Generic placeholder image

Applied Drug Research, Clinical Trials and Regulatory Affairs

Editor-in-Chief

ISSN (Print): 2667-3371
ISSN (Online): 2667-338X

Mini-Review Article

Regulation of Nanomaterials and Nanomedicines for Clinical Application

Author(s): Razi Ahmed, Vikash Maurya, Anurag Dwivedi and Manoj Kumar Mishra*

Volume 10, 2024

Published on: 05 March, 2024

Article ID: e050324227671 Pages: 7

DOI: 10.2174/0126673371276087240129102832

Price: $65

Abstract

Treatment of complicated fatal diseases was difficult when nanotechnology was not more popular. The incorporation of nanomedicine has increased in the last 13 years, even though regulatory guidelines regarding nanomaterials and nanomedicine weren't sufficient. Hence, it was tough to decide valid inevitability for the manufacturers, administrators, health professionals, primary care providers, and rest of the public that could ultimately have a negative impact on the financing system, research, and development of such items, affecting the approval of the public and acceptance of nano-products. This review includes coverage across the therapeutic value of nanomaterials, problems in the regulation, regulatory challenges, synthesis, physicochemical properties, and clinical application. The hurdles to using nanotechnology, particularly in the pharmaceutical development of novel medicinal products and respective regulatory issues, are critically explored, considering the characteristics offered by the nanomaterials.

[1]
Gupta A, Patel VK, Kant R, Bhattacharya S. Surface modification strategies for fabrication of nano-biodevices: A critical review. Rev Adhesion Adhesives 2016; 4(2): 166-91.
[http://dx.doi.org/10.7569/RAA.2016.097307]
[2]
Alam N, Siddique W, Mishra MK, et al. Micropropagation of Hoya carnosa, H. kerrii, H. parasitica, and H. longifolia using tray-based floating and stationary hydroponic systems. Sci Hortic (Amsterdam) 2023; 311: 111804.
[http://dx.doi.org/10.1016/j.scienta.2022.111804]
[3]
Haleem A, Javaid M, Singh RP, Rab S, Suman R. Applications of nanotechnology in medical field: A brief review. Global Health J 2023; 7(2): 70-7.
[http://dx.doi.org/10.1016/j.glohj.2023.02.008]
[4]
Zhang Y, Dou Y, Liu Y, et al. Advances in therapeutic applications of extracellular vesicles. Int J Nanomedicine 2023; 18: 3285-307.
[http://dx.doi.org/10.2147/IJN.S409588] [PMID: 37346366]
[5]
Prasad S. Nanobiosensors: The future for diagnosis of disease? Nanobiosensors Dis Diag 2014; 3: 1-10.
[http://dx.doi.org/10.2147/NDD.S39421]
[6]
Boulaiz H, Alvarez PJ, Ramirez A, et al. Nanomedicine: Application areas and development prospects. Int J Mol Sci 2011; 12(5): 3303-21.
[http://dx.doi.org/10.3390/ijms12053303] [PMID: 21686186]
[7]
Abdihaji M, Mirzaei Chegeni M, Hadizadeh A, et al. Polyvinyl Alcohol (PVA)-based nanoniosome for enhanced in vitro delivery and anticancer activity of thymol. Int J Nanomedicine 2023; 18: 3459-88.
[http://dx.doi.org/10.2147/IJN.S401725] [PMID: 37396433]
[8]
Adabi M, Naghibzadeh M, Adabi M, et al. Biocompatibility and nanostructured materials: Applications in nanomedicine. Artif Cells Nanomed Biotechnol 2017; 45(4): 833-42.
[http://dx.doi.org/10.1080/21691401.2016.1178134] [PMID: 27247194]
[9]
Bleeker EAJ, de Jong WH, Geertsma RE, et al. Considerations on the EU definition of a nanomaterial: Science to support policy making. Regul Toxicol Pharmacol 2013; 65(1): 119-25.
[http://dx.doi.org/10.1016/j.yrtph.2012.11.007] [PMID: 23200793]
[10]
Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F. Molecular biomimetics: Nanotechnology through biology. Nat Mater 2003; 2(9): 577-85.
[http://dx.doi.org/10.1038/nmat964] [PMID: 12951599]
[11]
Uddin I, Venkatachalam S, Mukhopadhyay A, Amil Usmani M. Nanomaterials in the pharmaceuticals: Occurrence, behaviour and applications. Curr Pharm Des 2016; 22(11): 1472-84.
[http://dx.doi.org/10.2174/1381612822666160118104727] [PMID: 26775674]
[12]
Renganathan S, Venkatesan H, Prabakaran K, Durairaj M, Aroulmoji V. Nanotechnology in materials and medical sciences. Int J Adv Sci Eng Inf Technol 2019; 5(3): 1077-84.
[13]
Singh A, Patel DK. Nanomaterials for biomedical engineering applicationsNanomater Adv Technol. (1st ed.). Singapore: Springer Nature 2022; pp. 75-102.
[http://dx.doi.org/10.1007/978-981-19-1384-6_5]
[14]
Ahn S, Kang SH, Woo H, et al. Liquid-metal core-shell particles coated with folate and phospholipids for targeted drug delivery and photothermal treatment of cancer cells. Nanomaterials (Basel) 2023; 13(13): 2017.
[http://dx.doi.org/10.3390/nano13132017] [PMID: 37446533]
[15]
Smolkova B, Dusinska M, Gabelova A. Nanomedicine and epigenome. Possible health risks. Food Chem Toxicol 2017; 109(Pt 1): 780-96.
[http://dx.doi.org/10.1016/j.fct.2017.07.020] [PMID: 28705729]
[16]
Halwani AA. Development of pharmaceutical nanomedicines: From the bench to the market. Pharmaceutics 2022; 14(1): 106.
[http://dx.doi.org/10.3390/pharmaceutics14010106] [PMID: 35057002]
[17]
Hock SC, Ying YM, Wah CL. A review of the current scientific and regulatory status of nanomedicines and the challenges ahead. PDA J Pharm Sci Technol 2011; 65(2): 177-95.
[PMID: 21502077]
[18]
Foulkes R, Man E, Thind J, Yeung S, Joy A, Hoskins C. The regulation of nanomaterials and nanomedicines for clinical application: Current and future perspectives. Biomater Sci 2020; 8(17): 4653-64.
[http://dx.doi.org/10.1039/D0BM00558D] [PMID: 32672255]
[19]
Sindhwani S, Chan WCW. Nanotechnology for modern medicine: Next step towards clinical translation. J Intern Med 2021; 290(3): 486-98.
[http://dx.doi.org/10.1111/joim.13254] [PMID: 33480120]
[20]
Yagublu V, Karimova A, Hajibabazadeh J, et al. Overview of physicochemical properties of nanoparticles as drug carriers for targeted cancer therapy. J Funct Biomater 2022; 13(4): 196.
[http://dx.doi.org/10.3390/jfb13040196] [PMID: 36278665]
[21]
Wu M, Guo H, Liu L, Liu Y, Xie L. Size-dependent cellular uptake and localization profiles of silver nanoparticles. Int J Nanomedicine 2019; 14: 4247-59.
[http://dx.doi.org/10.2147/IJN.S201107] [PMID: 31239678]
[22]
Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine (Lond) 2008; 3(5): 703-17.
[http://dx.doi.org/10.2217/17435889.3.5.703] [PMID: 18817471]
[23]
Wang T, Wang L, Li X, et al. Size-dependent regulation of intracellular trafficking of polystyrene nanoparticle-based drug-delivery systems. ACS Appl Mater Interfaces 2017; 9(22): 18619-25.
[http://dx.doi.org/10.1021/acsami.7b05383] [PMID: 28497682]
[24]
Adjei IM, Sharma B, Labhasetwar V. Nanoparticles: Cellular uptake and cytotoxicity. Adv Exp Med Biol 2014; 811: 73-91.
[http://dx.doi.org/10.1007/978-94-017-8739-0_5] [PMID: 24683028]
[25]
Zein R, Sharrouf W, Selting K. Physical properties of nanoparticles that result in improved cancer targeting. J Oncol 2020; 2020: 1-16.
[http://dx.doi.org/10.1155/2020/5194780] [PMID: 32765604]
[26]
Hoshyar N, Gray S, Han H, Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond) 2016; 11(6): 673-92.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[27]
Yamashita S, Miyashita S, Hirata T. Size uncertainty in individual nanoparticles measured by single particle inductively coupled plasma mass spectrometry. Nanomaterials (Basel) 2023; 13(13): 1958.
[http://dx.doi.org/10.3390/nano13131958] [PMID: 37446474]
[28]
Akbari B, Tavandashti MP, Zandrahimi M. Particle size characterization of nanoparticles-A practicalapproach. Iran J Mater Sci Eng 2011; 8(2): 48-56.
[29]
Hussain R, Alican Noyan M, Woyessa G, et al. An ultra-compact particle size analyser using a CMOS image sensor and machine learning. Light Sci Appl 2020; 9(1): 21.
[http://dx.doi.org/10.1038/s41377-020-0255-6] [PMID: 32128161]
[30]
Yang L, Zhou Z, Song J, Chen X. Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications. Chem Soc Rev 2019; 48(19): 5140-76.
[http://dx.doi.org/10.1039/C9CS00011A] [PMID: 31464313]
[31]
Forest V, Leclerc L, Hochepied JF, Trouvé A, Sarry G, Pourchez J. Impact of cerium oxide nanoparticles shape on their in vitrocellular toxicity. Toxicol In Vitro 2017; 38: 136-41.
[http://dx.doi.org/10.1016/j.tiv.2016.09.022] [PMID: 27693598]
[32]
Li Y, Kröger M, Liu WK. Shape effect in cellular uptake of PEGylated nanoparticles: Comparison between sphere, rod, cube and disk. Nanoscale 2015; 7(40): 16631-46.
[http://dx.doi.org/10.1039/C5NR02970H] [PMID: 26204104]
[33]
Toy R, Peiris PM, Ghaghada KB, Karathanasis E. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond) 2014; 9(1): 121-34.
[http://dx.doi.org/10.2217/nnm.13.191] [PMID: 24354814]
[34]
Allen C, Qiu TA, Pramanik S, Buchman JT, Krause MOP, Murphy CJ. Research highlights: Investigating the role of nanoparticle surface charge in nano–bio interactions. Environ Sci Nano 2017; 4(4): 741-6.
[http://dx.doi.org/10.1039/C7EN90014G]
[35]
Moon J, Jiang H, Lee EC. Physical surface modification of carbon-nanotube/polydimethylsiloxane composite electrodes for high-sensitivity DNA detection. Nanomaterials (Basel) 2021; 11(10): 2661.
[http://dx.doi.org/10.3390/nano11102661] [PMID: 34685103]
[36]
Fu Z, Gu X, Hu L, Li Y, Li J. Radiation induced surface modification of nanoparticles and their dispersion in the polymer matrix. Nanomaterials (Basel) 2020; 10(11): 2237.
[http://dx.doi.org/10.3390/nano10112237] [PMID: 33187251]
[37]
Kishore A, John M, Ralls AM, Jose SA, Kuruveri UB, Menezes PL. Ultrasonic nanocrystal surface modification: Processes, characterization, properties, and applications. Nanomaterials (Basel) 2022; 12(9): 1415.
[http://dx.doi.org/10.3390/nano12091415] [PMID: 35564124]
[38]
Luo G, Du L, Wang Y, Wang K. Encyclopedia of Microfluidics and Nanofluidics. (2nd ed.). Singapore: Springer 2015; pp. 453-60.
[http://dx.doi.org/10.1007/978-1-4614-5491-5_243]
[39]
Choi M, Choi WK, Jung CH, Kim SB. The surface modification and characterization of SiO2 nanoparticles for higher foam stability. Sci Rep 2020; 10(1): 19399.
[http://dx.doi.org/10.1038/s41598-020-76464-w] [PMID: 33173140]
[40]
Kim S, Kim E, Kim S, Kim W. Surface modification of silica nanoparticles by UV-induced graft polymerization of methyl methacrylate. J Colloid Interface Sci 2005; 292(1): 93-8.
[http://dx.doi.org/10.1016/j.jcis.2005.09.046] [PMID: 16226762]
[41]
Liu JL, Bashir S. Eds Advanced nanomaterials and their applications in renewable energy. (2nd ed.). Texas: Elsevier Science 2022; pp. 61-110.
[42]
Yadav TP. Mechanical Milling: Atop down approach for the synthesis of nanomaterials and nanocomposites. Nanosci Nanotechnol 2012; 2(3): 22-48.
[http://dx.doi.org/10.5923/j.nn.20120203.01]
[43]
Subin TS, Vijayan V, Kumar KJR. Updated regulatory considerations for nanomedicines. Pharm Nanotechnol 2017; 5(3): 180-91.
[PMID: 28641516]
[44]
Paramasivam G, Palem VV, Sundaram T, Sundaram V, Kishore SC, Bellucci S. Nanomaterials: Synthesis and applications in theranostics. Nanomaterials (Basel) 2021; 11(12): 3228.
[http://dx.doi.org/10.3390/nano11123228] [PMID: 34947577]
[45]
Shukla RK, Badiye A, Vajpayee K, Kapoor N. Genotoxic potential of nanoparticles: Structural and functional modifications in DNA. Front Genet 2021; 12: 728250.
[http://dx.doi.org/10.3389/fgene.2021.728250] [PMID: 34659351]
[46]
Di Ianni E, Møller P, Vogel UB, Jacobsen NR. Pro-inflammatory response and genotoxicity caused by clay and graphene nanomaterials in A549 and THP-1 cells. Mutat Res Genet Toxicol Environ Mutagen 2021; 872: 503405.
[http://dx.doi.org/10.1016/j.mrgentox.2021.503405] [PMID: 34798932]
[47]
Manke A, Wang L, Rojanasakul Y. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed Res Int 2013; 2013: 1-15.
[http://dx.doi.org/10.1155/2013/942916] [PMID: 24027766]
[48]
Yang C, Merlin D. Challenges to safe nanomedicine treatment. Nanomaterials (Basel) 2023; 13(7): 1171.
[http://dx.doi.org/10.3390/nano13071171] [PMID: 37049268]
[49]
Holdren JP, Sunstein CR, Siddiqui IA. Principles for regulation and oversight of emerging technologies, U.S. Memorandum for the Heads of Executive Departments and Agencies. 2011. Available From: https://obamawhitehouse.archives.gov/sites/default/files/omb/inforeg/for-agencies/Principles-for-Regulation-and-Oversight-of-Emerging-Technologies-new.pdf
[50]
Bawa R, Barenholz Y, Owen A. The challenge of regulating nanomedicine: Key issues. London: Royal Society of Chemistry 2016; pp. 290-314.
[51]
Gaspar R. Regulatory issues surrounding nanomedicines: Setting the scene for the next generation of nanopharmaceuticals. Nanomedicine (Lond) 2007; 2(2): 143-7.
[http://dx.doi.org/10.2217/17435889.2.2.143] [PMID: 17716116]
[52]
Saha B, Bal M. Application of nanomaterials in medicine: Drug delivery, diagnostics and therapeutics. Int Res J Nanosci Nanotechnol 2020; 2(1): 17-43.
[53]
Maleki Dizaj S, Mennati A, Jafari S, Khezri K, Adibkia K. Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 2015; 5(1): 19-23.
[PMID: 25789215]
[54]
Nikalje AP. Nanotechnology and its applications in medicine. Med Chem 2015; 5(2): 81-9.
[55]
Chippa S, Suvarna V. Nanotechnology for detection of diseases caused by viruses-current overview. Int J Pharm Pharm Sci 2021; 13(4): 1-7.
[http://dx.doi.org/10.22159/ijpps.2021v13i4.40359]
[56]
Campos EVR, Pereira AES, de Oliveira JL, et al. How can nanotechnology help to combat COVID-19? Opportunities and urgent need. J Nanobiotechnology 2020; 18(1): 125.
[http://dx.doi.org/10.1186/s12951-020-00685-4] [PMID: 32891146]
[57]
Muneer M, Mughal SS, Pervez S, Mushtaq M, Shabbir N, Aslam A. Diagnosis and treatment of diseases by using metallic nanoparticles. Int J Glob Sci 2020; 3(1): 27-35.
[58]
Lan J. Overview of application of nanomaterials in medical domain. Contrast Media Mol Imaging 2022; 2022: 1-5.
[http://dx.doi.org/10.1155/2022/3507383] [PMID: 35601569]
[59]
Tang L, Cheng J. Nonporous silica nanoparticles for nanomedicine application. Nano Today 2013; 8(3): 290-312.
[http://dx.doi.org/10.1016/j.nantod.2013.04.007] [PMID: 23997809]
[60]
Nasirzadeh K, Nazarian S, Hayat SMG. Inorganic Nanomaterials: A brief overview of the applications and developments in sensing and drug delivery. J Appl Biotechnol Rep 2016; 3(2): 395-402.
[61]
Niculescu VC. Mesoporous silica nanoparticles for bio-applications. Front Mater 2020; 7: 36.
[http://dx.doi.org/10.3389/fmats.2020.00036]
[62]
Rajani C, Borisa P, Karanwad T, Borade Y. Cancer-targeted chemotherapy: Emerging role of the folate anchored dendrimer as drug delivery nanocarrier Pharmaceutical Applications of Dendrimers. Texas: Elsevier 2020; pp. 151-98.
[http://dx.doi.org/10.1016/B978-0-12-814527-2.00007-X]
[63]
Jyolsna P. Overview on different organic nanomaterials in medical field. J Pharm Sci& Res 2020; 12(7): 973-7.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy