Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Identification of Genes Encoded Toxin-Antitoxin System in Mycobacterium Tuberculosis Strains from Clinical Sample

Author(s): Karthikeyan Sundaram*, Leela Kagithakara Vajravelu, Ravichandiran Velayutham and Utpal Mohan

Volume 24, Issue 8, 2024

Published on: 14 March, 2024

Article ID: e140324227967 Pages: 9

DOI: 10.2174/0118715265274164240117104534

Price: $65

Abstract

Background: The toxin-antitoxin system is a genetic element that is highly present in Mycobacterium tuberculosis (MTB), the causative agent of tuberculosis. The toxin-antitoxin system comprises toxin protein and antitoxin protein or non-encoded RNA interacting with each other and inhibiting toxin activity. M. Tuberculosis has more classes of TA loci than non-tubercle bacilli and other microbes, including VapBC, HigBA, MazEF, ParDE, RelBE, MbcTA, PemIK, DarTG, MenTA, one tripartite type II TAC chaperone system, and hypothetical proteins.

Aims: The study aims to demonstrate the genes encoded toxin-antitoxin system in mycobacterium tuberculosis strains from clinical samples.

Materials and Methods: The pulmonary and extra-pulmonary tuberculosis clinical samples were collected, and smear microscopy (Ziehl-Neelsen staining) was performed for the detection of high bacilli (3+) count, followed by nucleic acid amplification assay. Bacterial culture and growth assay, genomic DNA extraction, and polymerase chain reaction were also carried out.

Results: The positive PTB and EPTB samples were determined by 3+ in microscopy smear and the total count of tubercle bacilli determined by NAAT assay was 8.0×1005 in sputum and 1.3×1004 CFU/ml in tissue abscess. Moreover, the genomic DNA was extracted from culture, and the amplification of Rv1044 and Rv1045 genes in 624 and 412 base pairs (between 600-700 and 400-500 in ladder), respectively, in the H37Rv and clinical samples was observed.

Conclusion: It has been found that Rv1044 and Rv1045 are hypothetical proteins with 624 and 882 base pairs belonging to the AbiEi/AbiEii family of toxin-antitoxin loci. Moreover, the significant identification of TA-encoded loci genes may allow for the investigation of multidrugresistant and extensively drug-resistant tuberculosis.

[1]
Tandon H, Sharma A, Wadhwa S, et al. Bioinformatic and mutational studies of related toxin–antitoxin pairs in Mycobacterium tuberculosis predict and identify key functional residues. J Biol Chem 2019; 294(23): 9048-63.
[http://dx.doi.org/10.1074/jbc.RA118.006814] [PMID: 31018964]
[2]
Global tuberculosis report. Who int 2023. Available from: Global tuberculosis report 2023 (who. int) [cited 25 Nov 2023].
[3]
Ramage HR, Connolly LE, Cox JS. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: Implications for pathogenesis, stress responses, and evolution. PLoS Genet 2009; 5(12): e1000767.
[http://dx.doi.org/10.1371/journal.pgen.1000767] [PMID: 20011113]
[4]
Richardson W, Kang GW, Lee HJ, Kwon KM, Kim S, Kim HJ. Chasing the structural diversity of the transcription regulator Mycobacterium tuberculosis HigA2. IUCrJ 2021; 8(5): 823-32.
[http://dx.doi.org/10.1107/S2052252521007715] [PMID: 34584743]
[5]
Sala A, Bordes P, Genevaux P. Multitasking SecB chaperones in bacteria. Front Microbiol 2014; 5(5): 666.
[http://dx.doi.org/10.3389/fmicb.2014.00666] [PMID: 25538690]
[6]
Ariyachaokun K, Grabowska AD, Gutierrez C, Neyrolles O. Multi-stress induction of the mycobacterium tuberculosis MbcTA bactericidal toxin-antitoxin system. Toxins 2020; 12(5): 329.
[http://dx.doi.org/10.3390/toxins12050329] [PMID: 32429486]
[7]
Ahn DH, Lee KY, Lee SJ, et al. Structural analyses of the MazEF4 toxin-antitoxin pair in Mycobacterium tuberculosis provide evidence for a unique extracellular death factor. J Biol Chem 2017; 292(46): 18832-47.
[http://dx.doi.org/10.1074/jbc.M117.807974] [PMID: 28972145]
[8]
Bordes P, Genevaux P. Control of toxin-antitoxin systems by proteases in mycobacterium tuberculosis. Front Mol Biosci 2021; 8: 691399.
[http://dx.doi.org/10.3389/fmolb.2021.691399] [PMID: 34079824]
[9]
Albrethsen J, Agner J, Piersma SR, et al. Proteomic profiling of mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol Cell Proteomics 2013; 12(5): 1180-91.
[http://dx.doi.org/10.1074/mcp.M112.018846] [PMID: 23345537]
[10]
Schifano JM, Cruz JW, Vvedenskaya IO, et al. tRNA is a new target for cleavage by a MazF toxin. Nucleic Acids Res 2016; 44(3): 1256-70.
[http://dx.doi.org/10.1093/nar/gkv1370] [PMID: 26740583]
[11]
Kang SM, Kim DH, Lee KY, et al. Functional details of the Mycobacterium tuberculosis VapBC26 toxin-antitoxin system based on a structural study: Insights into unique binding and antibiotic peptides. Nucleic Acids Res 2017; 45(14): 8564-80.
[http://dx.doi.org/10.1093/nar/gkx489] [PMID: 28575388]
[12]
Zaveri A, Wang R, Botella L, et al. Depletion of the DarG antitoxin in Mycobacterium tuberculosis triggers the DNA‐damage response and leads to cell death. Mol Microbiol 2020; 114(4): 641-52.
[http://dx.doi.org/10.1111/mmi.14571] [PMID: 32634279]
[13]
Roy TB, Sarma SP. Insights into the solution structure and transcriptional regulation of the MazE9 antitoxin inMYCOBACTERIUM TUBERCULOSIS. Proteins 2023; prot.26589..
[http://dx.doi.org/10.1002/prot.26589] [PMID: 37737533]
[14]
Saha R, Bhattacharje G, De S, Das AK. Deciphering the conformational stability of MazE7 antitoxin in Mycobacterium tuberculosis from molecular dynamics simulation study. J Biomol Struct Dyn 2023; 1-17.
[http://dx.doi.org/10.1080/07391102.2023.2280675] [PMID: 37965715]
[15]
Thakur Z, Saini V, Arya P, Kumar A, Mehta PK. Computational insights into promoter architecture of toxin-antitoxin systems of Mycobacterium tuberculosis. Gene 2018; 641: 161-71.
[http://dx.doi.org/10.1016/j.gene.2017.10.054] [PMID: 29066303]
[16]
Ziemski M, Leodolter J, Taylor G, Kerschenmeyer A, Weber-Ban E. Genome‐wide interaction screen for Mycobacterium tuberculosis ClpCP protease reveals toxin–antitoxin systems as a major sub-strate class. FEBS J 2021; 288(1): 99-114.
[http://dx.doi.org/10.1111/febs.15335] [PMID: 32301575]
[17]
Dougan DA, Alver R, Turgay K. Exploring a potential Achilles heel of Mycobacterium tuberculosis: Defining the ClpC1 interactome. FEBS J 2021; 288(1): 95-8.
[http://dx.doi.org/10.1111/febs.15430] [PMID: 32571006]
[18]
Andrews ESV, Arcus VL. PhoH2 proteins couple RNA helicase and RNAse activities. Protein Sci 2020; 29(4): 883-92.
[http://dx.doi.org/10.1002/pro.3814] [PMID: 31886915]
[19]
Cintrón M, Zeng JM, Barth VC, Cruz JW, Husson RN, Woychik NA. Accurate target identification for Mycobacterium tuberculosis endoribonuclease toxins requires expression in their native host. Sci Rep 2019; 9(1): 5949.
[http://dx.doi.org/10.1038/s41598-019-41548-9] [PMID: 30976025]
[20]
Kisuya J, Chemtai A, Raballah E, Keter A, Ouma C. The diagnostic accuracy of Th1 (IFN-γ, TNF-α, and IL-2) and Th2 (IL-4, IL-6 and IL-10) cytokines response in AFB microscopy smear negative PTB- HIV co-infected patients. Sci Rep 2019; 9(1): 2966.
[http://dx.doi.org/10.1038/s41598-019-39048-x] [PMID: 30814543]
[21]
Nikam C, Jagannath M, Narayanan MM, et al. Rapid diagnosis of Mycobacterium tuberculosis with Truenat MTB: A near-care approach. PLoS One 2013; 8(1): e51121.
[http://dx.doi.org/10.1371/journal.pone.0051121] [PMID: 23349670]
[22]
Yu X, Gao X, Zhu K, et al. Characterization of a toxin-antitoxin system in Mycobacterium tuberculosis suggests neutralization by phosphorylation as the antitoxicity mechanism. Commun Biol 2020; 3(1): 216.
[http://dx.doi.org/10.1038/s42003-020-0941-1] [PMID: 32382148]
[23]
Torrey HL, Keren I, Via LE, Lee JS, Lewis K. High persister mutants in mycobacterium tuberculosis. PLoS One 2016; 11(5): e0155127.
[http://dx.doi.org/10.1371/journal.pone.0155127] [PMID: 27176494]
[24]
Cruz JW, Sharp JD, Hoffer ED, et al. Growth-regulating mycobacterium tuberculosis VapC-mt4 toxin is an isoacceptor-specific tRNase. Nat Commun 2015; 6(1): 7480.
[http://dx.doi.org/10.1038/ncomms8480] [PMID: 26158745]
[25]
Ndhlovu V, Mandala W, Sloan D, Kamdolozi M, Caws M, Davies G. Evaluation of the efficacy of two methods for direct extraction of DNA from Mycobacterium tuberculosis sputum. J Infect Dev Ctries 2018; 12(12): 1067-72.
[http://dx.doi.org/10.3855/jidc.10592] [PMID: 32027607]
[26]
Kahbazi M, Sarmadian H, Ahmadi A, et al. Novel mutations in pncA gene of pyrazinamide resistant clinical isolates of mycobacterium tuberculosis. Sci Pharm 2018; 86(2): 15.
[http://dx.doi.org/10.3390/scipharm86020015] [PMID: 29659533]
[27]
Dhanaraj B, Papanna MK, Adinarayanan S, Vedachalam C, Sundaram V, Shanmugam S. Prevalence and risk factors for adult pulmonary tuberculosis in a metropolitan city of south India. plos one 2015; 10: e0124260.
[http://dx.doi.org/10.1371/journal.pone.0124260]
[28]
Eddabra R, Ait Benhassou H. Rapid molecular assays for detection of tuberculosis. Pneumonia 2018; 10(1): 4.
[http://dx.doi.org/10.1186/s41479-018-0049-2] [PMID: 29876241]
[29]
Sharma A, Sagar K, Chauhan NK, et al. HigB1 toxin in Mycobacterium tuberculosis is upregulated during stress and required to establish infection in guinea pigs. Front Microbiol 2021; 12: 748890.
[http://dx.doi.org/10.3389/fmicb.2021.748890] [PMID: 34917044]
[30]
Eun HJ, Lee J, Kang SJ, Lee BJ. The structural and functional investigation of the VapBC43 complex from Mycobacterium tuberculosis. Biochem Biophys Res Commun 2022; 616: 19-25.
[http://dx.doi.org/10.1016/j.bbrc.2022.05.061] [PMID: 35636251]
[31]
Lu Z, Wang H, Yu T. The SecB-like chaperone Rv1957 from Mycobacterium tuberculosis: Crystallization and X-ray crystallographic analysis. Acta Crystallogr F Struct Biol Commun 2016; 72(6): 457-61.
[http://dx.doi.org/10.1107/S2053230X16007287] [PMID: 27303898]
[32]
Dawson CC, Cummings JE, Starkey JM, Slayden RA. Discovery of a novel type IIb RelBE toxin‐antitoxin system in Mycobacterium tuberculosis defined by co‐regulation with an antisense RNA. Mol Microbiol 2022; 117(6): 1419-33.
[http://dx.doi.org/10.1111/mmi.14917] [PMID: 35526138]
[33]
Gupta M, Nayyar N, Chawla M, Sitaraman R, Bhatnagar R, Banerjee N. The chromosomal parDE2 toxin–antitoxin system of mycobacterium tuberculosis H37Rv: Genetic and functional characterization. Front Microbiol 2016; 7: 886.
[http://dx.doi.org/10.3389/fmicb.2016.00886] [PMID: 27379032]
[34]
Tandon H, Melarkode Vattekatte A, Srinivasan N, Sandhya S. Molecular and structural basis of cross-reactivity in M. tuberculosis toxin–antitoxin systems. Toxins 2020; 12(8): 481.
[http://dx.doi.org/10.3390/toxins12080481] [PMID: 32751054]
[35]
Deep A, Tiwari P, Agarwal S, et al. Structural, functional and biological insights into the role of Mycobacterium tuberculosis VapBC11 toxin–antitoxin system: Targeting a tRNase to tackle mycobacterial adaptation. Nucleic Acids Res 2018; 46(21): 11639-55.
[http://dx.doi.org/10.1093/nar/gky924] [PMID: 30329074]
[36]
Tiwari P, Arora G, Singh M, Kidwai S, Narayan OP, Singh R. MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat Commun 2015; 6(1): 6059.
[http://dx.doi.org/10.1038/ncomms7059] [PMID: 25608501]
[37]
Roy M, Kundu A, Bhunia A, Das Gupta S, De S, Das AK. Structural characterization of VapB46 antitoxin from Mycobacterium tuberculosis: Insights into VapB46– DNA binding. FEBS J 2019; 286(6): 1174-90.
[http://dx.doi.org/10.1111/febs.14737] [PMID: 30576065]
[38]
Bajaj RA, Arbing MA, Shin A, Cascio D, Miallau L. Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type II toxin involved in the hypoxic response. Acta Crystallogr F Struct Biol Commun 2016; 72(12): 863-9.
[http://dx.doi.org/10.1107/S2053230X16017957] [PMID: 27917833]
[39]
GenBank Overview Available from https://www.ncbi.nlm.nih.gov/genbank
[40]
Cai Y, Usher B, Gutierrez C, et al. A nucleotidyltransferase toxin inhibits growth of Mycobacterium tuberculosis through inactivation of tRNA acceptor stems. Sci Adv 2020; 6(31): eabb6651.
[http://dx.doi.org/10.1126/sciadv.abb6651] [PMID: 32923609]
[41]
Talwar S, Pandey M, Sharma C, et al. Role of VapBC12 toxin-antitoxin locus in cholesterol-induced mycobacterial persistence. mSystems 2020; 5(6): e00855-20.
[http://dx.doi.org/10.1128/mSystems.00855-20] [PMID: 33323416]
[42]
Sharma A, Chattopadhyay G, Chopra P, et al. VapC21 toxin contributes to drug-tolerance and interacts with non-cognate VapB32 antitoxin in mycobacterium tuberculosis. Front Microbiol 2020; 11: 2037.
[http://dx.doi.org/10.3389/fmicb.2020.02037] [PMID: 33042034]
[43]
Muthuramalingam M, White J, Bourne C. Toxin-antitoxin modules are pliable switches activated by multiple protease pathways. Toxins 2016; 8(7): 214.
[http://dx.doi.org/10.3390/toxins8070214] [PMID: 27409636]
[44]
Zhao J, Liu W, Xie W, Cao X, Yuan L. Viability, biofilm formation, and MazEF expression in drug-sensitive and drug-resistant Mycobacterium tuberculosis strains circulating in Xinjiang, China. Infect Drug Resist 2018; 11(11): 345-58.
[http://dx.doi.org/10.2147/IDR.S148648] [PMID: 29563815]
[45]
Kazemian H, Heidari H, Kardan-Yamchi J, et al. Comparison of toxin-antitoxin expression among drug-susceptible and drug-resistant clinical isolates of Mycobacterium tuberculosis. Adv Respir Med 2021; 89(2): 110-4.
[http://dx.doi.org/10.5603/ARM.a2021.0033] [PMID: 33966258]
[46]
Ramirez MV, Dawson CC, Crew R, England K, Slayden RA. MazF6 toxin of Mycobacterium tuberculosis demonstrates antitoxin specificity and is coupled to regulation of cell growth by a Soj-like protein. BMC Microbiol 2013; 13(1): 240.
[http://dx.doi.org/10.1186/1471-2180-13-240] [PMID: 24172039]
[47]
Barth VC, Woychik NA. The sole mycobacterium smegmatis mazf toxin targets tRNALys to impart highly selective, codon-dependent proteome reprogramming. Front Genet 2020; 10: 1356.
[http://dx.doi.org/10.3389/fgene.2019.01356] [PMID: 32117414]
[48]
Barth VC, Zeng JM, Vvedenskaya IO, Ouyang M, Husson RN, Woychik NA. Toxin-mediated ribosome stalling reprograms the Mycobacterium tuberculosis proteome. Nat Commun 2019; 10(1): 3035.
[http://dx.doi.org/10.1038/s41467-019-10869-8] [PMID: 31292443]
[49]
Hoffer ED, Miles SJ, Dunham CM. The structure and function of Mycobacterium tuberculosis MazF-mt6 toxin provide insights into conserved features of MazF endonucleases. J Biol Chem 2017; 292(19): 7718-26.
[http://dx.doi.org/10.1074/jbc.M117.779306] [PMID: 28298445]
[50]
Chen R, Zhou J, Xie W. Mechanistic insight into the peptide binding modes to two M. tb mazf toxins. Toxins 2021; 13(5): 319.
[http://dx.doi.org/10.3390/toxins13050319] [PMID: 33925254]
[51]
Park JY, Kim HJ, Pathak C, et al. Induced DNA bending by unique dimerization of HigA antitoxin. IUCrJ 2020; 7(4): 748-60.
[http://dx.doi.org/10.1107/S2052252520006466] [PMID: 32695421]
[52]
Schuessler DL, Cortes T, Fivian-Hughes AS, et al. Induced ectopic expression of HigB toxin inM ycobacterium tuberculosis results in growth inhibition, reduced abundance of a subset of mRNAs and cleavage of tmRNA. Mol Microbiol 2013; 90(1): 195-207.
[http://dx.doi.org/10.1111/mmi.12358] [PMID: 23927792]
[53]
Beck IN, Usher B, Hampton HG, Fineran PC, Blower TR. Antitoxin autoregulation of M. tuberculosis toxin-antitoxin expression through negative cooperativity arising from multiple inverted repeat sequences. Biochem J 2020; 477(12): 2401-19.
[http://dx.doi.org/10.1042/BCJ20200368] [PMID: 32519742]
[54]
Xie Y, Wei Y, Shen Y, et al. TADB 2.0: An updated database of bacterial type II toxin–antitoxin loci. Nucleic Acids Res 2018; 46(D1): D749-53.
[http://dx.doi.org/10.1093/nar/gkx1033] [PMID: 29106666]
[55]
Shao Y, Harrison EM, Bi D, et al. TADB: A web-based resource for Type 2 toxin–antitoxin loci in bacteria and archaea. Nucleic Acids Res 2011; 39(Database issue) (Suppl. 1): D606-11.
[http://dx.doi.org/10.1093/nar/gkq908] [PMID: 20929871]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy