Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Research Article

Evidence of Neutralizing Antibodies Indicating the Cure of Patients Infected with COVID-19 Within one Month of Infection

Author(s): Yasir M. Abdulateef, Zainab N. Ayad, Haitham Noaman*, Marwa F. Fadhel, Mahammad Z. Taha, Fatima M. Rafeeq and Ahmed Y. Salih

Volume 22, Issue 4, 2024

Published on: 08 March, 2024

Article ID: e080324227797 Pages: 11

DOI: 10.2174/0122113525284502240217161226

Price: $65

Abstract

Background: During COVID-19 pandemic a major conflict facing the clinician where to prove cure of the patients.

Aims: The idea of confirming curability is based on clinical evaluation of the symptoms, laboratory investigations, and specific IgM, IgG anti-SARS-CoV-2 antibodies.

Materials and Methods: All patients had presented with clinical features of COVID-19 positive PCR attended private clinic doctors consultant in internal medicine and infectious diseases, they did investigations in Lagash land private medical laboratory in Baghdad investigated and screened for COVID-19 by S. ferritin, D-dimer, Complete blood picture and LDH. All were reevaluated in the first month of infection by clinical examination, retesting, and screening for COVID-19 IgM IgG later to prove cure or evidence of viral infection in PCR negative cases.

Results: All patients are of different ages with maximum years affected from adulthood till the age of one hundred years. Male were 170(54.3%) patients and females were 143 (45.7%) total 313 patients (100%). Most are moderate socioeconomic status, with a significant number having comorbidities.

Conclusion: SARS-COVID-19 IgM, IgG levels can be used to confirm a cure of the infection.

Graphical Abstract

[1]
Phelan, A.L.; Katz, R.; Gostin, L.O. The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA, 2020, 323(8), 709-710.
[http://dx.doi.org/10.1001/jama.2020.1097] [PMID: 31999307]
[2]
World health organization (WHO). Health Emergency Dashboard for COVID-19. 2021. Available from: https://extranet.who.int/publicemergency (Accessed on: 20 August 2021).
[3]
World health organization(WHO). COVID-19: Iraq Biweekly Situation Report. Epi Weeks 7 - 8. 2022. Available from: https://www.emro.who.int/images/stories/iraq/COVID-SitRep-_Week-7-8-copy.pdf?ua=1 (Accessed on: 14 - 27 February 2022).
[4]
World Health Organization (WHO). Iraq Coronavirus disease (COVID-19) Dynamic Infographic Dashboard 2020-2022. Available from: https://ghdx.healthdata.org/record/iraq-coronavirus-disease-covid-19-dynamic-infographic-dashboard-2020-2022
[5]
Sims, A.C.; Baric, R.S.; Yount, B.; Burkett, S.E.; Collins, P.L.; Pickles, R.J. Severe acute respiratory syndrome coronavirus infection of human ciliated airway epithelia: Role of ciliated cells in viral spread in the conducting airways of the lungs. J. Virol., 2005, 79(24), 15511-15524.
[http://dx.doi.org/10.1128/JVI.79.24.15511-15524.2005 ] [PMID: 16306622]
[6]
Vuorinen, V.; Aarnio, M.; Alava, M.; Alopaeus, V.; Atanasova, N.; Auvinen, M. Modelling aerosol transport and virus exposure with numerical simulations in relation to SARS-CoV-2 transmission by inhalation indoors. Saf. Sci., 2020, 130, 104866.
[http://dx.doi.org/10.1016/j.ssci.2020.104866]
[7]
Wang, J.; Jiang, M.; Chen, X.; Montaner, L.J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: Review of 3939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol., 2020, 108(1), 17-41.
[http://dx.doi.org/10.1002/JLB.3COVR0520-272R] [PMID: 32534467]
[8]
Mangalmurti, N.S.; Reilly, J.P.; Cines, D.B.; Meyer, N.J.; Hunter, C.A.; Vaughan, A.E. COVID-19-associated acute respiratory distress syndrome clarified: A vascular endotype? Am. J. Respir. Crit. Care Med., 2020, 202(5), 750-753.
[http://dx.doi.org/10.1164/rccm.202006-2598LE]
[9]
Tang, N.L.S.; Chan, P.K.S.; Wong, C.K.; To, K.F.; Wu, A.K.L.; Sung, Y.M.; Hui, D.S.C.; Sung, J.J.Y.; Lam, C.W.K. Early enhanced expression of interferon-inducible protein-10 (CXCL-10) and other chemokines predicts adverse outcome in severe acute respiratory syndrome. Clin. Chem., 2005, 51(12), 2333-2340.
[http://dx.doi.org/10.1373/clinchem.2005.054460] [PMID: 16195357]
[10]
Harrison, A.G.; Lin, T.; Wang, P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol., 2020, 41(12), 1100-1115.
[http://dx.doi.org/10.1016/j.it.2020.10.004] [PMID: 33132005]
[11]
Borges, R.C.; Hohmann, M.S.; Borghi, S.M. Dendritic cells in COVID-19 immunopathogenesis: Insights for a possible role in determining disease outcome. Int. Rev. Immunol., 2021, 40(1-2), 108-125.
[http://dx.doi.org/10.1080/08830185.2020.1844195] [PMID: 33191813]
[12]
Boechat, J.L.; Chora, I.; Morais, A.; Delgado, L. The immune response to SARS-CoV-2 and COVID-19 immunopathology - Current perspectives. Pulmonology, 2021, 27(5), 423-437.
[http://dx.doi.org/10.1016/j.pulmoe.2021.03.008] [PMID: 33867315]
[13]
Lotfi, R.; Kalmarzi, R.N.; Roghani, S.A. A review on the immune responses against novel emerging coronavirus (SARS-CoV-2). Immunol. Res., 2021, 69(3), 213-224.
[http://dx.doi.org/10.1007/s12026-021-09198-0] [PMID: 33928531]
[14]
Alamri, A.; Fisk, D.; Upreti, D.; Kung, S.K.P. A missing link: Engagements of dendritic cells in the pathogenesis of SARS-CoV-2 infections. Int. J. Mol. Sci., 2021, 22(3), 1118.
[http://dx.doi.org/10.3390/ijms22031118] [PMID: 33498725]
[15]
Ye, Q.; Wang, B.; Mao, J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect., 2020, 80(6), 607-613.
[http://dx.doi.org/10.1016/j.jinf.2020.03.037] [PMID: 32283152]
[16]
Zainab Noaman, E. The effect of caspase-8 as an apoptotic marker in relation to COVID-19 patients severity. HIV Nursing, 2023, 23(3), 1292-1296.
[http://dx.doi.org/10.31838/hiv23.03.175]
[17]
Zainab Noaman, E. The association of inflammatory markers, interleukin-6, procalcitonin, COVID-19 immunoglobulins with the severity of COVID-19 patients. Hist. Med., 2023, 9(1), 2466-2471.
[http://dx.doi.org/10.17720/2409.5834.v9.1.2023.319]
[18]
Yasir, M. The effect of coronavirus on cytochrome c oxidase (complex IV) and correlation with Severe COVID-19 Infection. Eur. Chem. Bull., 2023, 12(1), 1820-1826.
[http://dx.doi.org/10.31838/ecb/2023.12.sa1.161]
[19]
Mason, R.J. Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J., 2020, 55(4), 2000607.
[http://dx.doi.org/10.1183/13993003.00607-2020] [PMID: 32269085]
[20]
Ma, H.; Zeng, W.; He, H.; Zhao, D.; Jiang, D.; Zhou, P.; Cheng, L.; Li, Y.; Ma, X.; Jin, T. Serum IgA, IgM, and IgG responses in COVID-19. Cell. Mol. Immunol., 2020, 17(7), 773-775.
[http://dx.doi.org/10.1038/s41423-020-0474-z] [PMID: 32467617]
[21]
Sauré, D.; O’Ryan, M.; Torres, J.P.; Zuniga, M.; Santelices, E.; Basso, L.J. Dynamic IgG seropositivity after rollout of CoronaVac and BNT162b2 COVID-19 vaccines in Chile: A sentinel surveillance study. Lancet Infect. Dis., 2022, 22(1), 56-63.
[http://dx.doi.org/10.1016/S1473-3099(21)00479-5] [PMID: 34509185]
[22]
Lisboa Bastos, M.; Tavaziva, G.; Abidi, S.K.; Campbell, J.R.; Haraoui, L.P.; Johnston, J.C.; Lan, Z.; Law, S.; MacLean, E.; Trajman, A.; Menzies, D.; Benedetti, A.; Ahmad Khan, F. Diagnostic accuracy of serological tests for COVID-19: Systematic review and meta-analysis. BMJ, 2020, 370, m2516.
[http://dx.doi.org/10.1136/bmj.m2516] [PMID: 32611558]
[23]
Meyer, B.; Drosten, C.; Müller, M.A. Serological assays for emerging coronaviruses: Challenges and pitfalls. Virus Res., 2014, 194, 175-183.
[http://dx.doi.org/10.1016/j.virusres.2014.03.018] [PMID: 24670324]
[24]
Woo, P.C.Y.; Lau, S.K.P.; Wong, B.H.L.; Tsoi, H.; Fung, A.M.Y.; Kao, R.Y.T.; Chan, K.; Peiris, J.S.M.; Yuen, K. Differential sensitivities of Severe Acute Respiratory Syndrome (SARS) coronavirus spike polypeptide Enzyme-Linked Immunosorbent Assay (ELISA) and SARS coronavirus nucleocapsid protein ELISA for serodiagnosis of SARS coronavirus pneumonia. J. Clin. Microbiol., 2005, 43(7), 3054-3058.
[http://dx.doi.org/10.1128/JCM.43.7.3054-3058.2005 ] [PMID: 16000415]
[25]
Woo, P.C.Y.; Lau, S.K.P.; Wong, B.H.L.; Tsoi, H.; Fung, A.M.Y.; Chan, K.; Tam, V.K.P.; Peiris, J.S.M.; Yuen, K. Detection of specific antibodies to severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein for serodiagnosis of SARS coronavirus pneumonia. J. Clin. Microbiol., 2004, 42(5), 2306-2309.
[http://dx.doi.org/10.1128/JCM.42.5.2306-2309.2004 ] [PMID: 15131220]
[26]
Cassaniti, I.; Novazzi, F.; Giardina, F.; Salinaro, F.; Sachs, M.; Perlini, S.; Bruno, R.; Mojoli, F.; Baldanti, F. Performance of VivaDiag COVID‐19 IgM/IgG Rapid Test is inadequate for diagnosis of COVID‐19 in acute patients referring to emergency room department. J. Med. Virol., 2020, 92(10), 1724-1727.
[http://dx.doi.org/10.1002/jmv.25800] [PMID: 32227490]
[27]
Gao, H.X.; Li, Y.N.; Xu, Z.G.; Wang, Y.L.; Wang, H.B.; Cao, J.F.; Yuan, D.Q.; Li, L.; Xu, Y.; Zhang, Z.; Huang, Y.; Lu, J.H.; Liu, Y.Z.; Dai, E.H. Detection of serum immunoglobulin M and immunoglobulin G antibodies in 2019 novel coronavirus infected patients from different stages. Chin. Med. J. , 2020, 133(12), 1479-1480.
[http://dx.doi.org/10.1097/CM9.0000000000000820] [PMID: 32221133]
[28]
World Health Organization (WHO). Diagnostic testing for SARSCoV-2: Interim guidance, 11 September 2020. 2020. Available from: https://apps.who.int/iris/handle/10665/334254
[29]
Guo, L.; Ren, L.; Yang, S.; Xiao, M.; Chang, D.; Yang, F.; Dela Cruz, C.S.; Wang, Y.; Wu, C.; Xiao, Y.; Zhang, L.; Han, L.; Dang, S.; Xu, Y.; Yang, Q.W.; Xu, S.Y.; Zhu, H.D.; Xu, Y.C.; Jin, Q.; Sharma, L.; Wang, L.; Wang, J. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin. Infect. Dis., 2020, 71(15), 778-785.
[http://dx.doi.org/10.1093/cid/ciaa310] [PMID: 32198501]
[30]
Zhang, W.; Du, R.H.; Li, B.; Zheng, X.S.; Yang, X.L.; Hu, B.; Wang, Y.Y.; Xiao, G.F.; Yan, B.; Shi, Z.L.; Zhou, P. Molecular and serological investigation of 2019-nCoV infected patients: Implication of multiple shedding routes. Emerg. Microbes Infect., 2020, 9(1), 386-389.
[http://dx.doi.org/10.1080/22221751.2020.1729071] [PMID: 32065057]
[31]
Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; Qian, S.; Hong, C.; Wang, F.; Liu, Y.; Wang, Z.; He, Q.; Li, Z.; He, B.; Zhang, T.; Fu, Y.; Ge, S.; Liu, L.; Zhang, J.; Xia, N.; Zhang, Z. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin. Infect. Dis., 2020, 71(16), 2027-2034.
[http://dx.doi.org/10.1093/cid/ciaa344 ] [PMID: 32221519]
[32]
Xiao, A.T.; Gao, C.; Zhang, S. Profile of specific antibodies to SARS-CoV-2: The first report. J. Infect., 2020, 81(1), 147-178.
[http://dx.doi.org/10.1016/j.jinf.2020.03.012] [PMID: 32209385]
[33]
Li, Z.; Yi, Y.; Luo, X.; Xiong, N.; Liu, Y.; Li, S.; Sun, R.; Wang, Y.; Hu, B.; Chen, W.; Zhang, Y.; Wang, J.; Huang, B.; Lin, Y.; Yang, J.; Cai, W.; Wang, X.; Cheng, J.; Chen, Z.; Sun, K.; Pan, W.; Zhan, Z.; Chen, L.; Ye, F. Development and clinical application of a rapid IgM‐IgG combined antibody test for SARS‐CoV‐2 infection diagnosis. J. Med. Virol., 2020, 92(9), 1518-1524.
[http://dx.doi.org/10.1002/jmv.25727] [PMID: 32104917]
[34]
Cai, X.; Chen, J. li Hu, J.; Long, Q.; Deng, H.; Liu, P.; Fan, K.; Liao, P.; Liu, B.; Wu, G.; Chen, Y.; Li, Z.; Wang, K.; Zhang, X.; Tian, W.; Xiang, J.; Du, H.; Wang, J.; Hu, Y.; Tang, N.; Lin, Y.; Ren, J.; Huang, L.; Wei, J.; Gan, C.; Chen, Y.; Gao, Q.; Chen, A.; He, C.; Wang, D.X.; Hu, P.; Zhou, F.C.; Huang, A.; Wang, D. A peptide-based magnetic chemiluminescence enzyme immunoassay for serological diagnosis of coronavirus disease 2019 (COVID-19). J. Infect. Dis., 2020, 222(2), 189-193.
[http://dx.doi.org/10.1093/infdis/jiaa243] [PMID: 32382737]
[35]
Galbadage, T.; Peterson, B.M.; Awada, J.; Buck, A.S.; Ramirez, D.A.; Wilson, J.; Gunasekera, R.S. Systematic review and meta-analysis of sex-specific COVID-19 clinical outcomes. Front. Med., 2020, 7, 348.
[http://dx.doi.org/10.3389/fmed.2020.00348] [PMID: 32671082]
[36]
Kharroubi, S.A.; Diab-El-Harake, M. Sex-differences in COVID-19 diagnosis, risk factors and disease comorbidities: A large US-based cohort study. Front. Public Health, 2022, 10, 1029190.
[http://dx.doi.org/10.3389/fpubh.2022.1029190] [PMID: 36466473]
[37]
WHO. WHO COVID-19 dashboard. 2022. Available from: https://covid19.who.int/
[38]
Scully, E.P.; Haverfield, J.; Ursin, R.L.; Tannenbaum, C.; Klein, S.L. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat. Rev. Immunol., 2020, 20(7), 442-447.
[http://dx.doi.org/10.1038/s41577-020-0348-8] [PMID: 32528136]
[39]
Danielsen, A.C.; Lee, K.M.N.; Boulicault, M.; Rushovich, T.; Gompers, A.; Tarrant, A.; Reiches, M.; Shattuck-Heidorn, H.; Miratrix, L.W.; Richardson, S.S. Sex disparities in COVID-19 outcomes in the United States: Quantifying and contextualizing variation. Soc. Sci. Med., 2022, 294, 114716.
[http://dx.doi.org/10.1016/j.socscimed.2022.114716] [PMID: 35042136]
[40]
Sha, J.; Qie, G.; Yao, Q.; Sun, W.; Wang, C.; Zhang, Z.; Wang, X.; Wang, P.; Jiang, J.; Bai, X.; Chu, Y.; Meng, M. Sex differences on clinical characteristics, severity, and mortality in adult patients with COVID-19: A multicentre retrospective study. Front. Med., 2021, 8, 607059.
[http://dx.doi.org/10.3389/fmed.2021.607059 ] [PMID: 33644092]
[41]
Abate, B.B.; Kassie, A.M.; Kassaw, M.W.; Aragie, T.G.; Masresha, S.A. Sex difference in coronavirus disease (COVID-19): A systematic review and meta-analysis. BMJ Open, 2020, 10(10), e040129.
[http://dx.doi.org/10.1136/bmjopen-2020-040129] [PMID: 33028563]
[42]
Marina, S.; Piemonti, L. Gender and age effects on the rates of infection and deaths in individuals with confirmed SARS-CoV-2 infection in six European countries. SSRN Elec. J, 2020, 3576790.
[http://dx.doi.org/10.2139/ssrn.3576790]
[43]
Bruine de Bruin, W. Age differences in COVID-19 risk perceptions and mental health: Evidence from a national U.S. survey conducted in March 2020. J. Gerontol. B Psychol. Sci. Soc. Sci., 2021, 76(2), e24-e29.
[http://dx.doi.org/10.1093/geronb/gbaa074 ] [PMID: 32470120]
[44]
Bhopal, R. Covid-19 worldwide: We need precise data by age group and sex urgently. BMJ, 2020, 369, m1366.
[http://dx.doi.org/10.1136/bmj.m1366] [PMID: 32245830]
[45]
Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; Zhang, Y.; Song, J.; Wang, S.; Chao, Y.; Yang, Z.; Xu, J.; Zhou, X.; Chen, D.; Xiong, W.; Xu, L.; Zhou, F.; Jiang, J.; Bai, C.; Zheng, J.; Song, Y. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern. Med., 2020, 180(7), 934-943.
[http://dx.doi.org/10.1001/jamainternmed.2020.0994 ] [PMID: 32167524]
[46]
Onder, G.; Rezza, G.; Brusaferro, S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA, 2020, 323(18), 1775-1776.
[http://dx.doi.org/10.1001/jama.2020.4683 ] [PMID: 32203977]
[47]
Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; Zhang, L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 2020, 395(10223), 507-513.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[48]
Zeng, F.; Huang, Y.; Guo, Y.; Yin, M.; Chen, X.; Xiao, L.; Deng, G. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. Int. J. Infect. Dis., 2020, 96, 467-474.
[http://dx.doi.org/10.1016/j.ijid.2020.05.055]
[49]
Hariyanto, T.I.; Japar, K.V.; Kwenandar, F.; Damay, V.; Siregar, J.I.; Lugito, N.P.H.; Tjiang, M.M.; Kurniawan, A. Inflammatory and hematologic markers as predictors of severe outcomes in COVID-19 infection: A systematic review and meta-analysis. Am. J. Emerg. Med., 2021, 41, 110-119.
[http://dx.doi.org/10.1016/j.ajem.2020.12.076] [PMID: 33418211]
[50]
Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol., 2020, 127, 104370.
[http://dx.doi.org/10.1016/j.jcv.2020.104370] [PMID: 32344321]
[51]
National Health Commission of China. Notice on Issuing the Diagnosis and Treatment Plan for Novel Coronavirus Pneumonia (Trial Version 6). 2020. Available from: http://www.gov.cn/zhengce/zhengceku/2020-02/19/content_5480948.htm
[52]
Cohen, L.A.; Gutierrez, L.; Weiss, A.; Leichtmann-Bardoogo, Y.; Zhang, D.; Crooks, D.R.; Sougrat, R.; Morgenstern, A.; Galy, B.; Hentze, M.W.; Lazaro, F.J.; Rouault, T.A.; Meyron-Holtz, E.G. Serum ferritin is derived primarily from macrophages through a nonclassical secretory pathway. Blood, 2010, 116(9), 1574-1584.
[http://dx.doi.org/10.1182/blood-2009-11-253815] [PMID: 20472835]
[53]
Fang, X.; Mei, Q.; Yang, T.; Zhang, L.; Yang, Y.; Wang, Y. Clinical characteristics and treatment strategies of 79 patients with COVID-19. Zhongguo Yaolixue Tongbao, 2020, 36(4), 453-459.
[54]
Gao, Y.; Li, T.; Han, M.; Li, X.; Wu, D.; Xu, Y.; Zhu, Y.; Liu, Y.; Wang, X.; Wang, L. Diagnostic utility of clinical laboratory data determinations for patients with the severe COVID‐19. J. Med. Virol., 2020, 92(7), 791-796.
[http://dx.doi.org/10.1002/jmv.25770] [PMID: 32181911]
[55]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8 ] [PMID: 32346093]
[56]
Gómez-de-Segura, G.D.; González, M.O.; Pedraza, M.A. Association of severe COVID-19 inflammatory markers at hospitalization with mortality and organic dysfunction. Med Crit., 2023, 37(4), 276-290.
[http://dx.doi.org/10.35366/112161]
[57]
Hajjar, L.A.; Costa, I.B.S.S.; Rizk, S.I.; Biselli, B.; Gomes, B.R.; Bittar, C.S.; de Oliveira, G.Q.; de Almeida, J.P.; de Oliveira Bello, M.V.; Garzillo, C.; Leme, A.C.; Elena, M.; Val, F.; de Almeida Lopes, M.; Lacerda, M.V.G.; Ramires, J.A.F.; Kalil Filho, R.; Teboul, J.L.; Landoni, G. Intensive care management of patients with COVID-19: A practical approach. Ann. Intensive Care, 2021, 11(1), 36.
[http://dx.doi.org/10.1186/s13613-021-00820-w] [PMID: 33604873]
[58]
Velavan, T.P.; Meyer, C.G. Mild versus severe COVID-19: Laboratory markers. Int. J. Infect. Dis., 2020, 95, 304-307.
[http://dx.doi.org/10.1016/j.ijid.2020.04.061] [PMID: 32344011]
[59]
Xie, J.; Ding, C.; Li, J.; Wang, Y.; Guo, H.; Lu, Z.; Wang, J.; Zheng, C.; Jin, T.; Gao, Y.; He, H. Characteristics of patients with coronavirus disease (COVID-19) confirmed using an IgM-IgG antibody test. J. Med. Virol., 2020, 92(10), 2004-2010.
[http://dx.doi.org/10.1002/jmv.25930]
[60]
Hsueh, PR.; Huang, LM. Chen, PJ Chronological evolution of IgM, IgA, IgG and neutralisation antibodies after infection with SARS-associated coronavirus. Clin. Microbiol. Infect., 2004, 10(12), 1062-1066.
[http://dx.doi.org/10.1111/j.1469-0691.2004.01009.x]
[61]
Assaid, N.; Arich, S.; Charoute, H.; Akarid, K.; Anouar Sadat, M.; Maaroufi, A.; Ezzikouri, S.; Sarih, M. Kinetics of SARS-CoV-2 IgM and IgG antibodies 3 months after COVID-19 onset in moroccan patients. Am. J. Trop. Med. Hyg., 2023, 108(1), 145-154.
[http://dx.doi.org/10.4269/ajtmh.22-0448 ] [PMID: 36509045]
[62]
Hashem, AM. Early humoral response correlates with disease severity and outcomes in COVID-19 patients. Viruses, 2020, 12(12), 1390.
[http://dx.doi.org/10.3390/v12121390]
[63]
Sun, B.; Feng, Y.; Mo, X.; Zheng, P.; Wang, Q.; Li, P.; Peng, P.; Liu, X.; Chen, Z.; Huang, H.; Zhang, F.; Luo, W.; Niu, X.; Hu, P.; Wang, L.; Peng, H.; Huang, Z.; Feng, L.; Li, F.; Zhang, F.; Li, F.; Zhong, N.; Chen, L. Kinetics of SARS-CoV-2 specific IgM and IgG responses in COVID-19 patients. Emerg. Microbes Infect., 2020, 9(1), 940-948.
[http://dx.doi.org/10.1080/22221751.2020.1762515 ] [PMID: 32357808]
[64]
Zhao, J.; Yuan, Q.; Wang, H.; Liu, W.; Liao, X.; Su, Y.; Wang, X.; Yuan, J.; Li, T.; Li, J.; Qian, S.; Hong, C.; Wang, F.; Liu, Y.; Wang, Z.; He, Q.; Li, Z.; He, B.; Zhang, T.; Fu, Y.; Ge, S.; Liu, L.; Zhang, J.; Xia, N.; Zhang, Z. Antibody responses to SARS-CoV-2 in patients with novel coronavirus disease. Clin. Infect. Dis., 2020, 71(16), 2027-2034.
[http://dx.doi.org/10.1093/cid/ciaa344] [PMID: 32221519]
[65]
Terpos, E.; Stellas, D.; Rosati, M.; Sergentanis, T.N.; Hu, X.; Politou, M.; Pappa, V.; Ntanasis-Stathopoulos, I.; Karaliota, S.; Bear, J.; Donohue, D.; Pagoni, M.; Grouzi, E.; Korompoki, E.; Pavlakis, G.N.; Felber, B.K.; Dimopoulos, M.A. SARS-CoV-2 antibody kinetics eight months from COVID-19 onset: Persistence of spike antibodies but loss of neutralizing antibodies in 24% of convalescent plasma donors. Eur. J. Intern. Med., 2021, 89, 87-96.
[http://dx.doi.org/10.1016/j.ejim.2021.05.010 ] [PMID: 34053848]
[66]
Seow, J.; Graham, C.; Merrick, B.; Acors, S.; Pickering, S.; Steel, K.J.A.; Hemmings, O.; O’Byrne, A.; Kouphou, N.; Galao, R.P.; Betancor, G.; Wilson, H.D.; Signell, A.W.; Winstone, H.; Kerridge, C.; Huettner, I.; Jimenez-Guardeño, J.M.; Lista, M.J.; Temperton, N.; Snell, L.B.; Bisnauthsing, K.; Moore, A.; Green, A.; Martinez, L.; Stokes, B.; Honey, J.; Izquierdo-Barras, A.; Arbane, G.; Patel, A.; Tan, M.K.I.; O’Connell, L.; O’Hara, G.; MacMahon, E.; Douthwaite, S.; Nebbia, G.; Batra, R.; Martinez-Nunez, R.; Shankar-Hari, M.; Edgeworth, J.D.; Neil, S.J.D.; Malim, M.H.; Doores, K.J. Longitudinal observation and decline of neutralizing antibody responses in the three months following SARS-CoV-2 infection in humans. Nat. Microbiol., 2020, 5(12), 1598-1607.
[http://dx.doi.org/10.1038/s41564-020-00813-8 ] [PMID: 33106674]
[67]
Bartziokas, K.; Konstantinos, K. Lactate dehydrogenase, COVID-19 and mortality. Med. Clin. , 2021, 156(1), 37.
[http://dx.doi.org/10.1016/j.medcli.2020.07.043]
[68]
Zhu, Y.; Du, Z.; Zhu, Y.; Li, W.; Miao, H.; Li, Z. Evaluation of organ function in patients with severe COVID-19 infections. Med. Clin. , 2020, 155(5), 191-196.
[http://dx.doi.org/10.1016/j.medcli.2020.05.012 ] [PMID: 32586669]
[69]
Zhu, L.; Xu, X.; Zhu, B.; Guo, X.; Xu, K.; Song, C.; Fu, J.; Yu, H.; Kong, X.; Peng, J.; Huang, H.; Zou, X.; Ding, Y.; Bao, C.; Zhu, F.; Hu, Z.; Wu, M.; Shen, H. Kinetics of SARS-CoV-2 specific and neutralizing antibodies over seven months after symptom onset in COVID-19 patients. Microbiol. Spectr., 2021, 9(2), e00590-e21.
[http://dx.doi.org/10.1128/Spectrum.00590-21] [PMID: 34550000]
[70]
Li, K.; Huang, B.; Wu, M.; Zhong, A.; Li, L.; Cai, Y.; Wang, Z.; Wu, L.; Zhu, M.; Li, J.; Wang, Z.; Wu, W.; Li, W.; Bosco, B.; Gan, Z.; Qiao, Q.; Wu, J.; Wang, Q.; Wang, S.; Xia, X. Dynamic changes in anti-SARS-CoV-2 antibodies during SARS-CoV-2 infection and recovery from COVID-19. Nat. Commun., 2020, 11(1), 6044.
[http://dx.doi.org/10.1038/s41467-020-19943-y] [PMID: 33247152]
[71]
Trieu, M.C.; Bansal, A.; Madsen, A.; Zhou, F.; Sævik, M.; Vahokoski, J.; Brokstad, K.A.; Krammer, F.; Tøndel, C.; Mohn, K.G.I.; Blomberg, B.; Langeland, N.; Cox, R.J.; Kittang, B.; Linchausen, D.W.; Amdam, H.; Onyango, T.B.; Bredholt, G.; Ertesvåg, N.; Lartey, S.; Sandnes, H.H.; Grøvan, F.; Bartsch, H.; Syre, H.; Real, F.; Berg, Å.G. SARS-CoV-2–specific neutralizing antibody responses in Norwegian health care workers after the first wave of COVID-19 pandemic: A prospective cohort study. J. Infect. Dis., 2021, 223(4), 589-599.
[http://dx.doi.org/10.1093/infdis/jiaa737] [PMID: 33247924]
[72]
Abujabal, M.; Shalaby, M.A.; Abdullah, L.; Albanna, A.S.; Elzoghby, M.; Alahmadi, G.G.; Sethi, S.K.; Temsah, M.H.; Aljamaan, F.; Alhasan, K.; Kari, J.A. Common prognostic biomarkers and outcomes in patients with COVID-19 infection in Saudi Arabia. Trop. Med. Infect. Dis., 2023, 8(5), 260.
[http://dx.doi.org/10.3390/tropicalmed8050260 ] [PMID: 37235308]
[73]
Gogate, N.; Lyman, D.; Bell, A.; Cauley, E.; Crandall, K.A.; Joseph, A.; Kahsay, R.; Natale, D.A.; Schriml, L.M.; Sen, S.; Mazumder, R. COVID-19 biomarkers and their overlap with comorbidities in a disease biomarker data model. Brief. Bioinform., 2021, 22(6), bbab191.
[http://dx.doi.org/10.1093/bib/bbab191 ] [PMID: 34015823]
[74]
Samprathi, M.; Jayashree, M. Biomarkers in COVID-19: An up-to-date review. Front Pediatr., 2021, 8, 607647.
[http://dx.doi.org/10.3389/fped.2020.607647 ] [PMID: 33859967]
[75]
Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med., 2020, 58(7), 1021-1028.
[http://dx.doi.org/10.1515/cclm-2020-0369 ] [PMID: 32286245]
[76]
Martins-Filho, P.R.; Tavares, C.S.S.; Santos, V.S. Factors associated with mortality in patients with COVID-19. A quantitative evidence synthesis of clinical and laboratory data. Eur. J. Intern. Med., 2020, 76, 97-99.
[http://dx.doi.org/10.1016/j.ejim.2020.04.043 ] [PMID: 32345526]
[77]
Tian, S.; Liu, H.; Liao, M.; Wu, Y.; Yang, C.; Cai, Y.; Peng, Z.; Xiao, S.Y. Analysis of mortality in patients with COVID-19: Clinical and laboratory parameters. Open Forum Infect. Dis., 2020, 7(5), ofaa152.
[http://dx.doi.org/10.1093/ofid/ofaa152 ] [PMID: 32457924]
[78]
Velichko, A.; Huyut, M.T.; Belyaev, M.; Izotov, Y.; Korzun, D. Machine learning sensors for diagnosis of COVID-19 disease using routine blood values for internet of things application. Sensors, 2022, 22(20), 7886.
[http://dx.doi.org/10.3390/s22207886] [PMID: 36298235]
[79]
Battaglini, D.; Lopes-Pacheco, M.; Castro-Faria-Neto, H.C.; Pelosi, P.; Rocco, P.R.M. Laboratory biomarkers for diagnosis and prognosis in COVID-19. Front. Immunol., 2022, 13, 857573.
[http://dx.doi.org/10.3389/fimmu.2022.857573] [PMID: 35572561]
[80]
Wang, Y.; Zhang, L.; Sang, L.; Ye, F.; Ruan, S.; Zhong, B.; Song, T.; Alshukairi, A.N.; Chen, R.; Zhang, Z.; Gan, M.; Zhu, A.; Huang, Y.; Luo, L.; Mok, C.K.P.; Al Gethamy, M.M.; Tan, H.; Li, Z.; Huang, X.; Li, F.; Sun, J.; Zhang, Y.; Wen, L.; Li, Y.; Chen, Z.; Zhuang, Z.; Zhuo, J.; Chen, C.; Kuang, L.; Wang, J.; Lv, H.; Jiang, Y.; Li, M.; Lin, Y.; Deng, Y.; Tang, L.; Liang, J.; Huang, J.; Perlman, S.; Zhong, N.; Zhao, J.; Malik Peiris, J.S.; Li, Y.; Zhao, J. Kinetics of viral load and antibody response in relation to COVID-19 severity. J. Clin. Invest., 2020, 130(10), 5235-5244.
[http://dx.doi.org/10.1172/JCI138759 ] [PMID: 32634129]
[81]
Suhandynata, R.T.; Hoffman, M.A.; Kelner, M.J.; McLawhon, R.W.; Reed, S.L.; Fitzgerald, R.L. Longitudinal monitoring of SARS-CoV-2 IgM and IgG seropositivity to detect COVID-19. J. Appl. Lab. Med., 2020, 5(5), 908-920.
[http://dx.doi.org/10.1093/jalm/jfaa079 ] [PMID: 32428207]
[82]
Vetter, P.; Eberhardt, C.S.; Meyer, B.; Martinez Murillo, P.A.; Torriani, G.; Pigny, F.; Lemeille, S.; Cordey, S.; Laubscher, F.; Vu, D.L.; Calame, A.; Schibler, M.; Jacquerioz, F.; Blanchard-Rohner, G.; Siegrist, C.A.; Kaiser, L.; Didierlaurent, A.M.; Eckerle, I. Daily viral kinetics and innate and adaptive immune response assessment in COVID-19: A case series. MSphere, 2020, 5(6), e00827-e20.
[http://dx.doi.org/10.1128/mSphere.00827-20] [PMID: 33177214]
[83]
Berengua, C.; López, M.; Esteban, M.; Marín, P.; Ramos, P.; Cuerpo, M.; Gich, I.; Navarro, F.; Miró, E.; Rabella, N. Viral culture and immunofluorescence for the detection of SARS-CoV-2 infectivity in RT-PCR positive respiratory samples. J. Clin. Virol., 2022, 152, 105167.
[http://dx.doi.org/10.1016/j.jcv.2022.105167] [PMID: 35523105]
[84]
Phipps, W.S.; SoRelle, J.A.; Li, Q.Z.; Mahimainathan, L.; Araj, E.; Markantonis, J.; Lacelle, C.; Balani, J.; Parikh, H.; Solow, E.B.; Karp, D.R.; Sarode, R.; Muthukumar, A. SARS-CoV-2 antibody responses do not predict COVID-19 disease severity. Am. J. Clin. Pathol., 2020, 154(4), 459-465.
[http://dx.doi.org/10.1093/ajcp/aqaa123] [PMID: 32666092]
[85]
Sethuraman, N.; Jeremiah, S.S.; Ryo, A. Interpreting diagnostic tests for SARS-CoV-2. JAMA, 2020, 323(22), 2249-2251.
[http://dx.doi.org/10.1001/jama.2020.8259] [PMID: 32374370]
[86]
Patel, R.; Babady, E.; Theel, E.S.; Storch, G.A.; Pinsky, B.A.; St George, K.; Smith, T.C.; Bertuzzi, S. Report from the american society for microbiology COVID-19 international summit, 23 March 2020: Value of diagnostic testing for SARS-CoV-2/COVID-19. MBio, 2020, 11(2), e00722-e20.
[http://dx.doi.org/10.1128/mBio.00722-20] [PMID: 32217609]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy