetic resonance in patients with signs and symptoms suspecting heart failure and no clinical evidence of coronary artery disease. J Am Heart Assoc 2022; 11(2): e020981.
[http://dx.doi.org/10.1161/JAHA.121.020981] [PMID: 35023344]
[9]
Warnica W, Al-Arnawoot A, Stanimirovic A, et al. Clinical impact of cardiac MRI T1 and T2 parametric mapping in patients with suspected cardiomyopathy. Radiology 2022; 305(2): 319-26.
[http://dx.doi.org/10.1148/radiol.220067] [PMID: 35787201]
[10]
Kammerlander AA, Donà C, Nitsche C, et al. Feature tracking of global longitudinal strain by using cardiovascular MRI improves risk stratification in heart failure with preserved ejection fraction. Radiology 2020; 296(2): 290-8.
[http://dx.doi.org/10.1148/radiol.2020200195] [PMID: 32484413]
[11]
Gerber BL, Rousseau MF, Ahn SA, et al. Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: Impact of revascularization therapy. J Am Coll Cardiol 2012; 59(9): 825-35.
[http://dx.doi.org/10.1016/j.jacc.2011.09.073] [PMID: 22361403]
[12]
Haghbayan H, Lougheed N, Deva DP, Chan KKW, Lima JAC, Yan AT. Peri-infarct quantification by cardiac magnetic resonance to predict outcomes in ischemic cardiomyopathy. Circ Cardiovasc Imaging 2019; 12(11): e009156.
[http://dx.doi.org/10.1161/CIRCIMAGING.119.009156] [PMID: 31735067]
[13]
Fischer K, Guensch DP, Jung B, et al. Insights into myocardial oxygenation and cardiovascular magnetic resonance tissue biomarkers in heart failure with preserved ejection fraction. Circ Heart Fail 2022; 15(4): e008903.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.121.008903] [PMID: 35038887]
[14]
McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2021; 42(36): 3599-726.
[http://dx.doi.org/10.1093/eurheartj/ehab368] [PMID: 34447992]
[15]
Kehr E, Sono M, Chugh SS, Jerosch-Herold M. Gadolinium-enhanced magnetic resonance imaging for detection and quantification of fibrosis in human myocardium in vitro. Int J Cardiovasc Imaging 2007; 24(1): 61-8.
[http://dx.doi.org/10.1007/s10554-007-9223-y] [PMID: 17429755]
[16]
Arsalan M, Squiers JJ, Filardo G, et al. Effect of elliptical LV outflow tract geometry on classification of aortic stenosis in a multidisciplinary heart team setting. JACC Cardiovasc Imaging 2017; 10(11): 1401-2.
[http://dx.doi.org/10.1016/j.jcmg.2016.10.009] [PMID: 28109922]
[17]
Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess 1994; 6(4): 284-90.
[http://dx.doi.org/10.1037/1040-3590.6.4.284]
[18]
Parlavecchio A, Vetta G, Caminiti R, et al. Which is the best Myocardial Work index for the prediction of coronary artery disease? A data meta‐analysis. Echocardiography 2023; 40(3): 217-26.
[http://dx.doi.org/10.1111/echo.15537] [PMID: 36748264]
[19]
Ohara T, Little WC. Evolving focus on diastolic dysfunction in patients with coronary artery disease. Curr Opin Cardiol 2010; 25(6): 613-21.
[http://dx.doi.org/10.1097/HCO.0b013e32833f0438] [PMID: 20827179]
[20]
Minczykowski A, Zwanzig M, Dziarmaga M, et al. First-phase left ventricular ejection fraction as an early sign of left ventricular dysfunction in patients with stable coronary artery disease. J Clin Med 2023; 12(3): 868.
[http://dx.doi.org/10.3390/jcm12030868] [PMID: 36769516]
[21]
Biering-Sørensen T, Solomon SD. Assessing contractile function when ejection fraction is normal. Circ Cardiovasc Imaging 2015; 8(11): e004181.
[http://dx.doi.org/10.1161/CIRCIMAGING.115.004181] [PMID: 26546484]
[22]
He J, Yang W, Wu W, et al. Early diastolic longitudinal strain rate at MRI and outcomes in heart failure with preserved ejection fraction. Radiology 2021; 301(3): 582-92.
[http://dx.doi.org/10.1148/radiol.2021210188] [PMID: 34519577]
[23]
Romano S, Judd RM, Kim RJ, et al. Feature-tracking global longitudinal strain predicts death in a multicenter population of patients with ischemic and nonischemic dilated cardiomyopathy incremental to ejection fraction and late gadolinium enhancement. JACC Cardiovasc Imaging 2018; 11(10): 1419-29.
[http://dx.doi.org/10.1016/j.jcmg.2017.10.024] [PMID: 29361479]
[24]
Massera D, Hu M, Delaney JA, et al. Adverse cardiac mechanics and incident coronary heart disease in the Cardiovascular Health Study. Heart 2022; 108(7): 529-35.
[http://dx.doi.org/10.1136/heartjnl-2021-319296] [PMID: 34257074]
[25]
Goedemans L, Abou R, Hoogslag GE, Ajmone Marsan N, Delgado V, Bax JJ. Left ventricular global longitudinal strain and long-term prognosis in patients with chronic obstructive pulmonary disease after acute myocardial infarction. Eur Heart J Cardiovasc Imaging 2019; 20(1): 56-65.
[http://dx.doi.org/10.1093/ehjci/jey028] [PMID: 29529225]
[26]
Medvedofsky D, Maffessanti F, Weinert L, et al. 2D and 3D echocardiography-derived indices of left ventricular function and shape. JACC Cardiovasc Imaging 2018; 11(11): 1569-79.
[http://dx.doi.org/10.1016/j.jcmg.2017.08.023] [PMID: 29153577]
[27]
Romano S, Judd RM, Kim RJ, et al. Feature-tracking global longitudinal strain predicts mortality in patients with preserved ejection fraction. JACC Cardiovasc Imaging 2020; 13(4): 940-7.
[http://dx.doi.org/10.1016/j.jcmg.2019.10.004] [PMID: 31727563]
[28]
Krittayaphong R, Boonyasirinant T, Saiviroonporn P, et al. Prognostic significance of left ventricular mass by magnetic resonance imaging study in patients with known or suspected coronary artery disease. J Hypertens 2009; 27(11): 2249-56.
[http://dx.doi.org/10.1097/HJH.0b013e3283309ac4] [PMID: 19829147]
[29]
Claus P, Omar AMS, Pedrizzetti G, Sengupta PP, Nagel E. Tissue tracking technology for assessing cardiac mechanics. JACC Cardiovasc Imaging 2015; 8(12): 1444-60.
[http://dx.doi.org/10.1016/j.jcmg.2015.11.001] [PMID: 26699113]
[30]
Wang J, Li Y, Guo YK, et al. The adverse impact of coronary artery disease on left ventricle systolic and diastolic function in patients with type 2 diabetes mellitus: a 3.0T CMR study. Cardiovasc Diabetol 2022; 21(1): 30.
[http://dx.doi.org/10.1186/s12933-022-01467-y] [PMID: 35193565]
[31]
Donekal S, Venkatesh BA, Liu YC, et al. Interstitial fibrosis, left ventricular remodeling, and myocardial mechanical behavior in a population-based multiethnic cohort: The Multi-Ethnic Study of Atherosclerosis (MESA) study. Circ Cardiovasc Imaging 2014; 7(2): 292-302.
[http://dx.doi.org/10.1161/CIRCIMAGING.113.001073] [PMID: 24550436]
[32]
Ferreira VM. T1 mapping of the remote myocardium. J Am Coll Cardiol 2018; 71(7): 779-81.
[http://dx.doi.org/10.1016/j.jacc.2017.12.021] [PMID: 29447740]
[33]
Kammerlander AA, Marzluf BA, Zotter-Tufaro C, et al. T1 mapping by CMR imaging. JACC Cardiovasc Imaging 2016; 9(1): 14-23.
[http://dx.doi.org/10.1016/j.jcmg.2015.11.002] [PMID: 26684970]
[34]
Brodov Y, Matezky S, Konen E, et al. Elevated native T1 values in the remote myocardium supplied by obstructive non-infarct related coronary arteries in post-STEMI CMR. Cardiology 2022; 148(2): 106-13.
[35]
Nakamori S, Dohi K, Ishida M, et al. Native T1 mapping and extracellular volume mapping for the assessment of diffuse myocardial fibrosis in dilated cardiomyopathy. JACC Cardiovasc Imaging 2018; 11(1): 48-59.
[http://dx.doi.org/10.1016/j.jcmg.2017.04.006] [PMID: 28624408]
[36]
Chen R, Wang J, Du Z, et al. The comparison of short-term prognostic value of T1 mapping with feature tracking by cardiovascular magnetic resonance in patients with severe dilated cardiomyopathy. Int J Cardiovasc Imaging 2019; 35(1): 171-8.
[http://dx.doi.org/10.1007/s10554-018-1444-8] [PMID: 30132161]
[37]
Ambale-Venkatesh B, Liu CY, Liu YC, et al. Association of myocardial fibrosis and cardiovascular events: the multi-ethnic study of atherosclerosis. Eur Heart J Cardiovasc Imaging 2019; 20(2): 168-76.
[http://dx.doi.org/10.1093/ehjci/jey140] [PMID: 30325426]
[38]
Wong TC, Piehler K, Meier CG, et al. Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 2012; 126(10): 1206-16.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.089409] [PMID: 22851543]
[39]
Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: A consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI). J Cardiovasc Magn Reson 2017; 19(1): 75.
[http://dx.doi.org/10.1186/s12968-017-0389-8] [PMID: 28992817]
[40]
Reinstadler SJ, Stiermaier T, Liebetrau J, et al. Prognostic significance of remote myocardium alterations assessed by quantitative noncontrast T1 mapping in ST-segment elevation myocardial infarction. JACC Cardiovasc Imaging 2018; 11(3): 411-9.
[http://dx.doi.org/10.1016/j.jcmg.2017.03.015] [PMID: 28624398]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy