Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Investigating Ayurvedic Strategies: An In-Depth Examination of Managing Diabetes across Different Types

In Press, (this is not the final "Version of Record"). Available online 11 March, 2024
Author(s): Acharya Balkrishna, Prashant Katiyar*, Jaya Upreti, Muskan Chauhan, Dushyant Sharma, Sandeep Kumar and Vedpriya Arya
Published on: 11 March, 2024

Article ID: e110324227871

DOI: 10.2174/0115733998284193240227041720

Price: $95

Abstract

In light of the escalating global concern surrounding diabetes mellitus, contemporary medical practices predominantly hinge on pharmaceutical interventions, accompanied by inherent side effects and enduring limitations. This investigation accentuates a discernible research void regarding the amalgamation of Ayurvedic principles an age-old traditional medical system with prevalent approaches to diabetes management. Despite Ayurveda's promising potential in furnishing a comprehensive and personalized strategy for diabetes treatment, the imperative for further research and collaboration between Ayurvedic practitioners and contemporary healthcare professionals becomes evident. Existing scholarly works underscore the potential advantages of Ayurveda in delivering holistic diabetes care, encompassing not only glycemic control but also fostering overall well-being. Nevertheless, a closer examination reveals specific limitations, challenges, and gaps in current research, necessitating targeted efforts to enable a more exhaustive exploration of Ayurvedic interventions within diabetes management. This comprehensive review scrutinizes Ayurvedic recommendations pertaining to dietary practices, lifestyle adjustments, and herbal therapeutics, shedding light on their plausible efficacy. It serves as a clarion call for heightened research endeavors, aiming to bridge existing gaps and carve a pathway toward an integrated, patientcentric paradigm in diabetes care. In summary, as diabetes prevalence continues to rise globally, the study underscores the limitations of current pharmaceutical-centric approaches and highlights the need for extensive research and collaboration to unlock the full potential of Ayurvedic principles in providing a more holistic and personalized framework for diabetes management. The review navigates through Ayurvedic recommendations, emphasizing the urgency for intensified research efforts to fill existing gaps and pave the way for a seamlessly integrated, patient-focused approach to diabetes care.

[1]
Banerjee S, Debnath P, Rao PN, Tripathy TB, Adhikari A, Debnath PK. Ayurveda in changing scenario of diabetes management for developing safe and effective treatment choices for the future. J Complement Integr Med 2015; 12(2): 101-10.
[http://dx.doi.org/10.1515/jcim-2014-0012] [PMID: 25719345]
[2]
Shivashankar M, Mani D. A brief overview of diabetes. Int J Pharm Pharm Sci 2011; 3(4): 22-7.
[3]
Manyam BV. Diabetes mellitus, Ayurveda, and yoga. J Altern Complement Med 2004; 10(2): 223-5.
[http://dx.doi.org/10.1089/107555304323062185] [PMID: 15165400]
[4]
Kad VS, Tupe MB, Kore NV. Role of Ayurveda in prevention and cure of Madhumeha. World J Pharm Med Res 2020; 6(5): 163-7.
[5]
Sahu K, Chandrakar R. Role of the Ayurveda in prevention and management of lifestyle disorder. World J Pharm Res 2023; 12(4): 1589-96.
[6]
Nagar D, Nagar J. Diabetes mellitus: Prevention and control by dincharya. World J Pharm Res 2017; 6(3): 1141-7.
[7]
Seneviratne SN, Rajindrajith S. Fetal programming of obesity and type 2 diabetes. World J Diabetes 2022; 13(7): 482-97.
[http://dx.doi.org/10.4239/wjd.v13.i7.482] [PMID: 36051425]
[8]
Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nat Rev Endocrinol 2021; 17(3): 150-61.
[http://dx.doi.org/10.1038/s41574-020-00443-4] [PMID: 33293704]
[9]
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci 2020; 21(17): 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[10]
Gordon A, Buch Z, Baute V, Coeytaux R. Use of ayurveda in the treatment of type 2 diabetes mellitus. Glob Adv Health Med 2019; 8
[http://dx.doi.org/10.1177/2164956119861094] [PMID: 31431828]
[11]
Modzelewski R, Stefanowicz-Rutkowska MM, Matuszewski W, Bandurska-Stankiewicz EM. Gestational diabetes mellitus—recent literature review. J Clin Med 2022; 11(19): 5736.
[http://dx.doi.org/10.3390/jcm11195736] [PMID: 36233604]
[12]
[13]
Chandla A, Tomer R, Gupta R. Gestational diabetes mellitus management through Ayurveda. World J Pharm Pharm Sci 2017; 6(12): 1906-19.
[14]
Balaji PA, Varne SR. Physiological effects of yoga asanas and pranayama on metabolic parameters, maternal, and fetal outcome in gestational diabetes. Natl J Physiol Pharm Pharmacol 2017; 7(7): 724-8.
[15]
Zakaria H, Abusanana S, Mussa BM, et al. The role of lifestyle interventions in the prevention and treatment of gestational diabetes mellitus. Medicina 2023; 59(2): 287.
[http://dx.doi.org/10.3390/medicina59020287] [PMID: 36837488]
[16]
Bishwal RK, Dhanya T, Samantaray S. Ayurvedic lifestyle to prevent diabetes mellitus. Int J Creat Res Thought 2018; 6(1): 1331-9.
[17]
Malaza N, Masete M, Adam S, Dias S, Nyawo T, Pheiffer C. A systematic review to compare adverse pregnancy outcomes in women with pregestational diabetes and gestational diabetes. Int J Environ Res Public Health 2022; 19(17): 10846.
[http://dx.doi.org/10.3390/ijerph191710846] [PMID: 36078559]
[18]
Przezak A, Bielka W, Pawlik A. Hypertension and type 2 diabetes—the novel treatment possibilities. Int J Mol Sci 2022; 23(12): 6500.
[http://dx.doi.org/10.3390/ijms23126500] [PMID: 35742943]
[19]
Hu FB. Globalization of diabetes. Diabetes Care 2011; 34(6): 1249-57.
[http://dx.doi.org/10.2337/dc11-0442] [PMID: 21617109]
[20]
Mancusi C, Izzo R, di Gioia G, Losi MA, Barbato E, Morisco C. Insulin resistance the hinge between hypertension and type 2 diabetes. High Blood Press Cardiovasc Prev 2020; 27(6): 515-26.
[http://dx.doi.org/10.1007/s40292-020-00408-8] [PMID: 32964344]
[21]
Usui I. Common metabolic features of hypertension and type 2 diabetes. Hypertens Res 2023; 46(5): 1227-33.
[http://dx.doi.org/10.1038/s41440-023-01233-x] [PMID: 36869145]
[22]
Mambiya M, Shang M, Wang Y, et al. The play of genes and non-genetic factors on type 2 diabetes. Front Public Health 2019; 7: 349.
[http://dx.doi.org/10.3389/fpubh.2019.00349] [PMID: 31803711]
[23]
Bhardwaj R, Gangary SK. Ayurvedic management of diabetes mellitus type-II: A case study. JAHM 2020; 6(2): 60-2.
[http://dx.doi.org/10.31254/jahm.2020.6207]
[24]
Swati S, Agarwal P. Diabetes mellitus: An Ayurvedic view. J Sci Innov Res 2015; 4(4): 193-6.
[http://dx.doi.org/10.31254/jsir.2015.4408]
[25]
Pandey S. Lifestyle disorders: Health solutions from Ayurveda. Int J Res Med Sci and Tech 2018; 6: 116-8.
[26]
Grandy S, Fox K M. EQ-5D visual analog scale and utility index values in individuals with diabetes and at risk for diabetes: Findings from the Study to Help Improve Early evaluation and management of risk factors Leading to Diabetes (SHIELD). Health Qual Life Out 2008; 6: 1-7.
[27]
Jia G, Sowers JR. Hypertension in diabetes: An update of basic mechanisms and clinical disease. Hypertension 2021; 78(5): 1197-205.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.121.17981] [PMID: 34601960]
[28]
Li A, Peng Q, Shao Y, Fang X, Zhang Y. The interaction on hypertension between family history and diabetes and other risk factors. Sci Rep 2021; 11(1): 4716.
[http://dx.doi.org/10.1038/s41598-021-83589-z] [PMID: 33633182]
[29]
Tran DH, Wang ZV. Glucose metabolism in cardiac hypertrophy and heart failure. J Am Heart Assoc 2019; 8(12): e012673.
[http://dx.doi.org/10.1161/JAHA.119.012673] [PMID: 31185774]
[30]
Hudish LI, Reusch JEB, Sussel L. β Cell dysfunction during progression of metabolic syndrome to type 2 diabetes. J Clin Invest 2019; 129(10): 4001-8.
[http://dx.doi.org/10.1172/JCI129188] [PMID: 31424428]
[31]
Janssen JAMJL. Hyperinsulinemia and its pivotal role in aging, obesity, type 2 diabetes, cardiovascular disease and cancer. Int J Mol Sci 2021; 22(15): 7797.
[http://dx.doi.org/10.3390/ijms22157797] [PMID: 34360563]
[32]
Jain C, Ansarullah , Bilekova S, Lickert H. Targeting pancreatic β cells for diabetes treatment. Nat Metab 2022; 4(9): 1097-108.
[http://dx.doi.org/10.1038/s42255-022-00618-5] [PMID: 36131204]
[33]
Hyun CK. Molecular and pathophysiological links between metabolic disorders and inflammatory bowel diseases. Int J Mol Sci 2021; 22(17): 9139.
[http://dx.doi.org/10.3390/ijms22179139] [PMID: 34502047]
[34]
Wang X, Antony V, Wang Y, Wu G, Liang G. Pattern recognition receptor‐mediated inflammation in diabetic vascular complications. Med Res Rev 2020; 40(6): 2466-84.
[http://dx.doi.org/10.1002/med.21711] [PMID: 32648967]
[35]
Ezeani IU, Chukwuonye II, Onyeonoro UU, Chuku A, Ogah OS. Prevalence and risk factors for diabetes mellitus in a state in South East Nigeria: Results of a population-based house-to-house survey. Curr Diabetes Rev 2020; 16(2): 181-7.
[http://dx.doi.org/10.2174/1573399815666190619142708] [PMID: 31250762]
[36]
Lakshmanan AP, Shatat IF, Zaidan S, et al. Bifidobacterium reduction is associated with high blood pressure in children with type 1 diabetes mellitus. Biomed Pharmacother 2021; 140: 111736.
[http://dx.doi.org/10.1016/j.biopha.2021.111736] [PMID: 34034069]
[37]
Rajpal A, Rahimi L, Ismail-Beigi F. Factors leading to high morbidity and mortality of COVID ‐19 in patients with type 2 diabetes. J Diabetes 2020; 12(12): 895-908.
[http://dx.doi.org/10.1111/1753-0407.13085] [PMID: 32671936]
[38]
Koshiyama M. The effects of the dietary and nutrient intake on gynecologic cancers. Healthcare 2019; 7(3): 88.
[http://dx.doi.org/10.3390/healthcare7030088] [PMID: 31284691]
[39]
Charitha Koneru S, Sikand G, Agarwala A. Optimizing dietary patterns and lifestyle to reduce atherosclerotic cardiovascular risk among South Asian individuals. Am J Cardiol 2023; 203: 113-21.
[http://dx.doi.org/10.1016/j.amjcard.2023.06.078] [PMID: 37487405]
[40]
Kdeiss B. Dietary Fatty Acids and the Brain: Mechanisms Behind Neurodegeneration and Neuroprotection. Theses, Dissertations & Projects; Loma Linda University Electronic 2022.
[41]
Sharma R, Amin H, Ruknuddin G, Prajapati P. Efficacy of Ayurvedic remedies in type 2 diabetes: A review through works done at Gujarat Ayurved University, Jamnagar. JMNN 2015; 4(2): 63-9.
[http://dx.doi.org/10.4103/2278-019X.151812]
[42]
Cheung NW. The management of gestational diabetes. Vas Health Risk Man. Taylor & Francis, Routledge 2009; 5: pp. 153-64.
[43]
Wankhede M, Bhamre V. Ayurvedic approach in treatment of Diabetes Mellitus. Aayushi 2021; 8(11): 51-5.
[44]
Raveendran AV, Deshpandae A, Joshi SR. Therapeutic role of yoga in type 2 diabetes. Endocrinol Metab 2018; 33(3): 307-17.
[http://dx.doi.org/10.3803/EnM.2018.33.3.307] [PMID: 30112866]
[45]
Mehta DD, Marlewar SG, Gaikwad SV, Dewaikar SJ. Rajswala Paricharya, dincharya, ritucharya- Need of modern era, to avoid menstrual disorders. World J Pharm Res 2019; 8(7): 2122-35.
[46]
Sarkar PK, Thakkar J, Chaudhari S. Ritucharya : Answer to the lifestyle disorders. Ayu 2011; 32(4): 466-71.
[http://dx.doi.org/10.4103/0974-8520.96117] [PMID: 22661838]
[47]
Kapur M. Psychological perspectives on childcare in Indian indigenous health systems. New Delhi: Springer India 2016.
[http://dx.doi.org/10.1007/978-81-322-2428-0]
[48]
Joshi SV. Ayurveda and panchakarma: The science of healing and rejuvenation. Lotus Press 1997.
[49]
Rushton EA. The body balance diet plan: Stop cravings, lose weight and energize your body with the science of ayurveda. Watkins Media Limited 2015.
[50]
Singh R, Kishore L, Kaur N. Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol Res 2014; 80: 21-35.
[http://dx.doi.org/10.1016/j.phrs.2013.12.005] [PMID: 24373831]
[51]
Devi S, Kala S. Role of yoga-nidra and shirodhara on hypertensive patients. Int J Yoga Allied Sci 2015; 4(1): 22-7.
[52]
Hegazy GA, Alnoury AM, Gad HG. The role of Acacia Arabica extract as an antidiabetic, antihyperlipidemic, and antioxidant in streptozotocin-induced diabetic rats. Saudi Med J 2013; 34(7): 727-33.
[PMID: 23860893]
[53]
Sharma D, Verma S, Kumar S, et al. Hydroethanolic leaf extract of Acacia auriculiformis exhibited antidiabetic and antioxidant activities. Egypt. J Basic Appl Sci 2022; 9: 372-82.
[54]
Waheed A, Miana GA, Sharafatullah T, Ahmad SI. Clinical investigation of hypoglycemic effect of unripe fruit on Momordica charantia in type-2 (NIDDM) diabetes mellitus. Pak J Pharmacol 2008; 25: 7-12.
[55]
Yadav NP, Chanotia CS. Phytochemical and pharmacological profile of leaves of Aegle marmelos Linn. Pharm Rev 2009; 11: 144-50.
[56]
Nigam V, Nambiar VS. Therapeutic potential of Aegle marmelos (L.) Correa leaves as an antioxidant and anti-diabetic agent: A review. Int J Pharm Sci Res 2015; 6(3): 611-21.
[57]
Ahmad W, Amir M, Ahmad A, et al. Aegle marmelos leaf extract phytochemical analysis, cytotoxicity, in vitro antioxidant and antidiabetic activities. Plants 2021; 10(12): 2573.
[http://dx.doi.org/10.3390/plants10122573] [PMID: 34961044]
[58]
Augusti KT. Therapeutic values of onion (Allium cepa L.) and garlic (Allium sativum L.). Indian J Exp Biol 1996; 34(7): 634-40.
[PMID: 8979497]
[59]
Kumari K, Augusti KT. Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats. Indian J Exp Biol 2002; 40(9): 1005-9.
[60]
Mrinal P, Uttam R, Subinay D, Tapas G, Shanwer H, Lekha B. Onion peel extracts ameliorate oxidative stress in streptozotocin-induced diabetic rats. Serb J Exp Clin Res 2013; 14(3): 101-8.
[http://dx.doi.org/10.5937/sjecr14-4346]
[61]
Sabiu S, Madende M, Ajao AAN, Aladodo RA, Nurain IO, Ahmad JB. The Genus Allium (Amaryllidaceae: Alloideae): Features, phytoconstituents, and mechanisms of antidiabetic potential of Allium cepa and Allium sativum. Bioactive Food as Dietary Interventions for Diabetes. Academic Press 2019; pp. 137-54.
[http://dx.doi.org/10.1016/B978-0-12-813822-9.00009-6]
[62]
Eidi A, Eidi M, Esmaeili E. Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats. Phytomedicine 2006; 13(9-10): 624-9.
[http://dx.doi.org/10.1016/j.phymed.2005.09.010] [PMID: 17085291]
[63]
Mostofa M, Choudhury ME, Hossain MA, Islam MZ, Islam MS, Sumon MH. Antidiabetic effects of Catharanthus roseus, Azadirachta indica, Allium sativum and glimepride in experimentally diabetic induced rat. Bangladesh J Vet Med 2007; 5(1): 99-102.
[64]
Elkayam A, Mirelman D, Peleg E, et al. The effects of allicin on weight in fructose-induced hyperinsulinemic, hyperlipidemic, hypertensive rats. Am J Hypertens 2003; 16(12): 1053-6.
[http://dx.doi.org/10.1016/j.amjhyper.2003.07.011] [PMID: 14643581]
[65]
Sharma S, Tandon S, Semwal BC, Singh K. Momordica charantia Linn: A comprehensive Revie on Bitter Remedy. J Pharm Res 2011; 1: 42-7.
[66]
Subramoniam A, Pushpangadan P, Rajasekharan S, Evans DA, Latha PG, Valsaraj R. Effects of Artemisia pallens Wall. on blood glucose levels in normal and alloxan-induced diabetic rats. J Ethnopharmacol 1996; 50(1): 13-7.
[http://dx.doi.org/10.1016/0378-8741(95)01329-6] [PMID: 8778502]
[67]
Ghazanfar K, Ganai BA, Akbar S, et al. Antidiabetic activity of Artemisia amygdalina Decne in streptozotocin induced diabetic rats. BioMed Res Int 2014; 2014: 1-10.
[http://dx.doi.org/10.1155/2014/185676] [PMID: 24967338]
[68]
Victor M, Abbey PA, Joseph Y, Jonathan Z, Bobai YK, Maria O. An underexploited tropical plant with promising economic value and the window of opportunities for researchers: Cnidoscolus aconitifolius. Am J Food Sci Nutr Res 2016; 3(6): 177.
[69]
Shen XL, Duan LL. Advances in chemical constituents and pharmacology of areca. J Yichun Coll 2009; 31: 95-7.
[70]
Mondal S, Bhattacharya S, Biswas M. Antidiabetic activity of Areca catechu leaf extracts against streptozotocin induced diabetic rats. J Adv Pharm Educ Res 2012; 2(1): 10-7.
[71]
Shwetha UR, Latha MS, Rajith Kumar CR, Kiran MS, Betageri VS. Facile synthesis of zinc oxide nanoparticles using novel Areca catechu leaves extract and their in vitro antidiabetic and anticancer studies. J Inorg Organomet Polym Mater 2020; 30(12): 4876-83.
[http://dx.doi.org/10.1007/s10904-020-01575-w]
[72]
Sonia B, Srinivasan BP. Investigations into the anti-diabetic activity of Azadirachta indica. Indian J Pharm 1999; 31(2): 138.
[73]
Patil P, Patil S, Mane A, Verma S. Antidiabetic activity of alcoholic extract of Neem (Azadirachta Indica) root bark. Natl J Physiol Pharm Pharmacol 2013; 3(2): 142-6.
[http://dx.doi.org/10.5455/njppp.2013.3.134-138]
[74]
Satyanarayana K, Sravanthi K, Shaker IA, Ponnulakshmi R. Molecular approach to identify antidiabetic potential of Azadirachta indica. J Ayurveda Integr Med 2015; 6(3): 165-74.
[http://dx.doi.org/10.4103/0975-9476.157950] [PMID: 26604551]
[75]
Ramadan BK, Schaalan MF, Tolba AM. Hypoglycemic and pancreatic protective effects of Portulaca oleracea extract in alloxan induced diabetic rats. BMC Complement Altern Med 2017; 17(1): 37.
[http://dx.doi.org/10.1186/s12906-016-1530-1] [PMID: 28077129]
[76]
Bolkent Ş, Yanardağ R, Tabakoğlu-Oğuz A, Özsoy-Saçan Ö. Effects of chard (Beta vulgaris L. var. cicla) extract on pancreatic B cells in streptozotocin-diabetic rats: A morphological and biochemical study. J Ethnopharmacol 2000; 73(1-2): 251-9.
[http://dx.doi.org/10.1016/S0378-8741(00)00328-7] [PMID: 11025163]
[77]
Hashem AN, Soliman MS, Hamed MA, Swilam NF, Lindequist U, Nawwar MA. Beta vulgaris subspecies cicla var. flavescens (Swiss chard): Flavonoids, hepatoprotective and hypolipidemic activities. Pharmazie 2016; 71(4): 227-32.
[PMID: 27209705]
[78]
Chempakam B. Hypoglycemic activity of arecoline in betel nut Areca catechu L. Indian J Exp Biol 1993; 31(5): 474-5.
[79]
Kanagavalli U, Bhuvaneshwari B, Sadiq MA. Anti-diabetic activity of Boerhaavia diffusa against alloxan-induced diabetic rats. Int J Pharma Bio Sci 2015; 6(5): 1215-9.
[80]
Patel SS, Verma NK, Rathore B, Nayak G, Singhai AK, Singh P. Cardioprotective effect of Bombax ceiba flowers against acute adriamycin-induced myocardial infarction in rats. Rev Bras Farmacogn 2011; 21(4): 704-9.
[http://dx.doi.org/10.1590/S0102-695X2011005000090]
[81]
Elhaki AMM, El-B AN, Eldi KE, Abdelhalim A, Sha ES. Protective and curative effects of Bombax ceiba flower and Ziziphus spina christi fruit extracts on gastric ulcer. J Biol Sci 2019; 19(2): 161-72.
[http://dx.doi.org/10.3923/jbs.2019.161.172]
[82]
Lino CS, Diógenes JPL, Pereira BA, et al. Antidiabetic activity of Bauhinia forficata extracts in alloxan-diabetic rats. Biol Pharm Bull 2004; 27(1): 125-7.
[http://dx.doi.org/10.1248/bpb.27.125] [PMID: 14709915]
[83]
Kaleem M, Asif M, Ahmed QU, Bano B. Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin-induced diabetic rats. Singapore Med J 2006; 47(8): 670-5.
[PMID: 16865205]
[84]
Agyemang K, Han L, Liu E, Zhang Y, Wang T, Gao X. Recent advances in Astragalus membranaceus anti-diabetic research: pharmacological effects of its phytochemical constituents. Evid Based Complement Alternat Med 2013; 2013: 1-9.
[http://dx.doi.org/10.1155/2013/654643] [PMID: 24348714]
[85]
Ezike AC, Akah PA, Okoli CC, Okpala CB. Experimental evidence for the antidiabetic activity of Cajanus cajan leaves in rats. J Basic Clin Pharm 2010; 1(2): 81-4.
[PMID: 24825970]
[86]
Zia-Ul-Haq M, Ćavar S, Qayum M, Imran I, Feo V. Compositional studies: antioxidant and antidiabetic activities of Capparis decidua (Forsk.) Edgew. Int J Mol Sci 2011; 12(12): 8846-61.
[http://dx.doi.org/10.3390/ijms12128846] [PMID: 22272107]
[87]
Nmila R, Gross R, Rchid H, et al. Insulinotropic effect of Citrullus colocynthis fruit extracts. Planta Med 2000; 66(5): 418-23.
[http://dx.doi.org/10.1055/s-2000-8586] [PMID: 10909260]
[88]
Mubeen B, Rasool MG, Ullah I, et al. Phytochemicals mediated synthesis of AuNPs from Citrullus colocynthis and their characterization. Molecules 2022; 27(4): 1300.
[http://dx.doi.org/10.3390/molecules27041300] [PMID: 35209086]
[89]
Singh R, Rajasree PH, Sankar C. Screening for anti-diabetic activity of the ethanolic extract of Bryonia alba roots. Int J Pharm Biol Sci 2012; 2(3): 210-5.
[90]
Patra A, Jha S, Sahu AN. Antidiabetic activity of aqueous extract of eucalyptus citriodora hook. in alloxan induced diabetic rats. Pharmacogn Mag 2009; 5(19): 51-4.
[91]
Chauhan A, Sharma PK, Srivastava P, Kumar N, Dudhe R. Plants having potential antidiabetic activity: A review. Pharm Lett 2010; 2(3): 369-87.
[92]
Arai I, Amagaya S, Komatsu Y, et al. Improving effects of the extracts from Eugenia uniflora on hyperglycemia and hypertriglyceridemia in mice. J Ethnopharmacol 1999; 68(1-3): 307-14.
[http://dx.doi.org/10.1016/S0378-8741(99)00066-5] [PMID: 10624893]
[93]
Gupta V, Gupta M, Sharma SJ. J Med Plants Res 2011; 5: 1582-8.
[94]
Pothuraju R, Sharma RK, Chagalamarri J, Jangra S, Kumar Kavadi P. A systematic review of Gymnema sylvestre in obesity and diabetes management. J Sci Food Agric 2014; 94(5): 834-40.
[http://dx.doi.org/10.1002/jsfa.6458] [PMID: 24166097]
[95]
Pethe M, Yelwatkar S, Manchalwar S, Gujar V. Evaluation of biological effects of hydroalcoholic extract of Hibiscus rosa sinensis flowers on alloxan induced diabetes in rats. Drug Res 2017; 67(8): 485-92.
[http://dx.doi.org/10.1055/s-0043-109434] [PMID: 28521371]
[96]
Lina HZ, Samy MM, Samir AEB, Fatma AM, Kawther MT, Abdelaaty AS. Hypoglycemic and antioxidant effects of Hibiscus rosa-sinensis L. leaves extract on liver and kidney damage in streptozotocin induced diabetic rats. Afr J Pharm Pharmacol 2017; 11(13): 161-9.
[http://dx.doi.org/10.5897/AJPP2017.4764]
[97]
Al-Snafi AE. Chemical constituents, pharmacological effects and therapeutic importance of Hibiscus rosa-sinensis-A review. IOSR J Pharm 2018; 8(7): 101-19.
[98]
Akhtar N, Akram M, Daniyal M, Ahmad S. Evaluation of antidiabetic activity of Ipomoea batatas L. extract in alloxan-induced diabetic rats. Int J Immunopathol Pharmacol 2018; 32
[http://dx.doi.org/10.1177/2058738418814678] [PMID: 30477357]
[99]
Ijeoma N, Obinna A, Elvis NI, Uchenna E. In vitro hypoglycemic effect and antimicrobial activity of methanol extract of underutilized leafy vegetable (Ipomoea batatas leaf). SJMPS 2023; 9(5): 297-302.
[http://dx.doi.org/10.36348/sjmps.2023.v09i05.004]
[100]
Alam MK. A comprehensive review of sweet potato (Ipomoea batatas [L.] Lam): Revisiting the associated health benefits. Trends Food Sci Technol 2021; 115: 512-29.
[http://dx.doi.org/10.1016/j.tifs.2021.07.001]
[101]
Kapali J, Sharma KR. Estimation of phytochemicals, antioxidant, antidiabetic and brine shrimp lethality activities of some medicinal plants growing in Nepal. Faslnamah-i Giyahan-i Daruyi 2021; 20(80): 102-16.
[http://dx.doi.org/10.52547/jmp.20.80.102]
[102]
Etuh MA, Ohemu LT, Pam DD. Lantana camara ethanolic leaves extracts exhibit anti-aging properties in Drosophila melanogaster : Survival-rate and life span studies. Toxicol Res 2021; 10(1): 79-83.
[http://dx.doi.org/10.1093/toxres/tfaa098] [PMID: 33613975]
[103]
Balti T, Charradi K, Mahmoudi M, Oueslati N, Limam F, Aouani E. Paradoxical anti-diabetic effect of Lantana camara leaf extract and pancreatic oxidative stress relieved by grape seed and skin extract. Pharm Chem J 2022; 55(11): 1219-28.
[http://dx.doi.org/10.1007/s11094-022-02561-x]
[104]
Sunil V, Shree N, Venkataranganna MV, Bhonde RR, Majumdar M. The anti diabetic and anti obesity effect of Memecylon umbellatum extract in high fat diet induced obese mice. Biomed Pharmacother 2017; 89: 880-6.
[http://dx.doi.org/10.1016/j.biopha.2017.01.182] [PMID: 28282790]
[105]
Ramya Sree PR, Thoppil JE. Comparative seed morphology, pharmacognostic, phytochemical, and antioxidant potential of Memecylon L. fruits. Turk J Pharm Sci 2021; 18(2): 213-22.
[http://dx.doi.org/10.4274/tjps.galenos.2020.82956] [PMID: 33902263]
[106]
Elangovan A, Subramanian A, Durairaj S, et al. Antidiabetic and hypolipidemic efficacy of skin and seed extracts of Momordica cymbalaria on alloxan induced diabetic model in rats. J Ethnopharmacol 2019; 241: 111989.
[http://dx.doi.org/10.1016/j.jep.2019.111989] [PMID: 31150795]
[107]
Gopalasatheeskumar K. An Updated Pharmacological Overview on Momordica cymbalaria (Athalakkai). Int J Sci 2018; 5(1): 28-31.
[108]
Mahmoud MF, El Ashry FEZZ, El Maraghy NN, Fahmy A. Studies on the antidiabetic activities of Momordica charantia fruit juice in streptozotocin-induced diabetic rats. Pharm Biol 2017; 55(1): 758-65.
[http://dx.doi.org/10.1080/13880209.2016.1275026] [PMID: 28064559]
[109]
Jia S, Shen M, Zhang F, Xie J. Recent advances in Momordica charantia: Functional components and biological activities. Int J Mol Sci 2017; 18(12): 2555.
[http://dx.doi.org/10.3390/ijms18122555] [PMID: 29182587]
[110]
Hussain F, Rana Z, Shafique H, Malik A, Hussain Z. Phytopharmacological potential of different species of Morus alba and their bioactive phytochemicals: A review. Asian Pac J Trop Biomed 2017; 7(10): 950-6.
[http://dx.doi.org/10.1016/j.apjtb.2017.09.015]
[111]
Bhagour K, Arya D, Gupta RS. A review: Antihyperglycemic plant medicines in management of diabetes. ACU 2016; 4(4): 7-16.
[http://dx.doi.org/10.1016/j.arthe.2016.11.001]
[112]
Evaluation of phytochemical and antibacterial properties of white mulberry (Morus alba). Malays Appl Biol 2020; 49(4): 107-12.
[http://dx.doi.org/10.55230/mabjournal.v49i4.1599]
[113]
Devi B, Sharma N, Kumar D, Jeet K. Morus alba Linn: A phytopharmacological review. Int J Pharm Pharm Sci 2013; 5(2): 14-8.
[114]
Bhinge SD, Bhutkar MA, Randive DS, Wadkar GH, Hasabe TS. In vitro hypoglycemic effects of unripe and ripe fruits of Musa sapientum. Braz J Pharm Sci 2018; 53(4): 53.
[http://dx.doi.org/10.1590/s2175-97902017000400159]
[115]
Afuye OO, Alabi NO, Omoyeni OC. The hypoglycemic effect of musa sapientum in alloxan induced diabetic albino wistar rat. FEPI-JOPAS 2022; 4(2): 15-9.
[116]
Siddique S, Nawaz S, Muhammad F, Akhtar B, Aslam B. Phytochemical screening and in-vitro evaluation of pharmacological activities of peels of Musa sapientum and Carica papaya fruit. Nat Prod Res 2018; 32(11): 1333-6.
[http://dx.doi.org/10.1080/14786419.2017.1342089] [PMID: 28627245]
[117]
Majekodunmi SO, Oyagbemi AA, Umukoro S, Odeku OA. Evaluation of the anti–diabetic properties of Mucuna pruriens seed extract. Asian Pac J Trop Med 2011; 4(8): 632-6.
[http://dx.doi.org/10.1016/S1995-7645(11)60161-2] [PMID: 21914541]
[118]
Njemuwa NN, Dickson NU, Elizabeth AE, Uchenna RM, Ogbonnaya CN. Evaluation of the antioxidant and anti-diabetic effect of mucuna puriens extract. European J Med Plants 2019; 27(2): 1-9.
[http://dx.doi.org/10.9734/ejmp/2019/v27i230110]
[119]
Bhonsle AS, Priyadharshini R, Kumar R, Sinduja P, Brundha MP. Antidiabetic and cytotoxic effect of hexane extract in mucuna pruriens. HIV Nursing 2022; 22(2): 4042-7.
[120]
Shanmugavel G, Krishnamoorthy G. Nutraceutical and phytochemical investigation of Mucuna pruriens seed. Pharma Innov 2018; 7: 273-8.
[121]
Husna F, Suyatna F, Arozal W, Poerwaningsih E. Anti-diabetic potential of Murraya koenigii (L.) and its antioxidant capacity in nicotinamide-streptozotocin induced diabetic rats. Drug Res 2018; 68(11): 631-6.
[http://dx.doi.org/10.1055/a-0620-8210] [PMID: 29801176]
[122]
Al-Ani IM, Santosa RI, Yankuzo MH, Saxena AK, Alazzawi KS. The antidiabetic activity of curry leaves “Murraya Koenigii” on the glucose levels, kidneys, and islets of Langerhans of rats with Streptozotocin induced diabetes. Makara J Health Res 2017; 21(2): 54-60.
[http://dx.doi.org/10.7454/msk.v21i2.7393]
[123]
Abeysinghe DT, Kumara KAH, Kaushalya KAD, Chandrika UG, Alwis DDDH. Phytochemical screening, total polyphenol, flavonoid content, in vitro antioxidant and antibacterial activities of Sri Lankan varieties of Murraya koenigii and Micromelum minutum leaves. Heliyon 2021; 7(7): e07449.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07449] [PMID: 34286127]
[124]
Laoung-on J, Jaikang C, Saenphet K, Sudwan P. Phytochemical screening, antioxidant and sperm viability of Nelumbo nucifera petal extracts. Plants 2021; 10(7): 1375.
[http://dx.doi.org/10.3390/plants10071375] [PMID: 34371577]
[125]
Rumanti RM, Nainggolan M, Harahap U. Phytochemical screening and antidiabetic activity of different leaf extracts from lotus (Nelumbo nucifera gaertn.) in streptozotocin induced mice. Asian J Pharm Clin Res 2017; 10(12): 190-2.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i12.20888]
[126]
Maqbool S, Ullah N, Zaman A, et al. Phytochemical screening, in-vitro and in-vivo anti-diabetic activity of Nelumbo nucifera leaves against alloxan-induced diabetic rabbits. Indian J Anim Res 2019; 54(of): 1-6.
[http://dx.doi.org/10.18805/ijar.B-1181]
[127]
Ahmed SK, Sunil M, Cheekavolu C, Sampath D, Sharanya M. Evaluation of antidiabetic activity of ethanolic extract of Ocimum sanctum Linn. leaves in alloxan induced diabetic albino rats. Pharma Innov 2017; 6: 115.
[128]
Lokhande VY, Yadav AV. In vitro antioxidant and antidiabetic activity of supercritical fluid extract of leaves ocimum sanctum L. Res J Pharma Technol 2018; 11(12): 5373-5.
[http://dx.doi.org/10.5958/0974-360X.2018.00980.0]
[129]
Ibrahim M, Parveen B, Zahiruddin S, et al. UPLC/MS based phytochemical screening and antidiabetic properties of Picrorhiza kurroa in mitigating glucose-induced metabolic dysregulation and oxidative stress. Farmacia 2021; 69(4): 749-55.
[http://dx.doi.org/10.31925/farmacia.2021.4.16]
[130]
Najari Beidokhti M, Andersen MV, Eid HM, et al. Investigation of antidiabetic potential of Phyllanthus niruri L. using assays for α-glucosidase, muscle glucose transport, liver glucose production, and adipogenesis. Biochem Biophys Res Commun 2017; 493(1): 869-74.
[http://dx.doi.org/10.1016/j.bbrc.2017.09.080] [PMID: 28928090]
[131]
Kaur N, Kaur B, Sirhindi G. Phytochemistry and pharmacology of Phyllanthus niruri L.: a review. Phytother Res 2017; 31(7): 980-1004.
[http://dx.doi.org/10.1002/ptr.5825] [PMID: 28512988]
[132]
Mekala S, Mchenga S S. Antidiabetic effect of Pterocarpus marsupium seed extract in gabapentin induced diabetic rats. IJBCP 2020; 9(3)
[133]
Mishra A, Srivastava R, Srivastava S P, et al. Antidiabetic activity of heart wood of Pterocarpus marsupium Roxb. and analysis of phytoconstituents. Indian J Exp Biol 2013; 51(5): 363-74.
[134]
Pant D, Pant N, Saru D, Yadav U, Khanal D. Phytochemical screening and study of anti-oxidant, anti-microbial, anti-diabetic, anti-inflammatory and analgesic activities of extracts from stem wood of Pterocarpus marsupium Roxburgh. J Intercult Ethnopharmacol 2017; 6(2): 1.
[http://dx.doi.org/10.5455/jice.20170403094055] [PMID: 28512598]
[135]
Gharib E, Kouhsari MS. Study of the antidiabetic activity of Punica granatum L. fruits aqueous extract on the alloxan-diabetic wistar rats. Iran J Pharm Res 2019; 18(1): 358-68.
[PMID: 31089370]
[136]
Pottathil S, Nain P, Morsy MA, et al. Mechanisms of antidiabetic activity of methanolic extract of Punica granatum leaves in nicotinamide/streptozotocin-induced type 2 diabetes in rats. Plants 2020; 9(11): 1609.
[http://dx.doi.org/10.3390/plants9111609] [PMID: 33228177]
[137]
Trabelsi A, El Kaibi MA, Abbassi A, Horchani A, Chekir-Ghedira L, Ghedira K. Phytochemical study and antibacterial and antibiotic modulation activity of Punica granatum (pomegranate) leaves. Scientifica 2020; 2020: 1-7.
[http://dx.doi.org/10.1155/2020/8271203] [PMID: 32318311]
[138]
Nimbekar T, Jain A, Mohanty PK. Effects of Salacia reticulata root bark on blood glucose levels of normal and alloxan-monohydrate induced diabetic mice. J Cardiovasc Dis Res 2021; 12(3): 854-60.
[139]
Chelladurai GRM, Chinnachamy C. Alpha amylase and Alpha glucosidase inhibitory effects of aqueous stem extract of Salacia oblonga and its GC-MS analysis. Brazil J Pharm Sci 2018; 54: 54.
[140]
Rajesh CS, Holla R, Patil V, Anand AS, Prasad KH. Anti-hyperglycemic effect of Swertia chirata root extract on indinavir treated rats. Natl J Physiol Pharm Pharmacol 2017; 7(6): 569.
[141]
Swati K, Bhatt V, Sendri N, Bhatt P, Bhandari P. Swertia chirayita: A comprehensive review on traditional uses, phytochemistry, quality assessment and pharmacology. J Ethnopharmacol 2023; 300: 115714.
[http://dx.doi.org/10.1016/j.jep.2022.115714] [PMID: 36113678]
[142]
Prabakaran K, Shanmugavel G. Antidiabetic activity and phytochemical constituents of Syzygium cumini seeds in Puducherry region, South India. Int J Pharmacog Phytochem Res 2017; 9(7): 985-9.
[143]
Geberemeskel GA, Debebe YG, Nguse NA. Antidiabetic effect of fenugreek seed powder solution (Trigonella foenum-graecum L.) on hyperlipidemia in diabetic patients. J Diabetes Res 2019; 2019: 1-8.
[http://dx.doi.org/10.1155/2019/8507453] [PMID: 31583253]
[144]
Singh N, Yadav SS, Kumar S, Narashiman B. Ethnopharmacological, phytochemical and clinical studies on Fenugreek (Trigonella foenum-graecum L.). Food Biosci 2022; 46: 101546.
[http://dx.doi.org/10.1016/j.fbio.2022.101546]
[145]
Sharma BR, Park CM, Kim HA, Kim HJ, Rhyu DY. Tinospora cordifolia preserves pancreatic beta cells and enhances glucose uptake in adipocytes to regulate glucose metabolism in diabetic rats. Phytother Res 2019; 33(10): 2765-74.
[http://dx.doi.org/10.1002/ptr.6462] [PMID: 31385371]
[146]
Sinku R, Sinha MR. Preliminary phytochemical screening and physiochemical analysis of Tinospora cordifolia Miers. J Med Plant Stud 2018; 6(1): 177-80.
[147]
Altaee EH, Karim AJ, Dakheel MM. Assessment of anti-diabetic activity of Vinca rosea extract on induced diabetic mice. Indian J Forensic Med Tox 2020; 14(4): 2311-8.
[148]
Qamar A. Antidiabetic activity, polyphenols-based characterization and molecular interaction of extract of un-ripe pods of Vinca rosea cv. Pink. Jordan J Pharm Sci 2022; 15(2): 158-72.
[http://dx.doi.org/10.35516/jjps.v15i2.303]
[149]
Jayaraj AJ, Uchimahali J, Gnanasundaram T, Thirumal S. Evaluation of antimicrobial activity and phytochemicals analysis of whole plant extract of Vinca rosea. Evaluation 2019; 12: 132-6.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy