Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

Incretin Therapy and Insulin Signaling: Therapeutic Targets for Diabetes And Associated Dementia

In Press, (this is not the final "Version of Record"). Available online 29 February, 2024
Author(s): Deepika Joshi*
Published on: 29 February, 2024

Article ID: e290224227536

DOI: 10.2174/0115733998279875240216093902

Price: $95

Abstract

Dementia is the primary cause of disability and dependence among the elderly population worldwide. The population living with dementia is anticipated to double in the next 17 years. Recent studies show the fact that compared to people without diabetes, people with Type 2 Diabetes (T2D) have about a 60% increased chance of developing dementia. In addition to cholinergic function being downregulated, improper insulin signalling also has a negative impact on synaptic plasticity and neuronal survival. Type 2 diabetes and dementia share various similar pathophysiological components. The ageing of the population and the ensuing rise in dementia prevalence are both results of ongoing medical advancements. It is possible that restoring insulin signaling could be a helpful therapy against dementia, as it is linked to both diminished cognitive function and the development of dementia, including AD. This review article comprehensively focused on scientific literature to analyze the relationship of Dementia with diabetes, recent experimental studies, and insight into incretin-based drug therapy for diabetes-related dementia.

[1]
Husband A, Worsley A. Different types of dementia. Pharm J 2006; 277: 579-82.
[2]
Gale SA, Acar D, Daffner KR. Dementia. Am J Med 2018; 131(10): 1161-9.
[http://dx.doi.org/10.1016/j.amjmed.2018.01.022] [PMID: 29425707]
[3]
Shaji KS, Jithu VP, Jyothi KS. Indian research on aging and dementia. Indian J Psychiatry 2010; 52(7): 148.
[http://dx.doi.org/10.4103/0019-5545.69227] [PMID: 21836672]
[4]
Duong S, Patel T, Chang F. Dementia. Can Pharm J 2017; 150(2): 118-29.
[http://dx.doi.org/10.1177/1715163517690745] [PMID: 28405256]
[5]
Fymat AL. Dementia: A review. J Clin Psychiatr Neurosci 2018; 1(3): 27-34.
[6]
Nisbet RM, Polanco JC, Ittner LM, Götz J. Tau aggregation and its interplay with amyloid-β. Acta Neuropathol 2015; 129(2): 207-20.
[http://dx.doi.org/10.1007/s00401-014-1371-2] [PMID: 25492702]
[7]
Fymat AL. Neurological disorders and the blood brain barrier: Parkinson’s disease and other movement disorders. J Curr Opin Neurol Sci 2018; 2(1): 362-83.
[8]
Karlawish JHT, Clark CM. Diagnostic evaluation of elderly patients with mild memory problems. Ann Intern Med 2003; 138(5): 411-9.
[http://dx.doi.org/10.7326/0003-4819-138-5-200303040-00011] [PMID: 12614094]
[9]
Delirium GOC. Am Fam Physician 2003; 67(5): 1027-34.
[PMID: 12643363]
[10]
Shega J, Emanuel L, Vargish L, et al. Pain in persons with dementia: Complex, common, and challenging. J Pain 2007; 8(5): 373-8.
[http://dx.doi.org/10.1016/j.jpain.2007.03.003] [PMID: 17485039]
[11]
Langa KM, Levine DA. The diagnosis and management of mild cognitive impairment: A clinical review. JAMA 2014; 312(23): 2551-61.
[http://dx.doi.org/10.1001/jama.2014.13806] [PMID: 25514304]
[12]
Chen JH, Lin KP, Chen YC. Risk factors for dementia. J Formos Med Assoc 2009; 108(10): 754-64.
[http://dx.doi.org/10.1016/S0929-6646(09)60402-2] [PMID: 19864195]
[13]
de la Monte SM. Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 2012; 9(1): 35-66.
[http://dx.doi.org/10.2174/156720512799015037] [PMID: 22329651]
[14]
Nathan DM. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview. Diabetes Care 2014; 37(1): 9-16.
[http://dx.doi.org/10.2337/dc13-2112] [PMID: 24356592]
[15]
Cukierman-Yaffe T, Gerstein HC, Williamson JD, et al. Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: The action to control cardiovascular risk in diabetes-memory in diabetes (ACCORD-MIND) trial. Diabetes Care 2009; 32(2): 221-6.
[http://dx.doi.org/10.2337/dc08-1153] [PMID: 19171735]
[16]
Whitmer RA, Karter AJ, Yaffe K, Quesenberry CP Jr, Selby JV. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA 2009; 301(15): 1565-72.
[http://dx.doi.org/10.1001/jama.2009.460] [PMID: 19366776]
[17]
Åsvold BO, Sand T, Hestad K, Bjørgaas MR. Cognitive function in type 1 diabetic adults with early exposure to severe hypoglycemia: A 16-year follow-up study. Diabetes Care 2010; 33(9): 1945-7.
[http://dx.doi.org/10.2337/dc10-0621] [PMID: 20805272]
[18]
Gerstein HC, Miller ME, Byington RP, et al. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008; 358(24): 2545-59.
[http://dx.doi.org/10.1056/NEJMoa0802743] [PMID: 18539917]
[19]
Lavielle P, Talavera JO, Reynoso N, et al. Prevalence of cognitive impairment in recently diagnosed type 2 diabetes patients: Are chronic inflammatory diseases responsible for cognitive decline? PLoS One 2015; 10(10): e0141325.
[http://dx.doi.org/10.1371/journal.pone.0141325] [PMID: 26517541]
[20]
Biessels GJ, Strachan MWJ, Visseren FLJ, Kappelle LJ, Whitmer RA. Dementia and cognitive decline in type 2 diabetes and prediabetic stages: Towards targeted interventions. Lancet Diabetes Endocrinol 2014; 2(3): 246-55.
[http://dx.doi.org/10.1016/S2213-8587(13)70088-3] [PMID: 24622755]
[21]
Gudala K, Bansal D, Schifano F, Bhansali A. Diabetes mellitus and risk of dementia: A meta‐analysis of prospective observational studies. J Diabetes Investig 2013; 4(6): 640-50.
[http://dx.doi.org/10.1111/jdi.12087] [PMID: 24843720]
[22]
Hanyu H. Diabetes-related dementia. Adv Exp Med Biol 2019; 1128: 147-60.
[http://dx.doi.org/10.1007/978-981-13-3540-2_8] [PMID: 31062329]
[23]
Kim YG, Jeon J, Kim H, et al. Risk of dementia in older patients with type 2 diabetes on dipeptidyl-peptidase iv inhibitors versus sulfonylureas: A real-world population-based cohort study. J Clin Med 2018; 8(1): 28.
[http://dx.doi.org/10.3390/jcm8010028] [PMID: 30597861]
[24]
Huang C-N, Lin C-L. The neuroprotective effects of the anti-diabetic drug linagliptin against Aß-induced neurotoxicity. Neural Regen Res 2016; 11(2): 236-7.
[http://dx.doi.org/10.4103/1673-5374.177724] [PMID: 27073371]
[25]
Pasquier F, Boulogne A, Leys D, Fontaine P. Diabetes mellitus and dementia. Diabetes Metab 2006; 32(5): 403-14.
[http://dx.doi.org/10.1016/S1262-3636(07)70298-7] [PMID: 17110895]
[26]
Ninomiya T. Diabetes mellitus and dementia. Curr Diab Rep 2014; 14(5): 487.
[http://dx.doi.org/10.1007/s11892-014-0487-z] [PMID: 24623199]
[27]
Haan MN. Therapy insight: Type 2 diabetes mellitus and the risk of late-onset Alzheimer’s disease. Nat Clin Pract Neurol 2006; 2(3): 159-66.
[http://dx.doi.org/10.1038/ncpneuro0124] [PMID: 16932542]
[28]
Hong M, Lee VMY. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem 1997; 272(31): 19547-53.
[http://dx.doi.org/10.1074/jbc.272.31.19547] [PMID: 9235959]
[29]
Sridhar G, Thota H, Allam AR, Suresh Babu C, Siva Prasad A, Divakar C. Alzheimer’s disease and type 2 diabetes mellitus: The cholinesterase connection? Lipids Health Dis 2006; 5(1): 28.
[http://dx.doi.org/10.1186/1476-511X-5-28] [PMID: 17096857]
[30]
Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci 2005; 102(27): 9673-8.
[http://dx.doi.org/10.1073/pnas.0504136102] [PMID: 15976020]
[31]
Bassil F, Fernagut PO, Bezard E, Meissner WG. Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: Targets for disease modification? Prog Neurobiol 2014; 118: 1-18.
[http://dx.doi.org/10.1016/j.pneurobio.2014.02.005] [PMID: 24582776]
[32]
Puttanna A, Padinjakara NK. Management of diabetes and dementia. British J Diabetes 2017; 17(3): 93-9.
[http://dx.doi.org/10.15277/bjd.2017.139]
[33]
Cunningham EL, McGuinness B, Herron B, Passmore AP. Dementia. Ulster Med J 2015; 84(2): 79-87.
[PMID: 26170481]
[34]
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM, Ribeiro FM. Alzheimer’s disease: Targeting the cholinergic system. Curr Neuropharmacol 2016; 14(1): 101-15.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[35]
Hamilton A, Patterson S, Porter D, Gault VA, Holscher C. Novel GLP‐1 mimetics developed to treat type 2 diabetes promote progenitor cell proliferation in the brain. J Neurosci Res 2011; 89(4): 481-9.
[http://dx.doi.org/10.1002/jnr.22565] [PMID: 21312223]
[36]
McClean PL, Parthsarathy V, Faivre E, Hölscher C. The diabetes drug liraglutide prevents degenerative processes in a mouse model of Alzheimer’s disease. J Neurosci 2011; 31(17): 6587-94.
[http://dx.doi.org/10.1523/JNEUROSCI.0529-11.2011] [PMID: 21525299]
[37]
De Meester I, Korom S, Van Damme J, Scharpé S. CD26, let it cut or cut it down. Immunol Today 1999; 20(8): 367-75.
[http://dx.doi.org/10.1016/S0167-5699(99)01486-3] [PMID: 10431157]
[38]
Abbott CA, Yu DMT, Woollatt E, Sutherland GR, McCaughan GW, Gorrell MD. Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog, DPP8. Eur J Biochem 2000; 267(20): 6140-50.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01617.x] [PMID: 11012666]
[39]
Kim NH, Yu T, Lee DH. The nonglycemic actions of dipeptidyl peptidase-4 inhibitors. BioMed Res Int 2014; 2014: 1-10.
[http://dx.doi.org/10.1155/2014/368703] [PMID: 25140306]
[40]
Green BD, Irwin N, Flatt PR. Pituitary adenylate cyclase-activating peptide (PACAP): Assessment of dipeptidyl peptidase IV degradation, insulin-releasing activity and antidiabetic potential. Peptides 2006; 27(6): 1349-58.
[http://dx.doi.org/10.1016/j.peptides.2005.11.010] [PMID: 16406202]
[41]
Matteucci E, Giampietro O. Dipeptidyl peptidase-4 (CD26): Knowing the function before inhibiting the enzyme. Curr Med Chem 2009; 16(23): 2943-51.
[http://dx.doi.org/10.2174/092986709788803114] [PMID: 19689275]
[42]
Omar B, Ahrén B. Pleiotropic mechanisms for the glucose-lowering action of DPP-4 inhibitors. Diabetes 2014; 63(7): 2196-202.
[http://dx.doi.org/10.2337/db14-0052] [PMID: 24962916]
[43]
Mentlein R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul Pept 1999; 85(1): 9-24.
[http://dx.doi.org/10.1016/S0167-0115(99)00089-0] [PMID: 10588446]
[44]
Chalichem NSS, Gonugunta C, Krishnamurthy PT, Duraiswamy B. DPP4 inhibitors can be a drug of choice for type 3 diabetes: A mini review. Am J Alzheimers Dis Other Demen 2017; 32(7): 444-51.
[http://dx.doi.org/10.1177/1533317517722005] [PMID: 28747063]
[45]
Holst JJ, Burcelin R, Nathanson E. Neuroprotective properties of GLP-1: Theoretical and practical applications. Curr Med Res Opin 2011; 27(3): 547-58.
[http://dx.doi.org/10.1185/03007995.2010.549466] [PMID: 21222567]
[46]
Salcedo I, Tweedie D, Li Y, Greig NH. Neuroprotective and neurotrophic actions of glucagon‐like peptide‐1: An emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br J Pharmacol 2012; 166(5): 1586-99.
[http://dx.doi.org/10.1111/j.1476-5381.2012.01971.x] [PMID: 22519295]
[47]
Hyun Lee C, Yan B, Yoo KY, et al. Ischemia‐induced changes in glucagon‐like peptide‐1 receptor and neuroprotective effect of its agonist, exendin‐4, in experimental transient cerebral ischemia. J Neurosci Res 2011; 89(7): 1103-13.
[http://dx.doi.org/10.1002/jnr.22596] [PMID: 21472764]
[48]
Kosaraju J, Madhunapantula SV, Chinni S, et al. Dipeptidyl peptidase-4 inhibition by Pterocarpus marsupium and Eugenia jambolana ameliorates streptozotocin induced Alzheimer’s disease. Behav Brain Res 2014; 267: 55-65.
[http://dx.doi.org/10.1016/j.bbr.2014.03.026] [PMID: 24667360]
[49]
Kim YG, Jeon JY, Kim HJ, et al. Risk of dementia in older patients with type 2 diabetes on dipeptidyl-peptidase iv inhibitors versus sulfonylureas: A real-world population-based cohort study. J Clin Med 2019; 8(3): 1-10.
[http://dx.doi.org/10.3390/jcm8030389] [PMID: 30897780]
[50]
Castorina A, Al-Badri G, Leggio GM, Musumeci G, Marzagalli R, Drago F. Tackling dipeptidyl peptidase IV in neurological disorders. Neural Regen Res 2018; 13(1): 26-34.
[http://dx.doi.org/10.4103/1673-5374.224365] [PMID: 29451201]
[51]
D’Amico M, Di Filippo C, Marfella R, et al. Long-term inhibition of dipeptidyl peptidase-4 in Alzheimer’s prone mice. Exp Gerontol 2010; 45(3): 202-7.
[http://dx.doi.org/10.1016/j.exger.2009.12.004] [PMID: 20005285]
[52]
Isik AT, Soysal P, Yay A, Usarel C. The effects of sitagliptin, a DPP-4 inhibitor, on cognitive functions in elderly diabetic patients with or without Alzheimer’s disease. Diabetes Res Clin Pract 2017; 123: 192-8.
[http://dx.doi.org/10.1016/j.diabres.2016.12.010] [PMID: 28056430]
[53]
Kosaraju J, Gali CC, Khatwal RB, et al. Saxagliptin: A dipeptidyl peptidase-4 inhibitor ameliorates streptozotocin induced Alzheimer’s disease. Neuropharmacology 2013; 72: 291-300.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.008] [PMID: 23603201]
[54]
Kosaraju J, Holsinger RMD, Guo L, Tam KY. Linagliptin, a dipeptidyl peptidase-4 inhibitor, mitigates cognitive deficits and pathology in the 3xTg-AD mouse model of Alzheimer’s disease. Mol Neurobiol 2017; 54(8): 6074-84.
[http://dx.doi.org/10.1007/s12035-016-0125-7] [PMID: 27699599]
[55]
Kosaraju J, Murthy V, Khatwal RB, et al. Vildagliptin: an anti-diabetes agent ameliorates cognitive deficits and pathology observed in streptozotocin-induced Alzheimer’s disease. J Pharm Pharmacol 2013; 65(12): 1773-84.
[http://dx.doi.org/10.1111/jphp.12148] [PMID: 24117480]
[56]
Yang D, Nakajo Y, Iihara K, Kataoka H, Yanamoto H. Alogliptin, a dipeptidylpeptidase-4 inhibitor, for patients with diabetes mellitus type 2, induces tolerance to focal cerebral ischemia in non-diabetic, normal mice. Brain Res 2013; 1517: 104-13.
[http://dx.doi.org/10.1016/j.brainres.2013.04.015] [PMID: 23602966]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy