Generic placeholder image

Current Functional Foods

Editor-in-Chief

ISSN (Print): 2666-8629
ISSN (Online): 2666-8637

Review Article

Exploration of the Synergistic Effects of Phytoconstituents of Ashwagandha, Amla, and Ginger as a Potent Immunity-Boosting Agent for Covid-19 Affected Individuals

In Press, (this is not the final "Version of Record"). Available online 11 March, 2024
Author(s): Raktimava Das Sarkar, Aryama Bose and Anandamoy Rudra*
Published on: 11 March, 2024

Article ID: e110324227875

DOI: 10.2174/0126668629277959240218104457

Price: $95

Abstract

The ongoing threat of COVID-19 has prompted us to search for innovative strategies to enhance immune responses in affected patients. Phytoconstituents derived from Ashwagandha, Amla, and Ginger have gained attention due to their historical usage in traditional medicine and potential immune-modulatory, antioxidant, and antiviral properties. This review investigates the synergistic effects of phytoconstituents from Ashwagandha, Amla, and Ginger to identify potential immunity-boosting agents for COVID-19 patients. The investigation involved a comprehensive analysis of the immune-modulatory compounds present in Ashwagandha, the high vitamin C content in Amla, and the immunomodulatory constituents in Ginger. The concept of "phytochemical synergy" was explored, hypothesizing that their combined effects could enhance antiviral capabilities. The combined phytoconstituents from Ashwagandha, Amla, and Ginger demonstrated a potential synergistic interaction, suggesting an amplified immune-boosting effect. The adaptogenic properties of Ashwagandha, the rich vitamin C source in Amla, and the immunomodulatory components of Ginger appeared to complement each other, contributing to a holistic approach to viral resistance. While the investigation into the synergy of Ashwagandha, Amla, and Ginger holds promise as an immunity-boosting strategy, careful consideration is warranted due to factors like appropriate dosing, safety profiles, and potential interactions with conventional treatments. This study underscores the significance of combining traditional wisdom with modern research efforts. As the world continues to combat the complexities of COVID-19, exploring these botanical sources serves as a reminder of the abundant resources nature offers. While further rigorous research and clinical trials are essential, pursuing these phytoconstituents exemplifies our commitment to exploring all viable avenues in the battle against COVID-19.

[1]
Poles J, Karhu E, McGill M, McDaniel HR, Lewis JE. The effects of twenty-four nutrients and phytonutrients on immune system function and inflammation: A narrative review. J Clin Transl Res 2021; 7(3): 333-76.
[PMID: 34239993]
[2]
GPT-3. 5, a language model by OpenAI. 2023. Available from: https://chat.openai.com/c/a5ad1118-0a0d-4683-9d19-a7e2a2e73a25
[3]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[4]
Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: A modelling study. Lancet 2020; 395(10225): 689-97.
[http://dx.doi.org/10.1016/S0140-6736(20)30260-9] [PMID: 32014114]
[5]
Hui DS, I Azhar E, Madani TA, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health: The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis 2020; 91: 264-6.
[http://dx.doi.org/10.1016/j.ijid.2020.01.009] [PMID: 31953166]
[6]
Deng SQ, Peng HJ. Characteristics of and public health responses to the coronavirus disease 2019 outbreak in China. J Clin Med 2020; 9(2): 575.
[http://dx.doi.org/10.3390/jcm9020575] [PMID: 32093211]
[7]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[8]
Jiang S, Du L, Shi Z. An emerging coronavirus causing pneumonia outbreak in Wuhan, China: Calling for developing therapeutic and prophylactic strategies. Emerg Microbes Infect 2020; 9(1): 275-7.
[http://dx.doi.org/10.1080/22221751.2020.1723441] [PMID: 32005086]
[9]
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323(13): 1239-42.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[10]
Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[11]
Eurosurveillance editorial team. Note from the editors: World Health Organization declares novel coronavirus (2019-nCoV) sixth public health emergency of international concern. Euro Surveill 2020; 25(5): 200131e.
[PMID: 32019636]
[12]
Khanal P, Chikhale R, Dey YN, et al. Withanolides from Withania somnifera as an immunity booster and their therapeutic options against COVID-19. J Biomol Struct Dyn 2022; 40(12): 5295-308.
[http://dx.doi.org/10.1080/07391102.2020.1869588] [PMID: 33459174]
[13]
Langade DG, Choudhary B, Shetty A. Efficacy of ashwagandha (Withania somnifera [L. Dunal) in improving cardiorespiratory endurance in healthy athletic adults. Ayu 2015; 36(1): 63-8.
[http://dx.doi.org/10.4103/0974-8520.169002] [PMID: 26730141]
[14]
Dubey S, Singh M, Nelson A, Karan D. A perspective on Withania somnifera modulating antitumor immunity in targeting prostate cancer. J Immunol Res 2021; 2021: 1-11.
[http://dx.doi.org/10.1155/2021/9483433] [PMID: 34485538]
[15]
Singh M, Jayant K, Singh D, et al. Withania somnifera (L.) Dunal (Ashwagandha) for the possible therapeutics and clinical management of SARS-CoV-2 infection: Plant-based drug discovery and targeted therapy. Front Cell Infect Microbiol 2022; 12: 933824.
[http://dx.doi.org/10.3389/fcimb.2022.933824] [PMID: 36046742]
[16]
Saggam A, Limgaokar K, Borse S, et al. Withania somnifera (L.) Dunal: Opportunity for clinical repurposing in COVID-19 management. Front Pharmacol 2021; 12: 623795.
[http://dx.doi.org/10.3389/fphar.2021.623795] [PMID: 34012390]
[17]
Shree P, Mishra P, Selvaraj C, et al. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – a molecular docking study. J Biomol Struct Dyn 2022; 40(1): 190-203.
[http://dx.doi.org/10.1080/07391102.2020.1810778] [PMID: 32851919]
[18]
Bhardwaj VK, Singh R, Sharma J, Rajendran V, Purohit R, Kumar S. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. J Biomol Struct Dyn 2020; 1-10.
[http://dx.doi.org/10.1080/07391102.2020.1766572] [PMID: 32397940]
[19]
Bhoj VG, Chen ZJ. Ubiquitylation in innate and adaptive immunity. Nature 2009; 458(7237): 430-7.
[http://dx.doi.org/10.1038/nature07959] [PMID: 19325622]
[20]
Biswas A, Bhattacharjee U, Chakrabarti AK, Tewari DN, Banu H, Dutta S. Emergence of novel coronavirus and COVID-19: Whether to stay or die out? Crit Rev Microbiol 2020; 46(2): 182-93.
[http://dx.doi.org/10.1080/1040841X.2020.1739001] [PMID: 32282268]
[21]
Cai Z, Zhang G, Tang B, Liu Y, Fu X, Zhang X. Promising anti-influenza properties of active constituent of Withania somnifera ayurvedic herb in targeting neuraminidase of H1N1 influenza: Computational study. Cell Biochem Biophys 2015; 72(3): 727-39.
[http://dx.doi.org/10.1007/s12013-015-0524-9] [PMID: 25627548]
[22]
Chavan SA, Ulhe AG, Berad BN, Chikhale RV. Synthesis and molecular docking studies of glucose-linked isonicotinoyl-1, 3, 4-thiadiazolidines as antitubercular agents. Lett Org Chem 2017; 15(1): 15-22.
[http://dx.doi.org/10.2174/1570178614666170608130326]
[23]
Chengappa KNR, Brar JS, Gannon JM, Schlicht PJ. Adjunctive use of a standardized extract of Withania somnifera (Ashwagandha) to treat symptom exacerbation in schizophrenia: A randomized, double-blind, placebo-controlled study. J Clin Psychiatry 2018; 79(5)
[http://dx.doi.org/10.4088/JCP.17m11826]
[24]
Chikhale R, Thorat S, Choudhary RK, Gadewal N, Khedekar P. Design, synthesis and anticancer studies of novel aminobenzazolyl pyrimidines as tyrosine kinase inhibitors. Bioorg Chem 2018; 77: 84-100.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.008] [PMID: 29342447]
[25]
Chikhale RV, Gurav SS, Patil RB, et al. Sars-COV-2 host entry and replication inhibitors from Indian ginseng: An in-silico approach. J Biomol Struct Dyn 2020; 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1778539] [PMID: 32568012]
[26]
Chikhale RV, Sinha SK, Patil RB, et al. In-silico investigation of phytochemicals from Asparagus racemosus as plausible antiviral agent in COVID-19. J Biomol Struct Dyn 2020; 1-15.
[http://dx.doi.org/10.1080/07391102.2020.1784289] [PMID: 32579064]
[27]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[28]
Daina A, Zoete V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016; 11(11): 1117-21.
[http://dx.doi.org/10.1002/cmdc.201600182] [PMID: 27218427]
[29]
Dassault Systèmes. BIOVIA Discovery Studio 2019. Available from: https://discover.3ds.com/discovery-studio-visualizer-download
[30]
Dey YN, Khanal P, Patil BM, et al. The role of andrographolide and its derivative in COVID-19 associated proteins and immune system. Res Sq 2020; 1-22.
[http://dx.doi.org/10.21203/rs.3.rs-35800/v1]
[31]
Duyu T, Khanal P, Ashrafali Khatib N, Mahadevagouda Patil B. Mimosa pudica modulates neuroactive ligand receptor interaction in Parkinson’s disease. Indian J Pharm Educ Res 2020; 54(3): 732-9.
[http://dx.doi.org/10.5530/ijper.54.3.124]
[32]
Egan WJ, Lauri G. Prediction of intestinal permeability. Adv Drug Deliv Rev 2002; 54(3): 273-89.
[http://dx.doi.org/10.1016/S0169-409X(02)00004-2] [PMID: 11922948]
[33]
Egan WJ, Merz KM Jr, Baldwin JJ. Prediction of drug absorption using multivariate statistics. J Med Chem 2000; 43(21): 3867-77.
[http://dx.doi.org/10.1021/jm000292e] [PMID: 11052792]
[34]
Gurav NS, Gurav SS, Sakharwade SN. Studies on Ashwagandha Ghrita with reference to murcchana process and storage conditions. J Ayurveda Integr Med 2020; 11(3): 243-9.
[http://dx.doi.org/10.1016/j.jaim.2019.10.004] [PMID: 32139244]
[35]
Gurav S, Gurav N. Herbal drug microscopy. In: Gurav S, Gurav N, Eds. Indian herbal drug microscopy. (1st ed.). Springer Sciences 2014; pp. 186-7.
[http://dx.doi.org/10.1007/978-1-4614-9515-4_4]
[36]
Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem 1996; 17(5-6): 490-519.
[37]
Johnson DS, Chen YH. Ras family of small GTPases in immunity and inflammation. Curr Opin Pharmacol 2012; 12(4): 458-63.
[http://dx.doi.org/10.1016/j.coph.2012.02.003] [PMID: 22401931]
[38]
Khanal P, Duyu T, Patil BM, Dey YN, Pasha I, Kavalapure RS. In silico screening of JAK-STAT modulators from the antiviral plants of Indian traditional system of medicine with the potential to inhibit 2019 novel coronavirus using network pharmacology. 3 Biotech 2020; 11(3): 119.
[http://dx.doi.org/10.21203/rs.3.rs-32233/v1]
[39]
Khanal P, Patil BM. Gene set enrichment analysis of alpha-glucosidase inhibitors from Ficus benghalensis. Asian Pac J Trop Biomed 2019; 9(6): 263-70.
[http://dx.doi.org/10.4103/2221-1691.260399]
[40]
Khanal P, Patil BM. α-Glucosidase inhibitors from Duranta repens modulate p53 signaling pathway in diabetes mellitus. Advances in Traditional Medicine 2020; 20(3): 427-38.
[http://dx.doi.org/10.1007/s13596-020-00426-w]
[41]
Khanal P, Patil BM. Gene ontology enrichment analysis of α-amylase inhibitors from Duranta repens in diabetes mellitus. J Diabetes Metab Disord 2020; 19(2): 735-47.
[http://dx.doi.org/10.1007/s40200-020-00554-9] [PMID: 33520800]
[42]
Khanal P, Patil BM. Integration of network and experimental pharmacology to decipher the antidiabetic action of Duranta repens L. J Integr Med 2020; 19(1): 66-77.
[http://dx.doi.org/10.1016/j.joim.2020.10.003] [PMID: 33071211]
[43]
Khanal P, Patil BM, Chand J, Naaz Y. Anthraquinone derivatives as an immune booster and their therapeutic option against COVID-19. Nat Prod Bioprospect 2020; 10(5): 325-35.
[http://dx.doi.org/10.1007/s13659-020-00260-2] [PMID: 32772313]
[44]
Kuhn JH, Li W, Choe H, Farzan M. Angiotensin-converting enzyme 2: A functional receptor for SARS coronavirus. Cell Mol Life Sci 2004; 61(21): 2738-43.
[http://dx.doi.org/10.1007/s00018-004-4242-5] [PMID: 15549175]
[45]
Lagunin A, Ivanov S, Rudik A, Filimonov D, Poroikov V. DIGEP-Pred: Web service for in silico prediction of drug-induced gene expression profiles based on structural formula. Bioinformatics 2013; 29(16): 2062-3.
[http://dx.doi.org/10.1093/bioinformatics/btt322] [PMID: 23740741]
[46]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[47]
Lindner HA, Fotouhi-Ardakani N, Lytvyn V, Lachance P, Sulea T, Ménard R. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J Virol 2005; 79(24): 15199-208.
[http://dx.doi.org/10.1128/JVI.79.24.15199-15208.2005] [PMID: 16306591]
[48]
Patil R, Chikhale R, Khanal P, et al. Computational and network pharmacology analysis of bioflavonoids as possible natural antiviral compounds in COVID-19. Informatics in Medicine Unlocked 2021; 22: 100504.
[http://dx.doi.org/10.1016/j.imu.2020.100504] [PMID: 33363251]
[49]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and autodockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[50]
Mosmann TR, Kobie JJ, Lee FEH, Quataert SA. T helper cytokine patterns: Defined subsets, random expression, and external modulation. Immunol Res 2009; 45(2-3): 173-84.
[http://dx.doi.org/10.1007/s12026-009-8098-5] [PMID: 19198763]
[51]
Muñoz-Fontela C, Mandinova A, Aaronson SA, Lee SW. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol 2016; 16(12): 741-50.
[http://dx.doi.org/10.1038/nri.2016.99] [PMID: 27667712]
[52]
Muralikrishnan G, Dinda AK, Shakeel F. Immunomodulatory effects of Withania somnifera on azoxymethane induced experimental colon cancer in mice. Immunol Invest 2010; 39(7): 688-98.
[http://dx.doi.org/10.3109/08820139.2010.487083] [PMID: 20840055]
[53]
Opitz B, van Laak V, Eitel J, Suttorp N. Innate immune recognition in infectious and noninfectious diseases of the lung. Am J Respir Crit Care Med 2010; 181(12): 1294-309.
[http://dx.doi.org/10.1164/rccm.200909-1427SO] [PMID: 20167850]
[54]
Palliyaguru DL, Singh SV, Kensler TW. Withania somnifera: From prevention to treatment of cancer. Mol Nutr Food Res 2016; 60(6): 1342-53.
[http://dx.doi.org/10.1002/mnfr.201500756] [PMID: 26718910]
[55]
Pedersen BK, Hoffman-Goetz L. Exercise and the immune system: Regulation, integration, and adaptation. Physiol Rev 2000; 80(3): 1055-81.
[http://dx.doi.org/10.1152/physrev.2000.80.3.1055] [PMID: 10893431]
[56]
Poroikov VV, Filimonov DA, Ihlenfeldt WD, et al. PASS biological activity spectrum predictions in the enhanced open NCI database browser. J Chem Inf Comput Sci 2003; 43(1): 228-36.
[http://dx.doi.org/10.1021/ci020048r] [PMID: 12546557]
[57]
Sattler S. The role of the immune system beyond the fight against infection. Adv Exp Med Biol 2017; 1003: 3-14.
[http://dx.doi.org/10.1007/978-3-319-57613-8_1] [PMID: 28667551]
[58]
Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 2003; 31(13): 3381-5.
[http://dx.doi.org/10.1093/nar/gkg520] [PMID: 12824332]
[59]
Science News. COVID-19: The immune system can fight back. 2020. Available from: https://www.sciencedaily.com/releases/2020/03/200317103815.htm
[60]
Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[61]
Sinha SK, Prasad SK, Islam MA, et al. Identification of bioactive compounds from Glycyrrhiza glabra as possible inhibitor of SARS-CoV-2 spike glycoprotein and non-structural protein-15: A pharmacoinformatics study. J Biomol Struct Dyn 2020; 1-15.
[http://dx.doi.org/10.1080/07391102.2020.1762741] [PMID: 32552462]
[62]
Sinha SK, Shakya A, Prasad SK, et al. An in-silico evaluation of different Saikosaponins for their potency against SARS-CoV-2 using NSP15 and fusion spike glycoprotein as targets. J Biomol Struct Dyn 2020; 1-12.
[http://dx.doi.org/10.1080/07391102.2020.1762741] [PMID: 32345124]
[63]
Chikhale RV, Sinha SK, Khanal P, et al. Computational and network pharmacology studies of Phyllanthus emblica to tackle SARS-CoV-2. Phytomedicine Plus 2021; 1(3): 100095.
[http://dx.doi.org/10.1016/j.phyplu.2021.100095] [PMID: 35399824]
[64]
Malve H, More D, More A. Effects of two formulations containing Phyllanthus emblica and Tinospora cordifolia with and without Ocimum sanctum in immunocompromised mice. J Ayurveda Integr Med 2021; 12(4): 682-8.
[http://dx.doi.org/10.1016/j.jaim.2021.06.021] [PMID: 34799208]
[65]
Jantan I, Haque MA, Ilangkovan M, Arshad L. An insight into the modulatory effects and mechanisms of action of phyllanthus species and their bioactive metabolites on the immune system. Front Pharmacol 2019; 10: 878.
[http://dx.doi.org/10.3389/fphar.2019.00878] [PMID: 31440162]
[66]
Nguse M, Yang Y, Fu Z, Xu J, Ma L, Bu D. Phyllanthus emblica (Amla) fruit powder as a supplement to improve preweaning dairy calves’ health: Effect on antioxidant capacity, immune response, and gut bacterial diversity. Biology 2022; 11(12): 1753.
[http://dx.doi.org/10.3390/biology11121753] [PMID: 36552263]
[67]
Saini R, Kumar V, Patel CN, Sourirajan A, Dev K. Synergistic antibacterial activity of Phyllanthus emblica fruits and its phytocompounds with ampicillin: A computational and experimental study. Naunyn Schmiedebergs Arch Pharmacol 2023. Epub ahead of print
[http://dx.doi.org/10.1007/s00210-023-02624-0] [PMID: 37522914]
[68]
Nashine S, Kanodia R, Nesburn AB, Soman G, Kuppermann BD, Kenney MC. Nutraceutical effects of Emblica officinalis in age-related macular degeneration. Aging 2019; 11(4): 1177-88.
[http://dx.doi.org/10.18632/aging.101820] [PMID: 30792375]
[69]
Parveen A, Zahiruddin S, Agarwal N, Akhtar Siddiqui M, Husain Ansari S, Ahmad S. Modulating effects of the synergistic combination of extracts of herbal drugs on cyclophosphamide-induced immunosuppressed mice. Saudi J Biol Sci 2021; 28(11): 6178-90.
[http://dx.doi.org/10.1016/j.sjbs.2021.06.076] [PMID: 34764748]
[70]
Zhong ZG, Luo XF, Huang JL, et al. Study on the effect of extracts from the leaves of Phyllanthus emblica on immune function of mice. Zhong Yao Cai 2013; 36(6): 441-4.
[71]
Abankwa JK, Dotse E, Appiah-Opong R, Nyarko AK. Antioxidant and anti-prostate cancer activities of Moringa oleifera, Phyllanthus amarus and Carica papaya. Hea Sci Invest J 2020; 1(1): 24-30.
[http://dx.doi.org/10.46829/hsijournal.2020.6.1.1.24-30]
[72]
Abd Rani NZ, Lam KW, Jalil J, Mohamad HF, Mat Ali MS, Husain K. Mechanistic studies of the antiallergic activity of Phyllanthus amarus schum. & thonn. and its compounds. Molecules 2021; 26(3): 695.
[http://dx.doi.org/10.3390/molecules26030695]
[73]
Abhyankar G, Suprasanna P, Pandey BN, Mishra KP, Rao KV, Reddy VD. Hairy root extract of Phyllanthus amarus induces apoptotic cell death in human breast cancer cells. Innov Food Sci Emerg Technol 2010; 11(3): 526-32.
[http://dx.doi.org/10.1016/j.ifset.2010.02.005]
[74]
Abo KA, Fred-Jaiyesimi AA, Jaiyesimi AEA. Ethnobotanical studies of medicinal plants used in the management of diabetes mellitus in South Western Nigeria. J Ethnopharmacol 2008; 115(1): 67-71.
[http://dx.doi.org/10.1016/j.jep.2007.09.005] [PMID: 17950547]
[75]
Acharyulu NPS, Dubey RS, Swaminadham V, Kollu P, Kalyani RL, Pammi SVN. Green synthesis of CuO nanoparticles using Phyllanthus amarus leaf extract and their antibacterial activity against multidrug resistance bacteria. Int J Eng Res Technol 2014; 3(4): 1.
[76]
Acheampong DO, Owusu-Adzorah N, Armah FA, et al. Ethnopharmacological evaluation of schistosomicidal and cercaricidal activities of some selected medicinal plants from Ghana. Trop Med Health 2020; 48(1): 19.
[http://dx.doi.org/10.1186/s41182-020-00205-y] [PMID: 32308530]
[77]
Adedapo AA, Abatan MO, Akinloye AK, Idowu SO, Olorunsogo OO. Morphometric and histopathological studies on the effects of some chromatographic fractions of Phyllanthus amarus and Euphorbia hirta on the male reproductive organs of rats. J Vet Sci 2003; 4(2): 181-5.
[http://dx.doi.org/10.4142/jvs.2003.4.2.181] [PMID: 14610373]
[78]
Adedapo AA, Abatan MO, Idowu SO, Olorunsogo OO. Toxic effects of chromatographic fractions of Phyllanthus amarus on the serum biochemistry of rats. Phytother Res 2005; 19(9): 812-5.
[http://dx.doi.org/10.1002/ptr.1721] [PMID: 16220579]
[79]
Adedapo A, Ofuegbe SO. Anti-inflammatory and analgesic activities of soft drink leaf extract of Phyllanthus amarus in some laboratory animals. Br Biotechnol J 2013; 3(2): 191-204.
[http://dx.doi.org/10.9734/BBJ/2013/2953]
[80]
Adedapo AA, Ofuegbe SO. The evaluation of the hypoglycemic effect of soft drink leaf extract of Phyllanthus amarus (Euphorbiaceae) in rats. jbcpp 2014; 25(1): 47-57.
[http://dx.doi.org/10.1515/jbcpp-2013-0033] [PMID: 23817600]
[81]
Adedayo BC, Ogunsuyi OB, Akinniyi ST, Oboh G. Effect of Andrographis paniculata and Phyllanthus amarus leaf extracts on selected biochemical indices in Drosophila melanogaster model of neurotoxicity. Drug Chem Toxicol 2020; 1: 1-10.
[http://dx.doi.org/10.1080/01480545.2019.1708377] [PMID: 31899970]
[82]
Adegoke AA, Iberi PA, Akinpelu DA, Aiyegoro OA, Mboto CI. Studies on phytochemical screening and antimicrobial potentials of Phyllanthus amarus against multiple antibiotic resistant bacteria. Int J Appl Res Nat Prod 2010; 3: 6-12.
[83]
Adejoro IA, Babatunde DD, Tolufashe GF. Molecular docking and dynamic simulations of some medicinal plants compounds against SARS-CoV-2: An in silico study. J Taibah Univ Sci 2020; 14(1): 1563-70.
[http://dx.doi.org/10.1080/16583655.2020.1848049]
[84]
Adeneye AA, Amole OO, Adeneye AK. Hypoglycemic and hypocholesterolemic activities of the aqueous leaf and seed extract of Phyllanthus amarus in mice. Fitoterapia 2006; 77(7-8): 511-4.
[http://dx.doi.org/10.1016/j.fitote.2006.05.030] [PMID: 16905277]
[85]
[86]
Adeneye AA, Benebo AS. Protective effect of the aqueous leaf and seed extract of Phyllanthus amarus on gentamicin and acetaminophen-induced nephrotoxic rats. J Ethnopharmacol 2008; 118(2): 318-23.
[http://dx.doi.org/10.1016/j.jep.2008.04.025] [PMID: 18554830]
[87]
Adjanohoun EJ, Ahyi MRA, Ake Assi L, et al. Contribution to ethnobotanical and floristic studies in Togo. Paris. Cultural and Technical Cooperation Agency. 1986; 1: p. 671.
[88]
Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Sci 2012; 196: 67-76.
[http://dx.doi.org/10.1016/j.plantsci.2012.07.014] [PMID: 23017900]
[89]
Agrawal A, Srivastava S, Srivastava JN, Srivasava MM. Evaluation of inhibitory effect of the plant Phyllanthus amarus against dermatophytic fungi Microsporum gypseum. Biomed Environ Sci 2004; 17(3): 359-65.
[PMID: 15602834]
[90]
Ahirrao YA, Patil DA. Indigenous healthcare practices in Buldhana district (Maharashtra). Indian J Nat Prod Resour 2010; 1: 85-8.
[91]
Ahmad B, Alam T. Components from whole plant of Phyllanthus amarus Linn. Indian J Chem - B Org. Med Chem 2003; 42: 1786-90.
[92]
Aryaeian N, Shahram F, Mahmoudi M, et al. The effect of ginger supplementation on some immunity and inflammation intermediate genes expression in patients with active Rheumatoid Arthritis. Gene 2019; 698: 179-85.
[http://dx.doi.org/10.1016/j.gene.2019.01.048] [PMID: 30844477]
[93]
Asghar MU, Rahman A, Hayat Z, et al. Exploration of Zingiber officinale effects on growth performance, immunity and gut morphology in broilers. Braz J Biol 2023; 83: e250296.
[http://dx.doi.org/10.1590/1519-6984.250296] [PMID: 34669804]
[94]
Boozari M, Hosseinzadeh H. Natural products for COVID ‐19 prevention and treatment regarding to previous coronavirus infections and novel studies. Phytother Res 2021; 35(2): 864-76.
[http://dx.doi.org/10.1002/ptr.6873] [PMID: 32985017]
[95]
Abdullah S, Abidin SAZ, Murad NA, Makpol S, Wan Ngah WZ, Mohd Yuso YA. Ginger extract (Zingiber officinale) triggers apoptosis and G0/G1 cells arrest in HCT 116 and HT 29 colon cancer cell lines. Afr J Biochem Res 2010; 4: 134-42.
[http://dx.doi.org/10.5897/AJBR.9000126]
[96]
Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006; 71(10): 1397-421.
[http://dx.doi.org/10.1016/j.bcp.2006.02.009] [PMID: 16563357]
[97]
Ajayi BO, Adedara IA, Farombi EO. Pharmacological activity of 6-gingerol in dextran sulphate sodium-induced ulcerative colitis in BALB/c mice. Phytother Res 2015; 29(4): 566-72.
[http://dx.doi.org/10.1002/ptr.5286] [PMID: 25631463]
[98]
Ajayi BO, Olajide TA, Olayinka ET. 6-gingerol attenuates pulmonary inflammation and oxidative stress in mice model of house dust mite-induced asthma. Advan Red Res 2022; 5: 100036.
[http://dx.doi.org/10.1016/j.arres.2022.100036]
[99]
Ajazuddin SS, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010; 81(7): 680-9.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[100]
Akram A, Rasul A, Waqas MK, et al. Development, characterization and evaluation of in vitro anti-inflammatory activity of ginger extract based micro emulsion. Pak J Pharm Sci 2019; 32(3 Special): 1327-32.
[PMID: 31551211]
[101]
Algandaby MM, El-halawany AM, Abdallah HM, et al. Gingerol protects against experimental liver fibrosis in rats via suppression of pro-inflammatory and profibrogenic mediators. Naunyn Schmiedebergs Arch Pharmacol 2016; 389(4): 419-28.
[http://dx.doi.org/10.1007/s00210-016-1210-1] [PMID: 26809353]
[102]
Ali RA, Knight JS. Natural gingerols inhibit neutrophil extracellular trap release elicited by lupus autoantibodies. Arthritis rheumatol 2018. Available from: https://acrabstracts.org/abstract/natural-gingerols-inhibit-neutrophil-extracellular-trap-release-elicited-by-lupus-autoantibodies/ (Accessed August 5, 2022).
[103]
Ali R, Weiner J, Gandhi A, Estes S, Knight J. Potent anti-neutrophil properties of the natural compound 6-gingerol in models of lupus and antiphospholipid syndrome. Arthritis Rheumatol 2019. Available from: https://acrabstracts.org/abstract/potent-anti-neutrophil-properties-of-the-natural-compound-6-gingerol-in-models-of-lupus-and-antiphospholipid-syndrome/
[104]
Alolga RN, Wang F, Zhang X, Li J, Tran LSP, Yin X. Bioactive compounds from the Zingiberaceae Family with known antioxidant activities for possible therapeutic uses. Antioxidants 2022; 11(7): 1281.
[http://dx.doi.org/10.3390/antiox11071281] [PMID: 35883772]
[105]
Amorndoljai P, Taneepanichskul S, Niempoog S, Nimmannit U. A comparative of ginger extract in Nanostructure Lipid Carrier (NLC) and 1% diclofenac gel for treatment of knee osteoarthritis (OA). J Med Assoc Thai 2017; 100(4): 447-56.
[PMID: 29911849]
[106]
Amri M, Touil-Boukoffa C. In vitro anti-hydatic and immunomodulatory effects of ginger and [6]-gingerol. Asian Pac J Trop Med 2016; 9(8): 749-56.
[http://dx.doi.org/10.1016/j.apjtm.2016.06.013] [PMID: 27569883]
[107]
Arablou T, Aryaeian N. The effect of ginger (Zingiber Officinale) as an ancient medicinal plant on improving blood lipids. J Herb Med 2018; 12: 11-5.
[http://dx.doi.org/10.1016/j.hermed.2017.09.005]
[108]
Arcusa R, Villaño D, Marhuenda J, Cano M, Cerdà B, Zafrilla P. Potential role of Ginger (Zingiber officinale Roscoe) in the prevention of neurodegenerative diseases. Front Nutr 2022; 9: 809621.
[http://dx.doi.org/10.3389/fnut.2022.809621] [PMID: 35369082]
[109]
Dara MA, Mohammed AW, Bnar MI. Antimicrobial and antioxidant activities of extracts from medicinal plant ginger (Zingiber officinale) and identification of components by gas chromatography. Afr J Plant Sci 2015; 9(10): 412-20.
[http://dx.doi.org/10.5897/AJPS2015.1345]
[110]
Baskar V, Selvakumar K, Madhan R, Srinivasan G, Muralidharan M. Study on improving bioavailability ratio of anti-inflammatory compound from ginger through nano transdermal delivery. Asian J Pharm Clin Res 2012; 5(3): 241-6.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy