Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Molecular Characteristics of Cephalosporin Resistant Escherichia coli and Klebsiella pneumoniae Isolated from Children in a Tertiary Care Centre of Central Kerala, India

Author(s): Santhosh J Thattil, Suresh Dhanaraj* and Thekkuttuparambil A Ajith

Volume 22, Issue 4, 2024

Published on: 14 March, 2024

Article ID: e140324227989 Pages: 7

DOI: 10.2174/0122113525296665240304071400

Price: $65

Abstract

Aims: The study was aimed to determine the molecular characteristics of extendedspectrum beta-lactamases (ESBL) producing cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolated from children below ten years of age.

Background: Geographically diverse variations in the prevalence of ESBL genes were reported. No data were available on the prevalence of ESBL genes in central Kerala, India, among children below 10 years of age.

Methods: A cross-sectional study was performed to analyze ESBL genes in cephalosporin-resistant E. coli and K. pneumoniae strains isolated from samples received in the Microbiology laboratory of a tertiary care centre during the period between May 2021 and July 2022. The strains showed that ESBL + cephalosporin resistance was subjected to PCR-based genotyping for the genes such as bla (beta-lactamase) CTX-M-1, blaCTX-M-15, blaCTX-M-U, blaTEM, blaPER and SHV.

Results: Among the total 228 samples analyzed, 136 (60%) had no growth. Ninety-two (40 %) samples showed growth of E. coli and K. pneumoniae. Among the isolates that showed growth, 39 (42%) were sensitive, and the remaining 53 (57%) were resistant to third-generation cephalosporins. Among the isolates showed resistance, 22 (42%) were ESBL positive and 31 (58%) were ESBL negative. Among the positive ESBL, nine E. coli strains (60%) were positive for CTX-M-15 and CTX-M-1. CTX-M-15 and CTX-M-U were present in six (85%) K. pneumoniae with ESBL +.

Conclusion: E. coli and K. pneumoniae isolated from specimens of children below ten years of age showed 41-42% ESBL producers. Prevalent ESBL-producing genes in E. coli were CTX-M- 15 and CTX-M-1. CTX-M-15 and CTX-M-U were prevalent in ESBL-producing K. pneumoniae.

Graphical Abstract

[1]
Global antimicrobial resistance and use surveillance system (GLASS) report; WHO: Geneva, 2022.
[2]
Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA, 2018, 115(15), E3463-E3470.
[http://dx.doi.org/10.1073/pnas.1717295115] [PMID: 29581252]
[3]
Algammal, A.; Hetta, H.F.; Mabrok, M.; Behzadi, P. Editorial: Emerging multidrug-resistant bacterial pathogens “superbugs”: A rising public health threat. Front. Microbiol., 2023, 14, 1135614.
[http://dx.doi.org/10.3389/fmicb.2023.1135614] [PMID: 36819057]
[4]
Behzadi, P.; García-Perdomo, H.A.; Karpiński, T.M.; Issakhanian, L. Metallo-ß-lactamases: A review. Mol. Biol. Rep., 2020, 47(8), 6281-6294.
[http://dx.doi.org/10.1007/s11033-020-05651-9] [PMID: 32654052]
[5]
Bajpai, T.; Pandey, M.; Varma, M.; Bhatambare, G.S. Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J. Med., 2017, 7(1), 12-16.
[http://dx.doi.org/10.4103/2231-0770.197508] [PMID: 28182026]
[6]
Lewis, J.S., II; Herrera, M.; Wickes, B.; Patterson, J.E.; Jorgensen, J.H. First report of the emergence of CTX-M-type extended-spectrum beta-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. health care system. Antimicrob. Agents Chemother., 2007, 51(11), 4015-4021.
[http://dx.doi.org/10.1128/AAC.00576-07] [PMID: 17724160]
[7]
Rossolini, G.M.; D’Andrea, M.M.; Mugnaioli, C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin. Microbiol. Infect., 2008, 14(Suppl. 1), 33-41.
[http://dx.doi.org/10.1111/j.1469-0691.2007.01867.x ] [PMID: 18154526]
[8]
Rocha, F.R.; Pinto, V.P.T.; Barbosa, F.C.B. The spread of CTX-M-type extended-spectrum β-lactamases in Brazil: A systematic review. Microb. Drug Resist., 2016, 22(4), 301-311.
[http://dx.doi.org/10.1089/mdr.2015.0180] [PMID: 26669767]
[9]
Bonnet, R. Growing group of extended-spectrum β-lactamases: The CTX-M enzymes. Antimicrob. Agents Chemother., 2004, 48(1), 1-14.
[http://dx.doi.org/10.1128/AAC.48.1.1-14.2004] [PMID: 14693512]
[10]
Castanheira, M; Simner, PJ; Bradford, PA Extended-spectrum β-lactamases: An update on their characteristics, epidemiology and detection. JAC Antimicrob Resist., 2021, 3(3), dlab092.
[http://dx.doi.org/10.1093/jacamr/dlab092]
[11]
Bastidas-Caldes, C.; Romero-Alvarez, D.; Valdez-Vélez, V.; Morales, R.D.; Montalvo-Hernández, A.; Gomes-Dias, C.; Calvopiña, M. Extended-spectrum beta-lactamases producing escherichia coli in South America: A systematic review with a one health perspective. Infect. Drug Resist., 2022, 15, 5759-5779.
[http://dx.doi.org/10.2147/IDR.S371845] [PMID: 36204394]
[12]
Karunasagar, I.; Rohit, A.; Deekshit, V.K.; Balaraj, M.; Alandur, V.S.; Abraham, G.; Karunasagar, I. CTX-M type extended-spectrum β-lactamase in Escherichia coli isolated from extra-intestinal infections in a tertiary care hospital in south India. Indian J. Med. Res., 2019, 149(2), 281-284.
[http://dx.doi.org/10.4103/ijmr.IJMR_2099_17] [PMID: 31219095]
[13]
Mohamudha Parveen, R.; Manivannan, S.; Harish, B.N.; Parija, S.C. Study of CTX-M type of extended spectrum β-lactamase among nosocomial isolates of Escherichia coli and klebsiella pneumoniae in South India. Indian J. Microbiol., 2012, 52(1), 35-40.
[http://dx.doi.org/10.1007/s12088-011-0140-3] [PMID: 23449681]
[14]
Document, C.L.S.I. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 2016. https://clsi.org/standards/products/microbiology/documents/m100/
[15]
Duttaroy, B.; Mehta, S. Extended spectrum b lactamases (ESBL) in clinical isolates of Klebsiella pneumoniae and Escherichia coli. Indian J. Pathol. Microbiol., 2005, 48(1), 45-48.
[PMID: 16758790]
[16]
Datta, P.; Thakur, A.; Mishra, B.; Gupta, V. Prevalence of clinical strains resistant to various beta-lactams in a tertiary care hospital in India. Jpn. J. Infect. Dis., 2004, 57(4), 146-149.
[PMID: 15329445]
[17]
Mushtaq, S.; Woodford, N.; Potz, N.; Livermore, D.M. Detection of CTX-M-15 extended-spectrum -lactamase in the United Kingdom. J. Antimicrob. Chemother., 2003, 52(3), 528-529.
[http://dx.doi.org/10.1093/jac/dkg353] [PMID: 12888591]
[18]
Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother., 2010, 65(3), 490-495.
[http://dx.doi.org/10.1093/jac/dkp498] [PMID: 20071363]
[19]
Muzaheed, D.Y.; Doi, Y.; Adams-Haduch, J.M.; Endimiani, A.; Sidjabat, H.E.; Gaddad, S.M.; Paterson, D.L. High prevalence of CTX-M-15-producing Klebsiella pneumoniae among inpatients and outpatients with urinary tract infection in Southern India. J. Antimicrob. Chemother., 2008, 61(6), 1393-1394.
[http://dx.doi.org/10.1093/jac/dkn109] [PMID: 18356153]
[20]
Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J. Antimicrob. Chemother., 2006, 57(1), 154-155.
[http://dx.doi.org/10.1093/jac/dki412] [PMID: 16284100]
[21]
Issakhanian, L.; Behzadi, P. Antimicrobial agents and urinary tract infections. Curr. Pharm. Des., 2019, 25(12), 1409-1423.
[http://dx.doi.org/10.2174/1381612825999190619130216] [PMID: 31218955]
[22]
Behzadi, P.; García-Perdomo, H.A.; Autrán Gómez, A.M.; Pinheiro, M.; Sarshar, M. Editorial: Uropathogens, urinary tract infections, the host-pathogen interactions and treatment. Front. Microbiol., 2023, 14, 1183236.
[http://dx.doi.org/10.3389/fmicb.2023.1183236] [PMID: 37032879]
[23]
Behzadi, P.; Belzadi, E. The microbial agents of urinary tract infections at central laboratory of Dr. Shariati hospital, Tehran, Iran. Turk. Klin. Tip Bilim. Derg., 2008, 28, 445-449.
[24]
Khurana, S.; Taneja, N.; Sharma, M. Extended spectrum beta-lactamase mediated resistance in urinary tract isolates of family enterobacteriaceae. Indian J. Med. Res., 2002, 116, 145-149.
[PMID: 12674828]
[25]
Jemima, S.A.; Verghese, S. Molecular characterization of nosocomial CTX-M type beta-lactamase producing Enterobacteriaceae from a tertiary care hospital in south India. Indian J. Med. Microbiol., 2008, 26(4), 365-368.
[PMID: 18974492]
[26]
Keshi, L.; Weiwei, X.; Shoulin, L.; Xiaodong, L.; Hao, W.; Junhai, J.; Xiangwei, W.; Rui, W.; Pei, Z. Analysis of drug resistance of extended-spectrum beta-lactamases-producing Escherichia coli and Klebsiella pneumoniae in children with urinary tract infection. Saudi Med. J., 2019, 40(11), 1111-1115.
[http://dx.doi.org/10.15537/smj.2019.11.24547] [PMID: 31707407]
[27]
Jena, J.; Debata, N.K.; Sahoo, R.K.; Gaur, M.; Subudhi, E. Molecular characterization of extended spectrum β-lactamase-producing Enterobacteriaceae strains isolated from a tertiary care hospital. Microb. Pathog., 2018, 115, 112-116.
[http://dx.doi.org/10.1016/j.micpath.2017.12.056] [PMID: 29274456]
[28]
Thattil, S.J.; Ajith, T.A. Emergence of third generation cephalosporin resistant escherichia coli in infants: Retrospective study from a tertiary care hospital in south india. Antiinfect. Agents, 2020, 18, 1-5.
[29]
Cantón, R.; González-Alba, J.M.; Galán, J.C. CTX-M enzymes: Origin and diffusion. Front. Microbiol., 2012, 3, 110.
[http://dx.doi.org/10.3389/fmicb.2012.00110] [PMID: 22485109]
[30]
Cantón, R.; Coque, T.M. The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol., 2006, 9(5), 466-475.
[http://dx.doi.org/10.1016/j.mib.2006.08.011] [PMID: 16942899]
[31]
Alonso, C.A.; Zarazaga, M.; Ben Sallem, R.; Jouini, A.; Ben Slama, K.; Torres, C. Antibiotic resistance in Escherichia coli in husbandry animals: The African perspective. Lett. Appl. Microbiol., 2017, 64(5), 318-334.
[http://dx.doi.org/10.1111/lam.12724] [PMID: 28208218]
[32]
Founou, R.C.; Founou, L.L.; Essack, S.Y. Clinical and economic impact of antibiotic resistance in developing countries: A systematic review and meta-analysis. PLoS One, 2017, 12(12), e0189621.
[http://dx.doi.org/10.1371/journal.pone.0189621] [PMID: 29267306]
[33]
Graham, D.W.; Knapp, C.W.; Christensen, B.T.; McCluskey, S.; Dolfing, J. Appearance of β-lactam resistance genes in agricultural soils and clinical isolates over the 20th century. Sci. Rep., 2016, 6(1), 21550.
[http://dx.doi.org/10.1038/srep21550] [PMID: 26878889]
[34]
Rawat, D.; Nair, D. Extended-spectrum ß-lactamases in gram negative bacteria. J. Glob. Infect. Dis., 2010, 2(3), 263-274.
[http://dx.doi.org/10.4103/0974-777X.68531] [PMID: 20927289]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy